
ISE TCAD Release 10.0

Integrated Systems Engineering
Zurich, Switzerland

DESSIS™

© 1995–2004 ISE Integrated Systems Engineering AG, Switzerland. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

The information in this document is the confidential and proprietary property of ISE Integrated Systems Engineering AG. The use
and disclosure of this material is subject to (a) license agreement(s) between ISE Integrated Systems Engineering AG and/or
Integrated Systems Engineering, Inc. and Licensee. The material may not be duplicated, displayed, disclosed or used – in whole or in
part – without the prior written consent of ISE Integrated Systems Engineering AG.

ISE Integrated Systems Engineering AG
Affolternstrasse 52
CH-8050 Zurich
Switzerland
Phone: +41 44 389 9700
Fax: +41 44 389 9797
www.ise.ch | www.ise.com

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. ISE INTEGRATED SYSTEMS ENGINEERING AG ASSUMES NO
RESPONSIBILITY FOR ERRORS OR OMISSIONS IN THIS PUBLICATION OR OTHER DOCUMENTS WHICH ARE
REFERENCED BY OR LINKED TO THIS PUBLICATION.

REFERENCES TO CORPORATIONS AND OTHER ENTITIES, THEIR SERVICES AND PRODUCTS, ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. IN NO EVENT SHALL ISE INTEGRATED
SYSTEMS ENGINEERING AG BE LIABLE FOR ANY SPECIAL, INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF
DAMAGE OR HARM, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS INFORMATION.

THIS PUBLICATION MAY INCLUDE TECHNICAL OR OTHER INACCURACIES OR TYPOGRAPHICAL ERRORS. ISE
INTEGRATED SYSTEMS ENGINEERING AG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME WITHOUT PRIOR NOTICE.

The IBM version of ISE TCAD contains IBM XL Fortran for AIX run-time modules. © 1990–2004 IBM Corporation. All rights
reserved.

Advanced Calibration, AtomISE, DESSIS, DEVISE, DIOS, DIP, EMLAB, FabLink, FLOOPS-ISE, GENESISe, INSPECT, ISE
Process Explorer, ISE TCAD, ISExtract, LIGAMENT, MDRAW, MESH, NOFFSET3D, OptimISE, PARDISO, SPARTA, and
TCAD Fab Package are trademarks of ISE Integrated Systems Engineering AG.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. UNIX is a registered
trademark of The Open Group in the United States and other countries. PGP is a registered trademark of the PGP Corporation in the
United States and other countries. Sun is a registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Linux is a registered trademark of Linus Torvalds. WinZip is a registered trademark of WinZip Computing, Inc. All other trademarks
and registered trademarks are the property of their respective owners.

PART 15 DESSIS CONTENTS
DESSIS
Preface...xvii

About this manual ... xvii
Typographic conventions .. xvii
Comments about this manual .. xviii
ISE Technical Support ... xviii

Part I Overview ... 15.1

Chapter 1 Getting started ...15.3
1.1 About DESSIS .. 15.3

1.1.1 Creating and meshing device structures .. 15.5
1.1.2 Design flow... 15.5

1.2 Starting DESSIS ... 15.6
1.2.1 Using the command prompt ... 15.6
1.2.2 From GENESISe .. 15.6

1.3 Simulation examples... 15.7
1.4 Example: Simple MOSFET Id-Vg simulation .. 15.7

1.4.1 Input command file ... 15.8
1.4.2 File section ... 15.9
1.4.3 Electrode section .. 15.9
1.4.4 Physics section... 15.10
1.4.5 Plot section ... 15.11
1.4.6 Math section ... 15.11
1.4.7 Solve section .. 15.12
1.4.8 Simulated Id-Vg characteristic.. 15.13
1.4.9 Analysis of 2D output data.. 15.14

1.5 Example: Advanced hydrodynamic Id-Vd simulation.. 15.15
1.5.1 Input command file ... 15.15
1.5.2 File section ... 15.18
1.5.3 Parameter file ... 15.18
1.5.4 Electrode section .. 15.19
1.5.5 Physics section... 15.20
1.5.6 Interface physics... 15.21
1.5.7 Plot section ... 15.21
1.5.8 CurrentPlot section ... 15.21
1.5.9 Math section ... 15.22
1.5.10 Solve section .. 15.23
1.5.11 Two-dimensional output data ... 15.26

1.6 Example: Mixed-mode CMOS inverter simulation .. 15.26
1.6.1 Input command file ... 15.27
1.6.2 Device section .. 15.28
1.6.3 System section ... 15.29
1.6.4 File section ... 15.30
1.6.5 Plot section ... 15.30
1.6.6 Math section ... 15.30
1.6.7 Solve section .. 15.31
1.6.8 Results of inverter transient simulation... 15.31

1.7 Example: Small-signal AC extraction.. 15.32
1.7.1 Input command file ... 15.32
1.7.2 Device section .. 15.34
1.7.3 File section ... 15.34
1.7.4 System section ... 15.34
1.7.5 Solve section .. 15.35
1.7.6 Results of AC simulation .. 15.36
 iii

 PART 15 DESSISCONTENTS
Chapter 2 Basic DESSIS .. 15.37
2.1 Overview..15.37

2.1.1 Specifying the device ..15.37
2.1.2 Defining the output ..15.37
2.1.3 Specifying the simulation ..15.37

2.2 File section...15.38
2.3 Electrode section ...15.39

2.3.1 Command syntax ..15.39
2.3.2 Work function and material specifications for contacts ...15.40

2.4 Thermode section ..15.42
2.4.1 Command syntax ..15.42

2.5 Physics section ..15.43
2.5.1 Example: Possible input parameters...15.43
2.5.2 Main and additional options ..15.44
2.5.3 Region-specific and material-specific physics ..15.47
2.5.4 Hierarchy of physical model specifications..15.48
2.5.5 Physics at interfaces ...15.49
2.5.6 Physics at electrodes ..15.52

2.6 Plot section ..15.52
2.7 CurrentPlot section ..15.52

2.7.1 Example: Node numbers...15.53
2.7.2 Example: Mixed mode...15.53
2.7.3 Example: Advanced options..15.54
2.7.4 Example: Physical parameter values ..15.54

2.8 NonLocalPlot section ...15.54
2.9 Solve section ...15.54

2.9.1 Coupled command ..15.55
2.9.2 Plugin command ...15.57
2.9.3 Quasistationary command ..15.58
2.9.4 Transient command ..15.62
2.9.5 Large signal cyclic analysis ...15.63
2.9.6 Plot, Save, and Load commands ..15.66
2.9.7 System command ...15.70
2.9.8 NewCurrentPrefix statement ...15.70
2.9.9 CurrentPlot section..15.71
2.9.10 Set command ..15.73

2.10 Math section ..15.73
2.10.1 Device-specific Math keywords...15.73
2.10.2 Math parameters for nonlinear iterations convergence control ...15.76
2.10.3 Math parameters for transient analysis ...15.77
2.10.4 Solver-oriented Math keywords...15.79
2.10.5 Break criteria ...15.81
2.10.6 Parallelization..15.82
2.10.7 Nonlocal line meshes ..15.83
2.10.8 Monitoring convergence behavior ...15.88

2.11 Thermodynamic simulations ..15.89
2.11.1 Nonisothermal simulation recommendations ..15.89

2.12 Hydrodynamic simulations...15.89
2.13 Parameter and model specification ...15.91

2.13.1 Region and material parameter specification..15.91
2.13.2 Generating a copy of parameter file ..15.91
2.13.3 Changing parameter values in parameter file ...15.91
2.13.4 Hierarchy of parameter specifications...15.92
2.13.5 Library of materials..15.92
2.13.6 Parameters of compound materials ..15.94
2.13.7 Undefined physical models ...15.94
iv

PART 15 DESSIS CONTENTS
2.14 Material and doping specification.. 15.95
2.14.1 User-defined materials ... 15.97
2.14.2 User-defined species.. 15.98

Chapter 3 Mixed-mode DESSIS..15.101
3.1 Overview ... 15.101

3.1.1 Compact models... 15.101
3.1.2 Hierarchical description of compact models ... 15.102
3.1.3 Example: Compact models... 15.103

3.2 SPICE circuit files ... 15.105
3.3 Dessis section... 15.106
3.4 System section.. 15.106

3.4.1 Physical devices ... 15.107
3.4.2 Circuit devices .. 15.108
3.4.3 Electrical and thermal netlist... 15.108
3.4.4 Set, Unset, Initialize, and Hint .. 15.110
3.4.5 System Plot .. 15.111
3.4.6 AC System Plot .. 15.112

3.5 File section.. 15.112
3.6 SPICE circuit models .. 15.113
3.7 User-defined circuit models .. 15.113
3.8 Solve section... 15.114

3.8.1 Coupled command ... 15.114
3.8.2 Quasistationary command.. 15.116
3.8.3 ACCoupled: Small-signal AC analysis.. 15.117
3.8.4 Optical AC analysis .. 15.119
3.8.5 Continuation: An alternative ramping method .. 15.119
3.8.6 Set and Unset section .. 15.121

3.9 Math section.. 15.121
3.10 Using mixed-mode simulation... 15.122

3.10.1 From single device file to multidevice file ... 15.122
3.10.2 File-naming convention: Mixed-mode extension .. 15.123

Part II Physics in DESSIS ... 15.125

Chapter 4 Introduction to physics in DESSIS...15.127
4.1 Overview ... 15.127
4.2 Transport equations .. 15.127

4.2.1 Basic equations for semiconductor device simulation .. 15.128
4.2.2 Drift-diffusion model.. 15.128
4.2.3 Thermodynamic model ... 15.128
4.2.4 Hydrodynamic model.. 15.130
4.2.5 Conductivity of metals .. 15.134

4.3 Quasi-Fermi potential.. 15.136
4.4 Fermi–Dirac statistics.. 15.137

4.4.1 Syntax and implementation .. 15.138
4.5 Boundary conditions ... 15.138

4.5.1 Electrical boundary conditions.. 15.138
4.5.2 Thermal boundary conditions for thermodynamic model.. 15.145
4.5.3 Thermal boundary conditions for hydrodynamic model.. 15.145
4.5.4 Total thermal resistance ... 15.146
4.5.5 Periodic boundary conditions ... 15.147

4.6 Starting solution or ‘initial guess’... 15.148
4.6.1 Electrostatic potential and quasi-Fermi potentials: Wells ... 15.149
4.6.2 Thermodynamic and hydrodynamic simulations .. 15.149
4.6.3 Save file overrides the initial guess .. 15.149
 v

 PART 15 DESSISCONTENTS
Chapter 5 Semiconductor band structure.. 15.151
5.1 Overview..15.151
5.2 Band gap and electron affinity ...15.151

5.2.1 Selecting a model..15.151
5.2.2 Band gap and electron affinity models ..15.152
5.2.3 Model parameters ...15.155

5.3 Effective masses and effective density of states ...15.155
5.3.1 Electron effective mass and DOS ...15.156
5.3.2 Electron effective mass and conduction band DOS parameters...15.157
5.3.3 Hole effective mass and DOS ...15.157
5.3.4 Hole effective mass and valence band DOS parameters..15.158

Chapter 6 Incomplete ionization ... 15.161
6.1 Overview..15.161
6.2 Syntax and implementation ...15.161
6.3 Physical model description ..15.162
6.4 Physical model parameters ...15.163
6.5 Example: Incomplete ionization ...15.164

Chapter 7 Quantization models... 15.165
7.1 Overview..15.165
7.2 van Dort quantum correction model...15.166

7.2.1 Model description ..15.166
7.2.2 Syntax and implementation...15.166

7.3 One-dimensional Schrödinger solver...15.167
7.3.1 Defining a nonlocal line mesh ...15.167
7.3.2 Activating and controlling the 1D Schrödinger solver..15.168
7.3.3 Physical parameters..15.169
7.3.4 Visualizing the results ...15.170
7.3.5 Model description ..15.170
7.3.6 Application notes...15.172

7.4 Density gradient model ..15.172
7.4.1 Model description ..15.172
7.4.2 Syntax and implementation...15.173
7.4.3 Application notes...15.174

Chapter 8 Mobility models ... 15.175
8.1 Overview..15.175
8.2 Syntax and implementation ...15.175
8.3 Mobility due to lattice scattering...15.176

8.3.1 Syntax and implementation...15.176
8.3.2 Constant mobility model ..15.176
8.3.3 Constant mobility model parameters...15.176

8.4 Doping-dependent mobility degradation ..15.176
8.4.1 Syntax and implementation...15.176
8.4.2 Masetti model ..15.177
8.4.3 Arora model...15.178
8.4.4 University of Bologna bulk mobility model...15.179

8.5 Mobility degradation at interfaces ..15.180
8.5.1 Syntax and implementation...15.181
8.5.2 Enhanced Lombardi model ...15.181
8.5.3 University of Bologna inversion layer mobility model ..15.183
8.5.4 Transverse field computation ..15.185

8.6 Carrier–carrier scattering...15.186
8.6.1 Syntax and implementation...15.186
8.6.2 Conwell–Weisskopf model ..15.187
vi

PART 15 DESSIS CONTENTS
8.6.3 Brooks–Herring model.. 15.187
8.6.4 Physical model parameters .. 15.187

8.7 Philips unified mobility model.. 15.188
8.7.1 Syntax and implementation .. 15.188
8.7.2 Physical model description ... 15.189
8.7.3 Screening parameter .. 15.190
8.7.4 Physical model parameters .. 15.191

8.8 High field saturation .. 15.193
8.8.1 Syntax... 15.193
8.8.2 Canali model... 15.193
8.8.3 Transferred electron model .. 15.194
8.8.4 Velocity saturation models.. 15.195
8.8.5 Driving force models... 15.196
8.8.6 Syntax and implementation for drift-diffusion and thermodynamic simulations...................... 15.196
8.8.7 Hydrodynamic Canali model... 15.197
8.8.8 Hydrodynamic transferred electron model.. 15.197
8.8.9 A basic model ... 15.198
8.8.10 Meinerzhagen–Engl model... 15.198
8.8.11 Syntax and implementation for hydrodynamic simulations... 15.198

8.9 Monte Carlo–computed mobility for strained silicon ... 15.199
8.10 Incomplete ionization–dependent mobility models ... 15.199

Chapter 9 Generation–recombination ...15.201
9.1 Shockley–Read–Hall recombination ... 15.201

9.1.1 Syntax and implementation .. 15.201
9.1.2 Doping dependence ... 15.202
9.1.3 Lifetime profiles from MDRAW ... 15.202
9.1.4 Temperature dependence .. 15.203
9.1.5 SRH model parameters .. 15.204

9.2 Trap-assisted tunneling/SRH .. 15.204
9.2.1 Syntax and implementation .. 15.204
9.2.2 Model description ... 15.205
9.2.3 Model parameters... 15.206

9.3 Hurkx trap-assisted tunneling model... 15.207
9.3.1 Syntax and implementation .. 15.207
9.3.2 Model description ... 15.207
9.3.3 Model parameters... 15.208

9.4 Surface SRH recombination ... 15.208
9.5 Coupled defect level (CDL) recombination ... 15.209

9.5.1 Syntax and implementation .. 15.210
9.5.2 Model description ... 15.210

9.6 Radiative recombination model... 15.211
9.6.1 Syntax and implementation .. 15.211
9.6.2 Model description ... 15.211

9.7 Auger recombination... 15.212
9.8 Trap-assisted Auger recombination .. 15.213
9.9 Avalanche generation ... 15.213

9.9.1 Syntax and implementation .. 15.214
9.9.2 van Overstraeten – de Man model ... 15.214
9.9.3 Okuto–Crowell model ... 15.215
9.9.4 Lackner model .. 15.216
9.9.5 University of Bologna impact ionization model ... 15.217
9.9.6 Driving force ... 15.218
9.9.7 Avalanche generation with hydrodynamic transport... 15.218

9.10 Approximate breakdown analysis: Poisson equation approach.. 15.220
9.10.1 Syntax and implementation .. 15.220
 vii

 PART 15 DESSISCONTENTS
9.11 Band-to-band tunneling models...15.221
9.11.1 Schenk model ...15.221
9.11.2 Commonly used models..15.223
9.11.3 Hurkx model ..15.223
9.11.4 Tunneling near interfaces and equilibrium regions..15.224

Chapter 10 Traps .. 15.225
10.1 Trap energy and space distributions..15.225
10.2 Trap occupation dynamics...15.226

10.2.1 Balance equation ..15.226
10.2.2 Models for balance coefficients...15.227

10.3 Steady state analysis...15.228
10.4 Transient analysis..15.229
10.5 Syntax for traps..15.229
10.6 Syntax for amorphous statement...15.231
10.7 Setting and unsetting an initial trap occupation ...15.232
10.8 Numeric parameters ..15.233

Chapter 11 Degradation model.. 15.235
11.1 Overview..15.235
11.2 Trap formation kinetics ..15.235

11.2.1 Power law and kinetic equation...15.235
11.2.2 Si-H density–dependent activation energy..15.236

11.3 Syntax and parameterized equations ..15.236
11.4 Device lifetime and simulation ...15.238

Chapter 12 Radiation models .. 15.241
12.1 Overview..15.241
12.2 Syntax and implementation ...15.241
12.3 Yield function ...15.241
12.4 J-model trap equations ..15.242

Chapter 13 Optical generation... 15.243
13.1 Photon beam generation ...15.243
13.2 Absorption models ...15.246

13.2.1 Default absorption model from DESSIS parameter file ...15.246
13.2.2 Table-based optical properties of materials in DESSIS parameter file15.247
13.2.3 Absorption coefficient model ...15.248

13.3 Optical generation by raytracing ..15.249
13.3.1 Overview ...15.249
13.3.2 Snell’s law, and refraction and reflection intensities..15.252
13.3.3 Polarization ...15.253
13.3.4 Absorption models ..15.254
13.3.5 Refractive index model..15.254
13.3.6 Intensity...15.255
13.3.7 Window of ray ...15.255
13.3.8 Spatial distribution of intensity...15.259

13.4 Optical generation by transfer matrix approach...15.266
13.4.1 Physical model ..15.266
13.4.2 Syntax and implementation...15.269

13.5 Optical generation from FDTD simulation (EMLAB) ..15.271
13.5.1 Files of EMLAB generation ...15.271
13.5.2 Syntax of EMLAB generation: EMLAB input file ...15.273
13.5.3 EMLAB generation: Tensor grid, syntax, and algorithm..15.279

13.6 Optical AC analysis..15.282
viii

PART 15 DESSIS CONTENTS
Chapter 14 Single event upset (SEU)...15.283
14.1 Alpha particles .. 15.283

14.1.1 Syntax and implementation .. 15.283
14.2 Heavy ions .. 15.284

14.2.1 Syntax and implementation .. 15.285
14.2.2 Model description ... 15.286
14.2.3 Examples: Heavy ions.. 15.288

14.3 Improved alpha particle/heavy ion generation rate integration ... 15.288

Chapter 15 Noise and fluctuation analysis ...15.291
15.1 Overview ... 15.291
15.2 Performing noise and fluctuation analysis .. 15.291
15.3 Noise sources ... 15.293

15.3.1 Diffusion noise .. 15.293
15.3.2 Equivalent monopolar generation–recombination noise... 15.293
15.3.3 Bulk flicker noise... 15.294
15.3.4 Random dopant fluctuations... 15.294
15.3.5 Noise from SPICE circuit elements .. 15.294

15.4 Impedance field method.. 15.295
15.5 Noise output data.. 15.296

Chapter 16 Tunneling..15.299
16.1 Overview ... 15.299
16.2 Fowler–Nordheim tunneling .. 15.300

16.2.1 Syntax and implementation .. 15.300
16.2.2 Model description ... 15.301
16.2.3 Model parameters... 15.301

16.3 Direct tunneling through gate oxides .. 15.302
16.3.1 Syntax and implementation .. 15.302
16.3.2 Model description ... 15.303
16.3.3 Model parameters... 15.305

16.4 Nonlocal tunneling at interfaces and contacts .. 15.306
16.4.1 Defining a nonlocal mesh ... 15.306
16.4.2 Specifying the physical model .. 15.307
16.4.3 Physical and numeric parameters .. 15.309
16.4.4 Visualizing nonlocal tunneling .. 15.310
16.4.5 Physics of nonlocal tunneling model .. 15.310

Chapter 17 Hot carrier injection models..15.317
17.1 Overview ... 15.317
17.2 Classical Lucky electron injection ... 15.318
17.3 Fiegna hot carrier injection.. 15.319

Chapter 18 Heterostructure device simulation...15.321
18.1 Overview ... 15.321
18.2 Physics models and differential equations.. 15.321
18.3 Mole fraction materials.. 15.321
18.4 Mole fraction specification... 15.323
18.5 Composition-dependent models ... 15.324
18.6 Ternary semiconductor composition ... 15.325
18.7 Quaternary semiconductor composition ... 15.328
18.8 Default model parameters for compound semiconductors ... 15.329
18.9 Abrupt and graded heterojunctions... 15.330
18.10 Thermionic emission current ... 15.330

18.10.1 Syntax and implementation .. 15.330
18.10.2 Model description ... 15.331
 ix

 PART 15 DESSISCONTENTS
Chapter 19 Energy-dependent parameters .. 15.333
19.1 Overview..15.333
19.2 Energy-dependent energy relaxation time...15.333
19.3 Energy-dependent mobility ..15.335
19.4 Energy-dependent Peltier coefficient...15.336

Chapter 20 Anisotropic properties.. 15.339
20.1 Anisotropic mobility..15.339

20.1.1 Crystal reference system ..15.339
20.1.2 Anisotropy factor ...15.339
20.1.3 Current densities ...15.339
20.1.4 Driving forces ..15.341
20.1.5 Total anisotropic mobility...15.342
20.1.6 Total direction-dependent anisotropic mobility ..15.342
20.1.7 Self-consistent anisotropic mobility ...15.343
20.1.8 Math section..15.344
20.1.9 Plot section..15.344

20.2 Anisotropic avalanche generation..15.344
20.3 Anisotropic electrical permittivity..15.346
20.4 Anisotropic thermal conductivity ..15.347

Chapter 21 Ferroelectric materials.. 15.349
21.1 Overview..15.349
21.2 Syntax and implementation ...15.349
21.3 Model description...15.350

Chapter 22 Mechanical stress effect modeling.. 15.353
22.1 Overview..15.353
22.2 Syntax and implementation ...15.354
22.3 Deformation of band structure ...15.354

22.3.1 Syntax and implementation...15.356
22.4 Tensor-mesh piezoresistive option ..15.357

22.4.1 Syntax and implementation...15.358
22.5 Strain-induced mobility model..15.359

22.5.1 Syntax and implementation...15.361

Chapter 23 Galvanic transport model... 15.363
23.1 Syntax and implementation ...15.363
23.2 Model description...15.363

Chapter 24 Thermal properties.. 15.365
24.1 Heat capacity ...15.365
24.2 Temperature-dependent lattice heat capacity ...15.365
24.3 Thermal conductivity..15.366
24.4 Temperature-dependent thermal conductivity ...15.366
24.5 Thermoelectric power (TEP)..15.367

Part III Physics of Lasers and Light-Emitting Diodes .. 15.369

Chapter 25 Introduction to lasers and LEDs.. 15.371
25.1 Overview..15.371
25.2 Command file syntax ...15.373

25.2.1 Single-grid edge-emitting laser simulation ..15.373
25.2.2 Dual-grid edge-emitting laser simulation...15.378
25.2.3 Default output from laser or LED simulation..15.381
25.2.4 Plot variables specific to laser or LED simulations..15.382
x

PART 15 DESSIS CONTENTS
Chapter 26 Theoretical foundations of laser or LED simulation...15.385
26.1 Overview ... 15.385
26.2 Coupling between optics and electronics.. 15.386

26.2.1 Algorithm for coupling electrical and optical problems ... 15.387
26.3 Photon rate equation... 15.388
26.4 Waveguide optical modes and Fabry–Perot cavity... 15.390

26.4.1 Lasing wavelength in Fabry–Perot cavity ... 15.391
26.4.2 Specifying a fixed optical confinement factor ... 15.392
26.4.3 Output power.. 15.392

26.5 Cavity optical modes in VCSELs .. 15.392
26.5.1 VCSEL output power .. 15.394
26.5.2 Cylindrical symmetry .. 15.395
26.5.3 Approximate methods for VCSEL cavity problem .. 15.395

26.6 Modeling light-emitting diodes .. 15.396
26.6.1 Coupling between electronics and optics in an LED simulation ... 15.396
26.6.2 Discussion of LED physics ... 15.397

Chapter 27 Optics..15.399
27.1 Overview ... 15.399
27.2 Finite element (FE) formulation... 15.400
27.3 Syntax of FE scalar and FE vectorial optical solvers .. 15.401

27.3.1 FE scalar solver.. 15.401
27.3.2 FE vectorial solver .. 15.402
27.3.3 Specifying multiple entries for parameters in FEScalar and FEVectorial 15.405

27.4 Boundary conditions and symmetry for optical solvers... 15.406
27.4.1 Symmetric FEScalar waveguide mode in Cartesian coordinates... 15.407
27.4.2 Symmetric FEVectorial waveguide modes in Cartesian coordinates 15.408
27.4.3 Symmetric FEVectorial VCSEL cavity modes in Cartesian coordinates 15.409
27.4.4 Symmetric FEVectorial VCSEL cavity modes in cylindrical coordinates 15.409

27.5 Perfectly matched layers... 15.410
27.6 Transfer matrix method for VCSELs ... 15.411
27.7 Effective index method for VCSELs.. 15.413

27.7.1 Formulation of effective index method.. 15.414
27.7.2 Transverse mode pattern of VCSELs... 15.416
27.7.3 Syntax for the effective index method .. 15.417

27.8 LED raytracing .. 15.419
27.8.1 Isotropic starting rays from spontaneous emission sources... 15.419
27.8.2 Anisotropic starting rays from spontaneous emission sources... 15.420
27.8.3 Randomization of starting rays ... 15.420
27.8.4 Syntax for LED raytracing... 15.421
27.8.5 LED radiation pattern.. 15.423

27.9 Far field ... 15.427
27.9.1 Far-field observation angle ... 15.428
27.9.2 Syntax of far field.. 15.429
27.9.3 Far-field output files .. 15.430
27.9.4 Far field from loaded optical field file .. 15.432

27.10 VCSEL near field and far field... 15.433
27.11 Automatic optical mode searching .. 15.434

27.11.1 Syntax for automatic mode searching .. 15.435

Chapter 28 Quantum well modeling...15.439
28.1 Overview ... 15.439
28.2 Carrier capture in quantum wells .. 15.440

28.2.1 Special meshing requirements for quantum wells .. 15.440
28.2.2 Thermionic emission... 15.441
28.2.3 QW scattering model .. 15.441
 xi

 PART 15 DESSISCONTENTS
28.3 Radiative recombination and gain coefficients ..15.443
28.3.1 Stimulated and spontaneous emission coefficients...15.443
28.3.2 Active bulk material gain ...15.444
28.3.3 Stimulated recombination rate ..15.445
28.3.4 Spontaneous recombination rate ..15.445
28.3.5 Spontaneous emission power for LEDs ..15.445

28.4 Gain-broadening models ...15.446
28.4.1 Lorentzian broadening ..15.446
28.4.2 Landsberg broadening ..15.446
28.4.3 Hyperbolic-cosine broadening...15.447
28.4.4 Syntax to activate broadening...15.447

28.5 Nonlinear gain saturation effects ...15.447
28.6 Simple quantum well subband model ..15.448

28.6.1 Syntax for simple quantum well model..15.450
28.7 Strain effects..15.451

28.7.1 Syntax for quantum well strain ..15.452
28.8 Polarization-dependent optical matrix element..15.453
28.9 k.p method ...15.455

28.9.1 Luttinger–Kohn parameters and Hamiltonians for zinc-blende crystal structure...................15.456
28.9.2 Luttinger–Kohn parameters and Hamiltonian for wurtzite crystal structure...........................15.459
28.9.3 Syntax for k.p method ...15.460

28.10 Importing external gain with PMI ...15.466
28.10.1 Implementation of the gain PMI ..15.467

Chapter 29 Additional features of laser or LED simulation .. 15.471
29.1 Free carrier loss...15.471
29.2 Saving and loading optical modes ...15.472

29.2.1 Saving optical modes on optical or electrical mesh...15.472
29.2.2 Loading optical modes from arbitrary mesh ..15.472
29.2.3 Obsolete optical intensity save and load options ..15.474

29.3 Symmetry considerations ..15.474
29.3.1 Cylindrical symmetry ...15.475

29.4 Plotting gain ...15.475
29.4.1 Modal gain as a function of bias..15.475
29.4.2 Material gain in the active region ..15.476
29.4.3 Modal gain as a function of energy/wavelength ..15.476

29.5 Refractive index, dispersion, and optical loss..15.477
29.5.1 Temperature dependence of refractive index ...15.477
29.5.2 Carrier density dependence of refractive index...15.477
29.5.3 Wavelength dependence and absorption of refractive index ..15.478

29.6 Transient simulation...15.479
29.6.1 Syntax for laser transient simulation ...15.480

29.7 Performing a temperature simulation...15.481
29.7.1 Lattice temperature simulation ..15.481
29.7.2 Carrier temperature simulation..15.483

29.8 Optics stand-alone option ..15.484
29.9 Switching from voltage to current ramping ..15.486
29.10 Scripts..15.487

Chapter 30 Simulation of different laser types and LEDs... 15.489
30.1 Overview..15.489
30.2 Edge-emitting lasers ..15.491

30.2.1 Multiple transverse modes ..15.491
30.2.2 Multiple longitudinal modes...15.492
30.2.3 Simple distributed feedback model ...15.492
30.2.4 Bulk active-region edge-emitting lasers ..15.493
xii

PART 15 DESSIS CONTENTS
30.2.5 Device physics and parameter tuning .. 15.493
30.2.6 Leaky waveguide lasers ... 15.493

30.3 Vertical-cavity surface-emitting lasers .. 15.494
30.3.1 Different grid and structure for electrical and optical problems .. 15.494
30.3.2 Aligning resonant wavelength within the gain spectrum... 15.495
30.3.3 Device physics and parameter tuning .. 15.496
30.3.4 Example syntax for VCSEL simulation ... 15.496

30.4 Light-emitting diodes... 15.500
30.4.1 Single-grid versus dual-grid LED simulation... 15.500
30.4.2 LED output power... 15.500
30.4.3 Device physics and tuning parameters... 15.501
30.4.4 Example syntax for LED simulation.. 15.501

Part IV Mesh and Numeric Methods ... 15.505

Chapter 31 Automatic grid generation and adaptation module AGM...15.507
31.1 Overview ... 15.507

31.1.1 Adaptation procedure ... 15.508
31.1.2 Adaptation decision .. 15.508
31.1.3 Adaptation strategy... 15.509
31.1.4 Adaptation criteria... 15.509
31.1.5 Solution recomputation... 15.510

31.2 Adaptive device instances .. 15.511
31.2.1 AGM device parameters... 15.511
31.2.2 Grid specification.. 15.513

31.3 Adaptation criteria ... 15.513
31.3.1 General... 15.514
31.3.2 Dirichlet... 15.514
31.3.3 Residual.. 15.514
31.3.4 Element .. 15.514

31.4 Adaptive solve statements .. 15.515
31.4.1 General adaptive solve statements .. 15.515
31.4.2 Adaptive coupled solve statements .. 15.515
31.4.3 Adaptive quasistationary solve statements .. 15.515

31.5 Limitations and recommendations .. 15.516
31.5.1 Limitations .. 15.516
31.5.2 Recommendations.. 15.516

Chapter 32 Numeric methods...15.519
32.1 Discretization .. 15.519
32.2 Box method coefficients.. 15.520

32.2.1 Basic definitions.. 15.520
32.2.2 Variation of box method algorithms.. 15.521
32.2.3 Truncated and non-Delaunay elements ... 15.522
32.2.4 Math parameters for box method coefficients .. 15.523
32.2.5 Saving and restoring box method coefficients.. 15.524

32.3 AC simulation.. 15.525
32.3.1 AC response... 15.525
32.3.2 AC current density responses .. 15.527

32.4 Transient simulation.. 15.527
32.4.1 Backward Euler method ... 15.527
32.4.2 TRBDF composite method ... 15.528
32.4.3 Syntax and implementation .. 15.529

32.5 Nonlinear solvers .. 15.529
32.5.1 Full coupled solution... 15.529
32.5.2 ‘Plugin’ iterations .. 15.531
 xiii

 PART 15 DESSISCONTENTS
Part V Physical Model Interface... 15.533

Chapter 33 Physical model interface .. 15.535
33.1 Overview..15.535
33.2 C++ interface ...15.536
33.3 Shared object code..15.538
33.4 DESSIS command file ...15.539
33.5 Run-time support ...15.540
33.6 DESSIS parameter file...15.542
33.7 Generation–recombination model..15.543

33.7.1 Dependencies ...15.543
33.7.2 C++ interface...15.543
33.7.3 Example: Auger recombination ...15.544

33.8 Avalanche generation model ...15.544
33.8.1 Dependencies ...15.544
33.8.2 C++ interface...15.545
33.8.3 Example: Okuto model ..15.546

33.9 Mobility models ..15.549
33.10 Doping-dependent mobility ..15.549

33.10.1 Dependencies ...15.549
33.10.2 C++ interface...15.550
33.10.3 Example: Masetti model ..15.551

33.11 Mobility degradation at interfaces ..15.553
33.11.1 Dependencies ...15.553
33.11.2 C++ interface...15.554
33.11.3 Example: Lombardi model ..15.555

33.12 High-field saturation model ..15.559
33.12.1 Dependencies ...15.559
33.12.2 C++ interface...15.560
33.12.3 Example: Canali model ...15.561

33.13 Band gap ...15.565
33.13.1 Dependencies ...15.566
33.13.2 C++ interface...15.566
33.13.3 Example: Default band gap model ..15.566

33.14 Band-gap narrowing ..15.567
33.14.1 Dependencies ...15.567
33.14.2 C++ interface...15.568
33.14.3 Example: Default model ..15.568

33.15 Apparent band-edge shift ..15.569
33.15.1 Dependencies ...15.570
33.15.2 C++ interface...15.570

33.16 Electron affinity ..15.571
33.16.1 Dependencies ...15.571
33.16.2 C++ interface...15.571
33.16.3 Example: Default affinity model...15.572

33.17 Effective mass ...15.573
33.17.1 Dependencies ...15.573
33.17.2 C++ interface...15.573
33.17.3 Example: Linear effective mass model..15.574

33.18 Energy relaxation times ...15.575
33.18.1 Dependencies ...15.576
33.18.2 C++ interface...15.576
33.18.3 Example: Constant energy relaxation times..15.577

33.19 Lifetimes ..15.578
33.19.1 Dependencies ...15.578
33.19.2 C++ interface...15.579
33.19.3 Example: Doping- and temperature-dependent lifetimes..15.579
xiv

PART 15 DESSIS CONTENTS
33.20 Thermal conductivity ... 15.581
33.20.1 Dependencies... 15.582
33.20.2 C++ interface.. 15.582
33.20.3 Example: Temperature-dependent thermal conductivity .. 15.583

33.21 Heat capacity .. 15.584
33.21.1 Dependencies... 15.584
33.21.2 C++ interface.. 15.584
33.21.3 Example: Constant heat capacity ... 15.585

33.22 Optical absorption ... 15.586
33.22.1 Dependencies... 15.586
33.22.2 C++ interface.. 15.586
33.22.3 Example: Temperature-dependent absorption model .. 15.587

33.23 Refractive index .. 15.587
33.23.1 Dependencies... 15.588
33.23.2 C++ interface.. 15.588
33.23.3 Example: Temperature-dependent refractive index ... 15.588

33.24 Stress.. 15.589
33.24.1 Dependencies... 15.589
33.24.2 C++ interface.. 15.589
33.24.3 Example: Constant stress model.. 15.590

33.25 Trap space factor .. 15.591
33.25.1 Dependencies... 15.592
33.25.2 C++ interface.. 15.592
33.25.3 Example: PMI user field as space factor .. 15.592

33.26 Piezoelectric polarization .. 15.593
33.26.1 Dependencies... 15.593
33.26.2 C++ interface.. 15.594
33.26.3 Example: Gaussian polarization model .. 15.594

33.27 Incomplete ionization .. 15.595
33.27.1 Dependencies... 15.595
33.27.2 C++ interface.. 15.595
33.27.3 Example: Matsuura incomplete ionization model ... 15.596

33.28 Current plot ... 15.600
33.28.1 Structure of current plot file .. 15.600
33.28.2 C++ interface.. 15.601
33.28.3 Run-time support .. 15.601
33.28.4 Device mesh... 15.602
33.28.5 Device data... 15.606
33.28.6 Example: Average electrostatic potential ... 15.607

Appendix A Syntax..15.611

Appendix B File-naming convention ...15.613
B.1 Compatibility with old file-naming convention... 15.614

Appendix C Command-line options...15.615

Appendix D Run-time statistics..15.617

Appendix E Data and plot names...15.619

Bibliography...15.629
 xv

PART 15 DESSIS PREFACE
DESSIS

Preface

About this manual
DESSIS is a multidimensional, electrothermal, mixed-mode device and circuit simulator for one-dimensional,
two-dimensional, and three-dimensional semiconductor devices. It incorporates advanced physical models
and robust numeric methods for the simulation of most types of semiconductor device ranging from very deep
submicron silicon MOSFETs to large bipolar power structures. In addition, SiC and III–V compound
homostructure and heterostructure devices are fully supported.

The manual is divided into parts:

Part I is an overview of DESSIS. It contains information about how to start DESSIS, the main features of
DESSIS, its input file, and mixed-mode DESSIS.

Part II describes the physics in DESSIS.

Part III describes the physical models used in laser and LED simulations.

Part IV presents the automatic grid generation facility and provides background information on the
numeric methods used in DESSIS.

Part V describes the physical model interface (PMI), which provides direct access to certain models in
the semiconductor transport equations and the numeric methods in DESSIS.

Typographic conventions
Convention Explanation

< > Angle brackets

{ } Braces

[] Brackets

() Parentheses

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field,
window, dialog box, or panel.

Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the names
of files, directories, paths, parameters, keywords, and variables.

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also identifies
components of an equation or a formula, a placeholder, or an identifier.

Menu > Command Indicates a menu command, for example, File > New (from the File menu, select New).

NOTE Identifies important information.
 xvii

PART 15 DESSISPREFACE
Comments about this manual
To improve ISE technical documentation and allow users to fully explore ISE TCAD™ software, ISE requests
the opinions of users about the contents of this manual. ISE welcomes comments and notification of any errors
to manuals@ise.ch.

ISE Technical Support
ISE Technical Support provides timely and efficient responses to customer requests:

Europe (and the rest of the world): support.eu@ise.com

North America and South America: support.us@ise.com

Japan: support.jp@ise.com

Taiwan: support.tw@ise.com

Korea: support.kr@ise.com

China: support.cn@ise.com

All data submitted to ISE Technical Support is treated confidentially. Upon request, PGP®/GPG encryption
of transferred data can be used.

To avoid difficulties with email transmissions and shorten the response time, process files before submitting
them. It is preferred that gzip’ed archive files are sent (the procedure is described below). Do not attach large
files to an email message. Instead, it is recommended that you place them in the incoming directory on the
ISE anonymous FTP server (the procedure is described below). Anonymous users can write to this directory,
but cannot read it.

The following information is required:

Company name or customer number.

A clear, precise description of the problem.

Input files to reproduce the problem if required.

ISE TCAD tool name and version number. Use the option -v:

$ <tool> -v

For example, for a problem with the DESSIS™, use: $ dessis -v

Other information regarding the platform used. This is obtained by using the diagnostic option:

$ <tool> -@diag

This generates a diagnostics list with extensive system information, including the location and
availability of shared libraries.

For problems that may relate to installation or license issues, provide the output of the command:

$ <tool> -@ldiag

For example, $ dessis -@ldiag. This generates a diagnostics list that includes license information.
xviii

PART 15 DESSIS PREFACE
For problems related to Framework tools, start the tool with the option -verbose, for example:

$ GENESISe -verbose

For problems that are difficult to reproduce or take a long time to run, include log files and output files.

Windows® zipped file

Save all relevant files to a directory. Create a zip file of the directory by using a zip tool such as WinZip®.

Gzip’ed tar’ed file

Save all relevant files to a directory. Create a gzip’ed archive of the directory.

When submitting a GENESISe™ project, tar the entire directory to ensure that all files (including those with
file names starting with a dot) are included, for example:

tar cvf support.tar directory_name
gzip support.tar

Procedure for FTP

Files placed on the FTP server must be named companyname_problem.tar.gz or companyname_problem.zip (for
example, firetexinc_problem.tar.gz). Refer to this name in the email message sent to ISE Technical Support:

Server: ftp.ise.ch or ftp.ise.com
Login: anonymous

Password: email address
Directory: incoming

If you do not have a GUI-based FTP program, use the built-in FTP program:

1. Open a shell (for Windows®, use command prompt).

2. Type: ftp ftp.ise.ch.

3. Login: anonymous

4. Change to the incoming directory by typing: cd incoming.

5. Change the transfer mode to binary by typing: bin.

6. Place the zipped file in the directory by typing: put companyname_problem.tar.gz.

7. Exit the server by typing: quit.

For assistance using this software and for further information about sending requests to ISE Technical
Support, visit www.ise.ch | www.ise.com.
 xix

Part I Overview
This part of the DESSIS manual contains the following chapters:

CHAPTER 1 GETTING STARTED ON PAGE 15.3

CHAPTER 2 BASIC DESSIS ON PAGE 15.37

CHAPTER 3 MIXED-MODE DESSIS ON PAGE 15.101

PART 15 DESSIS CHAPTER 1 GETTING STARTED
DESSIS

CHAPTER 1 Getting started

1.1 About DESSIS
DESSIS simulates numerically the electrical behavior of a single semiconductor device in isolation or several
physical devices combined in a circuit. Terminal currents [A], voltages [V], and charges [C] are computed
based on a set of physical device equations that describes the carrier distribution and conduction mechanisms.
A real semiconductor device, such as a transistor, is represented in the simulator as a ‘virtual’ device whose
physical properties are discretized onto a nonuniform ‘grid’ (or ‘mesh’) of nodes.

NOTE The terms ‘grid’ and ‘mesh’ are interchangeable.

Therefore, a virtual device is an approximation of a real device. Continuous properties such as doping profiles
are represented on a sparse mesh and, therefore, are only defined at a finite number of discrete points in space.
The doping at any point between nodes (or any physical quantity calculated by DESSIS) can be obtained by
interpolation. Each virtual device structure is described in the ISE TCAD™ tool suite by two files:

The grid (or geometry) file contains a description of the various regions of the device, that is, boundaries,
material types, and the locations of any electrical contacts. This file also contains the grid (the locations
of all the discrete nodes and their connectivity). The typical contents of this file, such as the boundary and
grid of a typical MOSFET structure, are shown in Figure 15.1.

Figure 15.1 Region boundaries of a MOSFET structure with nodes and mesh
 15.3

PART 15 DESSISCHAPTER 1 GETTING STARTED
The data (or doping) file contains the properties of the device, such as the doping profiles, in the form of
data associated with the discrete nodes. Figure 15.2 is an example. By default, a device simulated in 2D
is assumed to have a ‘thickness’ in the third dimension of 1 µm.

Figure 15.2 Two-dimensional doping profile that is discretized on the nodes of simulation grid

The features of DESSIS are many and varied. They can be summarized as:

An extensive set of models for device physics and effects in semiconductor devices (drift-diffusion,
thermodynamic, and hydrodynamic models).

General support for different device geometries (1D, 2D, 3D, and 2D cylindrical).

A extensive set of nonlinear solvers.

A mixed-mode support of electrothermal netlists with mesh-based device models and SPICE circuit
models.

Nonvolatile memory simulations are accommodated by robust treatment of floating electrodes in combination
with Fowler–Nordheim and direct tunneling, and hot carrier injection mechanisms.

Hydrodynamic (energy balance) transport is simulated rigorously to provide a more physically accurate
alternative to conventional drift-diffusion formulations of carrier conduction in advanced devices.

Floating semiconductor regions in devices such as thyristors and SOI transistors (floating body) are handled
robustly. This allows hydrodynamic breakdown simulations in such devices to be achieved with good
convergence.

The mixed device and circuit capabilities give DESSIS the ability to solve three basic types of problem: single
device simulations, single device with a circuit netlist simulations, and multiple devices with a circuit netlist
simulations (see Figure 15.3 on page 15.5).

Multiple device simulations can combine devices of different mesh dimensionality, and different physical
models can be applied in individual devices, providing greater flexibility. In all cases, the circuit netlists can
contain an electrical and a thermal section.

5.8e+20

5.6e+17

5.5e+14

5.9e+10

-4.9e+14

-5.0e+17

N [cm-3]
15.4

PART 15 DESSIS CHAPTER 1 GETTING STARTED
Figure 15.3 Three types of simulation

1.1.1 Creating and meshing device structures

Device structures can be created in various ways, including 1D, 2D, or 3D process simulation (DIOS™), 3D
process emulation (DEVISE™), and 2D (MDRAW™ and DEVISE) or 3D (DIP™ and DEVISE) structure
editors.

Regardless of the means used to generate a virtual device structure, it is recommended that the structure be
remeshed using MDRAW (2D meshing with an interactive graphical user interface (GUI)) or MESH™ (1D,
2D, and 3D meshing without a GUI) to optimize the grid for efficiency and robustness. All device structures
used as examples in this section were created and meshed using MDRAW.

For maximum efficiency of a simulation, a mesh must be created with a minimum number of vertices to
achieve a desired level of accuracy. For any given device structure, the optimal mesh varies depending on the
type of simulation undertaken.

It is recommended that to create the most suitable mesh, the mesh must be densest in those regions of the
device where the following are expected:

High current density (MOSFET channels, bipolar base regions)

High electric fields (MOSFET channels, MOSFET drains, depletion regions in general)

High charge generation (SEU alpha particle, optical beam)

For example, accurate drain current modeling in a MOSFET requires very fine, vertical, mesh spacing in the
channel at the oxide interface (of the order 1 Å) when using advanced mobility models. For reliable
simulation of breakdown at a drain junction, the mesh must be more concentrated inside the junction depletion
region for good resolution of avalanche multiplication.

Generally, a total node count of 2000 to 4000 is reasonable for most 2D simulations. Large power devices and
3D structures require a considerably larger number of elements.

1.1.2 Design flow

A typical device ‘design flow’ (or ‘tool flow’ in GENESISe™) involves the creation of a device structure by
a process simulation (DIOS) followed by remeshing using MDRAW (for 2D studies). In this scheme, control
of mesh refinement is handled automatically through the file _mdr.cmd (created by DIOS).

Single Device Single Device with Circuit Multiple Devices with Circuit
 15.5

PART 15 DESSISCHAPTER 1 GETTING STARTED
For the following examples, no process simulation is required because MDRAW is used to build the device
structures (using analytic doping profiles) and create a suitable mesh.

DESSIS is used to simulate the electrical characteristics of the device. Such a seamless flow through ISE
TCAD tools, with the associated file types, is represented in Figure 15.4. Finally, Tecplot-ISE is used to
visualize the output from the simulation in 2D, and INSPECT™ is used to plot the electrical characteristics.

Figure 15.4 Typical design flow with DESSIS device simulation

1.2 Starting DESSIS
There are two ways to start DESSIS: from the command prompt or GENESISe.

1.2.1 Using the command prompt

DESSIS is driven by a command file and run by the command:

dessis <command_filename>

1.2.2 From GENESISe

DESSIS is launched automatically through the Scheduler when working inside GENESISe. Various options
exist at start-up and are listed by using:

dessis -h

A DESSIS version is selected by using the option -ver:

dessis -ver 10.0.0 nmos_des.cmd

command
_mdr.cmd

boundary
_mdr.bnd

command
_des.cmd

parameter
name.par

current
_des.plt

plot
_des.dat

output
_des.log

output
_mdr.log

doping
_mdr.dat

grid
_mdr.grd
15.6

PART 15 DESSIS CHAPTER 1 GETTING STARTED
or:

dessis -ver 10.0.0 nmos_des

This commences a simulation using DESSIS Release 10.0. To use a previous version, the options -rel and
-ver are required, for example, to start version 9.5.7:

dessis -rel 9.5 -ver 9.5.7 <command_file>

Appendix C on page 15.615 lists the DESSIS command options, which include:

dessis -versions Checks which versions are in the installation path.

dessis -P Extracts model parameter files (see Section 2.13.2 on page 15.91).

dessis -L Extracts model parameter library (see Section 2.13.5 on page 15.92).

dessis --parameter-names

Prints parameter names that can be ramped (see Section 2.9.3.2 on page 15.60).

When DESSIS starts, the command file is checked for correct syntax, and the commands are executed in
sequence. Character strings starting with * or # are ignored by DESSIS, so that these characters can be used
to insert comments in the simulation command file.

NOTE GENESISe interprets # as a special marker for conditional statements (for example, #if...,
#elif..., and #endif...).

1.3 Simulation examples
In the following sections, many of the DESSIS commands that are widely used are introduced in the context
of a series of typical MOSFET device simulations. The examples are contained in the GENESISe projects, in
the Examples Library, in the folder GettingStarted/Dessis.

First, a very simple example of an Id-Vg simulation is presented using default models and methods
(GettingStarted/Dessis/simple_Id-Vg). Second, a more advanced approach to an Id-Vd simulation
(GettingStarted/Dessis/advanced_Id-Vd) is presented, in which more complex models are introduced and some
important options are indicated.

Subsequently, a mixed-mode simulation of a CMOS inverter is presented (GettingStarted/Dessis/
advanced_Inverter), and the small-signal AC response of a MOSFET is obtained (GettingStarted/Dessis/
advanced_AC). The intention is to introduce some of the most widely used DESSIS features in a realistic
context.

1.4 Example: Simple MOSFET Id-Vg simulation
Simulation of the drain current–gate voltage characteristic of a MOSFET is a typical DESSIS application. It
allows important device properties, such as threshold voltage, off-current, subthreshold slope, on-state drive
current, and transconductance to be extracted. In this example, only the most essential commands are used for
a reasonable simulation.
 15.7

PART 15 DESSISCHAPTER 1 GETTING STARTED
1.4.1 Input command file

The DESSIS command file is organized in command or statement sections that can be in any order (except in
mixed-mode simulations). DESSIS keywords are not case sensitive and most can be abbreviated. However,
DESSIS is syntax sensitive, for example, parentheses must be consistent and character strings for variable
names must be delimited by quotation marks (" ").

An example of a complete command file (des.cmd in the GENESISe project GettingStarted/Dessis/simple_Id-
Vg) is presented. Each statement section is explained individually.

File {* input files:
Grid = "nmos_mdr.grd"
Doping = "nmos_mdr.dat"
* output files:
Plot = "n3_des.dat"
Current = "n3_des.plt"
Output = "n3_des.log"

}

Electrode {
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=0.1 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}

Physics {
Mobility (DopingDep HighFieldSat Enormal)
EffectiveIntrinsicDensity (BandGapNarrowing (OldSlotboom))

}

Plot {
eDensity hDensity eCurrent hCurrent
Potential SpaceCharge ElectricField
eMobility hMobility eVelocity hVelocity
Doping DonorConcentration AcceptorConcentration

}

Math {
Extrapolate
RelErrControl

}

Solve {
#-initial solution:
Poisson
Coupled { Poisson Electron }
#-ramp gate:
Quasistationary (MaxStep=0.05

Goal{ Name="gate" Voltage=2 })
{ Coupled { Poisson Electron } }

}

Example_Library/GettingStarted/Dessis/simple_Id-Vg/des.cmd
15.8

PART 15 DESSIS CHAPTER 1 GETTING STARTED
1.4.2 File section

First, the input files that define the device structure and the output files for the simulation results must be
specified. The device to be simulated is the one plotted in Figure 15.1 on page 15.3 and Figure 15.2 on
page 15.4. The device is defined by the two files nmos_mdr.grd and nmos_mdr.dat:

File {
* input files:
Grid = "nmos_mdr.grd"
Doping = "nmos_mdr.dat"
* output files:
Plot = "n3_des.dat"
Current = "n3_des.plt"
Output = "n3_des.log"

}

The File section specifies the input and output files necessary to perform the simulation.

* input files: This is a comment line.

Grid = "nmos_mdr.grd" This essential input file (default extension .grd) defines the mesh and various regions
of the device structure, including contacts. DESSIS automatically determines the
dimensionality of the problem from this file.

Doping = "nmos_mdr.dat"

This second essential input file (.dat) contains the doping profiles data for the device
structure.

* output files: This is a comment line.

Plot = "n3_des.dat" This is the file name for the final spatial solution variables on the structure mesh
(extension _des.dat).

Current = "n3_des.plt" This is the file name for electrical output data (such as currents, voltages, charges at
electrodes). Its standard extension is _des.plt.

Output = "n3_des.log" This is an alternate file name for the output log or protocol file (default name
output_des.log) that is automatically created whenever DESSIS is run. This file
contains the redirected standard output, which is generated by DESSIS as it runs.

NOTE Only the root file names are necessary. DESSIS automatically appends the appropriate file name
extensions, for example, Plot="n3" is sufficient.

The device in this example is two-dimensional. By default, DESSIS assumes a ‘thickness’ (effective gate
width along the z-axis) of 1 µm. This effective width is adjusted by specifying an AreaFactor in the Physics
section, or an AreaFactor for each electrode individually. An AreaFactor is a multiplier for the electrode currents
and charges.

1.4.3 Electrode section

Having loaded the device structure into DESSIS, it is necessary to specify which of the contacts are to be
treated as electrodes. Electrodes in DESSIS are defined by electrical boundary conditions and contain no
mesh. For example, in Figure 15.8 on page 15.15, the ‘polysilicon’ gate is empty; it is not a region.
 15.9

PART 15 DESSISCHAPTER 1 GETTING STARTED
The Electrode section defines all the electrodes to be used in the DESSIS simulation, with their respective
boundary conditions and initial biases. Any contacts that are not defined as electrodes are ignored by DESSIS.
The polysilicon gate of a MOS transistor can be treated in two ways:

As a metal, in which case, it is simply an electrode.

As a region of doped polysilicon, in which case, the gate electrode must be a contact on top of the
polysilicon region.

In the former case, an important property of the gate electrode is the ‘metal’–semiconductor work function
difference. In DESSIS, this is defined by the parameter barrier, which equals the difference in energy [eV]
between the polysilicon extrinsic Fermi level and the intrinsic Fermi level in the silicon. The value of barrier
must, therefore, be specified to be consistent with the doping in the polysilicon. This is the gate definition
used in this example and is valid for most applications. However, it totally neglects any polysilicon depletion
effects.

In the latter case, where the gate is modeled as an appropriately doped polysilicon region, the contact must be
on top of the polysilicon and Ohmic (the default condition). In this case, depletion of the polysilicon is
modeled correctly.

Electrode{
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=0.1 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}

Name="string" Each electrode is specified by a case-sensitive name that must match exactly an
existing contact name in the structure grid file. Only those contacts that are named in
the Electrode section are included in the simulation.

Voltage=0.0 This defines a voltage boundary condition with an initial value. One or more
boundary conditions must be defined for each electrode, and any value given to a
boundary condition applies in the initial solution. In this example, the simulation
commences with a 100 mV bias on the drain.

Barrier=-0.55 This is the metal–semiconductor work function difference or barrier value for a
polysilicon electrode that is treated as a metal. This is defined, in general, as the
difference between the metal Fermi level in the electrode and the intrinsic Fermi level
in the semiconductor. This barrier value is consistent with n+-polysilicon doping.

1.4.4 Physics section

The Physics section allows a selection of the physical models to be applied in the device simulation. In this
example, it is sufficient to include basic mobility models and a definition of the band gap (and, therefore, the
intrinsic carrier concentration).

Potentially important effects, such as impact ionization (avalanche breakdown at the drain), are ignored at this
stage.

Physics {
Mobility (DopingDependence HighFieldSat Enormal)
EffectiveIntrinsicDensity (BandGapNarrowing (OldSlotboom))

}

15.10

PART 15 DESSIS CHAPTER 1 GETTING STARTED
Mobility (DopingDependence HighFieldSat Enormal)

Mobility models including doping dependence, high field saturation (velocity
saturation), and transverse field dependence are specified for this simulation.

NOTE HighFieldSaturation can be specified for a specific carrier (for example, eHighFieldSaturation for
electrons) and is a function of the effective field experienced by the carrier in its direction of
motion. DESSIS provides a choice of effective field computation: GradQuasiFermi (default),
Eparallel, or CarrierTempDrive (in hydrodynamic simulations only).

EffectiveIntrinsicDensity (BandGapNarrowing (OldSlotboom))

This is the silicon band-gap narrowing model that determines the intrinsic carrier
concentration.

1.4.5 Plot section

The Plot section specifies all of the solution variables that are saved in the output plot files (.dat). Only data
that DESSIS is able to compute, based on the selected physics models, is saved to a plot file.

Plot {
eDensity hDensity eCurrent hCurrent
Potential SpaceCharge ElectricField
eMobility hMobility eVelocity hVelocity
Doping DonorConcentration AcceptorConcentration

}

An extensive list of optional plot variables is in Table 15.14 on page 15.56. To save a variable as a vector,
append /Vector to the keyword:

Plot { eCurrent/Vector ElectricField/v }

1.4.6 Math section

DESSIS solves the device equations (which are essentially a set of partial differential equations) self-
consistently, on the discrete mesh, in an iterative fashion. For each iteration, an error is calculated and DESSIS
attempts to converge on a solution that has an acceptably small error.

For this example, it is only necessary to define a few settings for the numeric solver. Other options, including
selection of solver type and user definition of error criteria, are outlined in Section 2.10 on page 15.73.

Math {
Extrapolate
RelErrControl

}

Extrapolate In quasistationary bias ramps, the initial guess for a given step is obtained by
extrapolation from the solutions of the previous two steps (if they exist).

RelErrControl Switches error control during iterations from using internal error parameters to more
physically meaningful parameters (ErrRef) (see Section 2.10).
 15.11

PART 15 DESSISCHAPTER 1 GETTING STARTED
1.4.7 Solve section

The Solve section defines a sequence of solutions to be obtained by the solver. The drain has a fixed initial
bias of 100 mV, and the source and substrate are at 0 V. To simulate the Id-Vg characteristic, it is necessary
to ramp the gate bias from 0 V to 2 V, and obtain solutions at a number of points in-between. By default, the
size of the step between solution points is determined by DESSIS internally, see Section 2.9.3 on page 15.58.

As the simulation proceeds, output data for each of the electrodes (currents, voltages, and charges) is saved
to the current file n3_des.plt after each step and, therefore, the electrical characteristic is obtained. This can
be plotted using INSPECT, as shown in Figure 15.5 and Figure 15.6 on page 15.13. The final 2D solution is
saved in the plot file n3_des.dat, which is plotted in Figure 15.7 on page 15.14 and Figure 15.8 on page 15.15.

Solve {
Poisson
Coupled {Poisson Electron}

Quasistationary (Goal { Name="gate" Voltage=2 })
{ Coupled {Poisson Electron} }

}

Poisson This specifies that the initial solution is of the nonlinear Poisson equation only.
Electrodes have initial electrical bias conditions as defined in the Electrode section.
In this example, a 100 mV bias is applied to the drain.

Coupled {Poisson Electron}

The second step introduces the continuity equation for electrons, with the initial bias
conditions applied. In this case, the electron current continuity equation is solved
fully coupled to the Poisson equation, taking the solution from the previous step as
the initial guess. The fully coupled or ‘Newton’ method is fast and converges in most
cases. It is rarely necessary to use a ‘Plugin’ (or the so-called Gummel) approach.

Quasistationary (Goal { Name="gate" Voltage=2 })

{ Coupled { Poisson Electron } }

}
The Quasistationary statement specifies that quasi-static or steady state ‘equilibrium’
solutions are to be obtained. A set of Goals for one or more electrodes is defined in
parentheses. In this case, a sequence of solutions is obtained for increasing gate bias
up to and including the goal of 2 V. A fully coupled (Newton) method for the self-
consistent solution of the Poisson and electron continuity equations is specified in
braces. Each bias step is solved by taking the solution from the previous step as its
initial guess. If Extrapolate is specified in the Math section, the initial guess for each
bias step is calculated by extrapolation from the previous two solutions.
15.12

PART 15 DESSIS CHAPTER 1 GETTING STARTED
1.4.8 Simulated Id-Vg characteristic

In INSPECT, the gate OuterVoltage is plotted to the x-axis, and the drain eCurrent is plotted to the y-axis. The
gate InnerVoltage is an internally calculated voltage equal to the OuterVoltage and adjusted to account for the
barrier, and it is not plotted.

Figure 15.5 Id-Vgs characteristic of 0.18 µm n-channel MOSFET

NOTE Although the solution points obtained are equally spaced (0.1 V), this is not predetermined.
Generally, DESSIS selects step sizes according to an internal algorithm for maximum numeric
robustness. If a step fails to converge, the step size is reduced until convergence is achieved. In this
example, the simulation proceeded with the maximum step size from start to finish.

In Figure 15.6, a log(Id)-lin(Vgs) plot shows the subthreshold characteristic.

Figure 15.6 Id-Vgs characteristic of 0.18 µm n-channel MOSFET replotted on semi-log scale

0.0001

5e-05D
ra

in
 C

ur
re

nt
 [A

/u
m

]

Gate Voltage [V]

0
0 0.5 1 1.5 2

Vds = 100 mV

eCurrent_drain

D
ra

in
 C

ur
re

nt
 [A

/u
m

]

Gate Voltage [V]

0 0.5 1 1.5 2
1e-11

1e-3

1e-4

1e-5

1e-6

1e-7

1e-8

1e-9

1e-10

eCurrent_drain

Vds = 100 mV
 15.13

PART 15 DESSISCHAPTER 1 GETTING STARTED
NOTE Successful completion of the simulation is confirmed by a message in the output file:
Finished, because of...

Curve trace finished.

Writing plot 'n3_des.dat'... done.

The plot data in n3_des.dat can be analyzed using a graphics package such as Tecplot-ISE.

1.4.9 Analysis of 2D output data

The contents of file n3_des.dat is loaded into Tecplot-ISE, with the original grid file from MDRAW
(n1_mdr.grd). The command is:

> tecplot_ise nl_mdr.grd n3_des.dat &

Figure 15.7 shows the default display, which is electrostatic potential.

Figure 15.7 Default display of electrostatic potential and junctions

The electrostatic potential is relative to the intrinsic Fermi level in the silicon.

NOTE The potential at the gate electrode is 2.55 V (InnerVoltage27), which equals the applied bias minus
the barrier potential. In the substrate, which is tied to 0 V, the ‘inner’ electrostatic potential is
–0.4253 V, which corresponds to the position of the hole quasi-Fermi level relative to the intrinsic
level.

2.5e+00

2.0e+00

1.4e+00

7.6e-01

1.7e-01

-4.3e-01

u [V]
15.14

PART 15 DESSIS CHAPTER 1 GETTING STARTED
Figure 15.8 is a magnification of the channel region, created by selecting the dataset eDensity. The inversion
layer is clearly visible.

Figure 15.8 Magnification of channel region showing contours of electron concentration

Figure 15.9 shows the electron and hole densities along a vertical cutline in the center of the channel.

Figure 15.9 Vertical electron and hole profiles at center of channel

1.5 Example: Advanced hydrodynamic Id-Vd
simulation

1.5.1 Input command file
#--#
#- DESSIS input deck for
#-
#- Id=f(Vd) for Vd=0-10V while Vg=[0.0V, 1.0V, 2.0V] and Vs=0V
#-
#- USING HYDRODYNAMIC MODEL & IMPACT IONIZATION - FAMILY OF CURVES
#--#
File {

Grid = "@grid@"
Doping = "@doping@"
Parameter = "mos"

Gate

Inversion Layer

Source

Drain

n [cm-3]
5.8e+20

1.0e+16

2.0e+12

3.4e+05
 15.15

PART 15 DESSISCHAPTER 1 GETTING STARTED
Plot = "@dat@"
Current = "@plot@"
Output = "@log@"

}

Electrode {
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=0.0 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}

Physics {
AreaFactor=0.4
Hydrodynamic(eTemperature)
Mobility (DopingDep Enormal

eHighFieldsat(CarrierTempDrive)
hHighFieldsat(GradQuasiFermi))

Recombination(SRH(DopingDep)
eAvalanche(CarrierTempDrive)
hAvalanche(Eparallel))

EffectiveIntrinsicDensity (BandGapNarrowing (OldSlotboom))
}

Physics(
MaterialInterface="Silicon/Oxide") {
charge(Conc=4.5e+10)

}

Plot {
eDensity hDensity eCurrent hCurrent
equasiFermi hquasiFermi
eTemperature
ElectricField eEparallel hEparallel
Potential SpaceCharge
SRHRecombination Auger AvalancheGeneration
eMobility hMobility eVelocity hVelocity
Doping DonorConcentration AcceptorConcentration

}

CurrentPlot {
Potential (82, 530, 1009)
eTemperature (82, 530, 1009)

}

Math {
Extrapolate
RelErrControl
Iterations=20
NotDamped=50
BreakCriteria {Current(Contact="drain" Absval=3e-4)
}

}

Solve {
initial gate voltage Vgs=0.0V
Poisson
Coupled { Poisson Electron }
Coupled { Poisson Electron Hole eTemperature }
Save (FilePrefix="vg0")

ramp gate and save solutions:
15.16

PART 15 DESSIS CHAPTER 1 GETTING STARTED
second gate voltage Vgs=1.0V
Quasistationary

(InitialStep=0.1 Maxstep=0.1 MinStep=0.01
Goal { name="gate" voltage=1.0 })
{ Coupled { Poisson Electron Hole eTemperature } }
Save(FilePrefix="vg1")

third gate voltage Vgs=2.0V
Quasistationary

(InitialStep=0.1 Maxstep=0.1 MinStep=0.01
Goal { name="gate" voltage=2.0 })
{ Coupled { Poisson Electron Hole eTemperature } }
Save(FilePrefix="vg2")

Load saved structures and ramp drain to create family of curves:

first curve
Load(FilePrefix="vg0")
NewCurrentPrefix="vg0_"
Quasistationary

(InitialStep=0.01 Maxstep=0.1 MinStep=0.0001
Goal{ name="drain" voltage=10.0 }
)
{ Coupled {Poisson Electron Hole eTemperature}
CurrentPlot (time=

(range = (0 0.2) intervals=20;
range = (0.2 1.0)))}

second curve
Load(FilePrefix="vg1")
NewCurrentPrefix="vg1_"
Quasistationary

(InitialStep=0.01 Maxstep=0.1 MinStep=0.0001
Goal{ name="drain" voltage=10.0 }

)
{Coupled {Poisson Electron Hole eTemperature}
CurrentPlot (time=

(range = (0 0.2) intervals=20;
range = (0.2 1.0)))}

third curve
Load(FilePrefix="vg2")
NewCurrentPrefix="vg2_"
Quasistationary

(InitialStep=0.01 Maxstep=0.1 MinStep=0.0001
Goal{ name="drain" voltage=10.0 }
)
{ Coupled {Poisson Electron Hole eTemperature}
CurrentPlot (time=

(range = (0 0.2) intervals=20;
range = (0.2 1.0)))}

}
Example_Library/GettingStarted/Dessis/advanced_Id-Vd/des.cmd
 15.17

PART 15 DESSISCHAPTER 1 GETTING STARTED
1.5.2 File section
File {

Grid = "@grid@"
Doping = "@doping@"
Parameter = "mos"
Plot = "@dat@"
Current = "@plot@"
Output = "@log@"

}

The File section specifies the input and output files necessary to perform the simulation. In the example, all
file names except mos are file references, which GENESISe recognizes and replaces with real file names
during preprocessing. For example, in the processed command file pp2_des.cmd:

File {
Grid = "n1_mdr.grd"
Doping = "n1_mdr.dat"
Parameter = "mos"
Plot = "n2_des.dat"
Current = "n2_des.plt"
Output = "n2_des.log"

}

Grid, Doping The given file names relate to the appropriate node numbers in the GENESISe Family
Tree. In most projects, Grid and Doping are generated by MDRAW or MESH and,
therefore, have the characteristic names nX_mdr.grd and nX_mdr.dat from MDRAW,
and nX_msh.grd and nX_msh.dat from MESH.

Plot, Current, Output See Section 1.4.2 on page 15.9.

Parameter = "mos" The optional input file mos.par contains user-defined values for model parameters
(coefficients) (see Section 1.5.3). DESSIS adds the file extension .par automatically.

Main options

(e/h)Lifetime = "<name>"
Loads a lifetime profile contained in a data file. For 2D simulations, the profile is
generated using MDRAW.

1.5.3 Parameter file

The parameter file contains user-defined values for model parameters (coefficients). The parameters in this
file replace the values contained in a default parameter file dessis.par. All other parameter values remain
equal to the defaults in dessis.par. Model coefficients can be specified separately for each region or material
in the device structure (see Section 2.13.1 on page 15.91). Although this feature is intended for the simulation
of heterostructure devices, it is useful in silicon devices as it allows materials, such as polysilicon, to have
different mobilities.

The default parameter file contains the default parameters for all the physical models available in DESSIS. A
copy of the parameter file for silicon is extracted using the command:

dessis -P

A list of the parameter files is printed to the command window and into a file dessis.par, which is created in
the working directory.
15.18

PART 15 DESSIS CHAPTER 1 GETTING STARTED
For other materials, such as gallium arsenide (GaAs) and silicon carbide (SiC), use:

dessis -P:GaAs
dessis -P:SiC

More options are described in Section 2.13.2 on page 15.91.

Listing of mos.par
Scharfetter * SRH recombination lifetimes
{ * tau=taumin+(taumax-taumin) / (1+(N/Nref)^gamma)
 * electrons holes

taumin = 0.0000e+00, 0.0000e+00 # [s]
taumax = 1.0000e-07, 1.0000e-07 # [s]

}

Report in the protocol file n3_des.log
Reading parameter file 'mos.par'...
Differences compared with default parameters:
Scharfetter(elec):tau_max = 1.0000e-07, instead of:1.0000e-05
Scharfetter(hole):tau_max = 1.0000e-07, instead of:3.0000e-06

1.5.4 Electrode section
Electrode{

{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=0.0 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}

In this example, all electrodes have voltage boundary conditions with the initial condition of zero bias.

Main options

Current= Defines a current boundary condition with initial value [A].

Charge= Defines a floating electrode with a charge boundary condition and an initial charge
value [C].

Resistor= Defines a series resistance [Ω] (AreaFactor-dependent).

eRecVelocity= Defines a recombination velocity [cm/s] at a contact for electrons (hRecVelocity for
holes).

Schottky= Defines an electrode as a Schottky contact. The attributes of such a contact are
specified as Barrier and (e)hRecVelocity.

AreaFactor= Specifies a multiplication factor for the current in or out of an electrode. It is
preferable to define AreaFactor in the Physics section. In a 2D simulation, this can
represent the size of the device in the third dimension (for example, gate width),
which is 1 µm by default.

Barrier=-0.55 This is the metal–semiconductor work function difference or barrier value for an
electrode that is treated as a metal. Defined, in general, as the difference between the
metal Fermi level in the electrode and the intrinsic Fermi level in the semiconductor.
 15.19

PART 15 DESSISCHAPTER 1 GETTING STARTED
In this example, this corresponds to the difference between the quasi-Fermi level in the gate polysilicon and
the intrinsic Fermi level in the silicon. The value of barrier=-0.55 is approximately representative of n+-doped
polysilicon.

1.5.5 Physics section
Physics {

AreaFactor=0.4
Hydrodynamic(eTemperature)
Mobility(DopingDep Enormal

hHighFieldSaturation(GradQuasiFermi)
eHighFieldSaturation(CarrierTempDrive))

Recombination(SRH(DopingDep)
eAvalanche(CarrierTempDrive)
hAvalanche(Eparallel))

EffectiveIntrinsicDensity(BandGapNarrowing (OldSlotboom))
}

AreaFactor=0.4 Specifies that the electrode currents and charges are multiplied by a factor of 0.4
(equivalent to a simulated gate width of 0.4 µm).

Hydrodynamic(eTemperature)

Selects hydrodynamic transport models for electrons only. Hole transport is modeled
using drift-diffusion.

Mobility(DopingDep Enormal See Section 1.4.4 on page 15.10.

hHighFieldSaturation(GradQuasiFermi)

Velocity saturation for holes. It uses the default model after Canali (based on
Caughey–Thomas) (see Section 8.8 on page 15.193), and is driven by a field
computed as the gradient of the hole quasi-Fermi level, which is the default.

eHighFieldSaturation(CarrierTempDrive)

Velocity saturation for electrons. It is based on an adaptation of the Canali model,
driven by an effective field that is based on the electron temperature (kinetic energy)
(see Section 8.8).

Recombination(...) Defines the generation and recombination models.

SRH(DopingDep) Shockley–Read–Hall recombination with doping-dependent lifetime (Scharfetter
coefficients modified in the parameter file mos.par).

eAvalanche(CarrierTempDrive)

Avalanche multiplication for electrons is driven by an effective field computed from
the local carrier temperature.

hAvalanche(Eparallel) Avalanche multiplication for holes is driven by the component of the field that is
parallel to the hole current flow. The default impact ionization model is from van
Overstraeten–de Man (see Section 9.9 on page 15.213).

Main options

Temperature Specifies the lattice temperature [K] (default 300 K).

IncompleteIonization Incomplete ionization of individual species.
15.20

PART 15 DESSIS CHAPTER 1 GETTING STARTED
GateCurrent(<model>) Selects a model for gate leakage or (dis)charging of floating gates (see Section 15.3.1
on page 15.293).

Recombination(Band2Band) Simulates band-to-band tunneling.

NOTE Model coefficients can be specified independently for each region or material in the device
structure. The user can specify the model coefficients in the parameter file .par.

1.5.6 Interface physics
Physics(MaterialInterface="Silicon/Oxide") {

Charge(Conc=4.5e+10)
}

Special physical models are defined for the interfaces between specified regions or materials. In this example,
an interface fixed charge is specified for all oxide–silicon interfaces with areal concentration defined in cm–2.

Main options

Interface traps can be specified and interfaces can be defined between materials or specific regions:

Physics(RegionInterface="region-name1/region-name2") {
<physics-body>

}

1.5.7 Plot section
Plot {

eDensity hDensity
eCurrent hCurrent
eQuasiFermi hQuasiFermi
eTemperature
ElectricField eEparallel hEparallel
Potential SpaceCharge
SRHRecombination Auger AvalancheGeneration
eMobility hMobility eVelocity hVelocity
Doping DonorConcentration AcceptorConcentration

}

The variables eTemperature and hEparallel are added to the list of variables to be included in the plot file
_des.dat. The data is saved only if the variables are consistent with the specified physical models.

1.5.8 CurrentPlot section
CurrentPlot {

Potential (82, 530, 1009)
eTemperature (82, 530, 1009)

}

This feature allows solution variables at specified nodes to be saved to the current file _des.plt.
 15.21

PART 15 DESSISCHAPTER 1 GETTING STARTED
In this example, the electrostatic potential and electron temperature are saved at three nodes corresponding to
selected locations in the source (# 82), drain extensions (# 530), and the center of the body (# 1009). Node
numbers are identified using the VertexIndex variable in Tecplot-ISE (see Tecplot-ISE, Section A.6 on
page 5.29). Any number of nodes is allowed.

Main options

Any of the variables in Table 15.14 on page 15.56.

1.5.9 Math section
Math {

Extrapolate
RelErrControl
NotDamped=50
Iterations=20
BreakCriteria {Current(Contact="drain" Absval=3e-4)}

}

NotDamped=50 Specifies the number of Newton iterations over which the right-hand side (RHS)-
norm is allowed to increase. With the default of 1, the error is allowed to increase for
one step only. It is recommended that NotDamped > Iterations is set to allow a
simulation to continue despite the RHS-norm increasing.

Iterations=20 Specifies the maximum number of Newton iterations allowed per bias step
(default=50). If convergence is not achieved within this number of steps, for a
quasistationary or transient simulation, the step size is reduced by the factor decrement
(see Section 2.9.3 on page 15.58) and simulation continues.

BreakCriteria {Current(Contact="drain" Absval=3e-4)}

Break criteria are used to stop a simulation if a certain limit value is exceeded (see
Section 2.10.5 on page 15.81). In this case, the simulation terminates when the drain
current exceeds A.

Example

Cylindrical (<float>) This keyword forces a 2D device to be simulated using cylindrical coordinates, that
is, it is rotated around the y-axis. The optional argument <float> is the x-location of
the axis of symmetry (default=0).

Method= Selects the linear solver to be used in the coupled command.

Break criteria based on bulk properties (not contact variables) can be defined in a material-specific or region-
specific Math section:

Math (material="Silicon") {
BreakCriteria { LatticeTemperature (Maxval = 1400)

CurrentDensity (Absval = 1e7) }
}

3 10 4–×
15.22

PART 15 DESSIS CHAPTER 1 GETTING STARTED
1.5.10 Solve section
Solve {

initial gate voltage Vgs=0.0V
Poisson
Coupled { Poisson Electron }
Coupled { Poisson Electron Hole eTemperature }
Save(FilePrefix="vg0")

The Solve section defines the sequence of solutions to be obtained by the solver.

Poisson Specifies the initial solution of the nonlinear Poisson equation. Electrodes will have
initial electrical bias conditions as defined in the Electrode section.

In this example, all electrodes are at zero initial bias. However, the initial conditions can be nonzero. For
example, it is reasonable to begin with a small bias applied to the gate or drain of a MOSFET.

Coupled { Poisson Electron }

The second step introduces carrier continuity for electrons, with the initial bias
conditions still applied. In this case, the electron current continuity is solved fully
coupled to the Poisson equation.

Coupled { Poisson Electron Hole eTemperature }

Solves the carrier continuity equations for both carriers and the electron temperature
equations.

Save (FilePrefix="vg0")

The zero bias solution is saved to a file named with the default extension _des.sav, in
this case, vg0_des.sav.

The save file contains all the information required to restart the simulation, the solution variables on the mesh,
and the bias conditions on the electrodes. It can be reloaded within the same Solve section or in another
simulation file. In the latter case, the model selection must be consistent.

Solve continued
ramp gate and save solutions:

second gate voltage Vgs=1.0V
Quasistationary
(Goal { Name="gate" Voltage=1.0 }
InitialStep=0.1 Maxstep=0.1 MinStep=0.01
)
{ Coupled { Poisson Electron Hole eTemperature } }
Save(FilePrefix="vg1"){

The Quasistationary statement implies that a series of quasistatic or steady state ‘equilibrium’ solutions can
be obtained.

(Goal { Name="gate" Voltage=1.0 }

A Goal or set of Goals for one or more electrodes are defined in the parentheses. In this
case, the gate bias is increased to and includes the goal of 1 V.
 15.23

PART 15 DESSISCHAPTER 1 GETTING STARTED
(InitialStep=0.1 Maxstep=0.1 MinStep=0.01

Specifies the constraints on the step size (∆t) as proportions of the normalized Goal
(t=1). With the initial and maximum step sizes set to 0.1 (t=0.1), the gate voltage
ramp is concluded in a total of ten steps, not counting the ‘zero’ step. It is assumed
that convergence is achieved at each step.

If, at any step, there is a failure to converge, DESSIS performs automatic step size
reduction until convergence is again achieved, and then continues the simulation.

{ Coupled { Poisson Electron Hole eTemperature } }

At each step, the device equations are solved self-consistently (coupled or Newton
method). Poisson, hole current continuity, electron flux and temperature continuity
are specified in braces.

Save(FilePrefix="vg1") {

At the end of the ramp, another save file is created for the 1 V gate bias solution,
vg1_des.sav. Next, the gate bias is ramped to 2 V to provide a solution file, vg2_des.sav.

Solve continued
Load solutions & ramp drain for family of curves

Load(FilePrefix="vg0")
NewCurrentPrefix="vg0_"
Quasistationary

(Goal { Name="drain" Voltage=10.0 }
InitialStep=0.01 Maxstep=0.1 MinStep=0.0001

)
{ Coupled { Poisson Electron Hole eTemperature }

CurrentPlot (Time =
(range = (0 0.2) intervals = 20;
range = (0.2 1.0)))

}

Load(FilePrefix="vg0") Loads the solution file for zero gate bias.

NewCurrentPrefix="vg0_"

Starts a new current file in which the following results are saved. The file is
vg0_n3_des.plt.

Quasistationary Implies that a series of quasi-static or steady state ‘equilibrium’ solutions are to be
obtained.

(Goal { Name="drain" Voltage=10.0 }

In this case, the goal is to increase the drain bias up to and including the goal of 10 V.
The goal is not reached if any of the break criteria are met.

InitialStep=0.01 MaxStep=0.1 MinStep=0.0001)

Specifies the constraints on the step size as proportions of the normalized Goal
(t=1). If, at any step, there is a failure to converge, DESSIS performs automatic step
size reduction until convergence is again achieved, and then continues the simulation.

{ Coupled { Poisson Electron Hole eTemperature }

At each step, the device equations are solved self-consistently (coupled or Newton
method). Poisson, hole current continuity, electron flux, and temperature continuity
are specified in braces.

∆t()
15.24

PART 15 DESSIS CHAPTER 1 GETTING STARTED
CurrentPlot (Time=(range=(0 0.2) intervals=20;

 range=(0.2 1.0)))

This statement ensures that solutions are saved in the current file only at certain
specific values of the drain voltage in the range 0 V to 2.0 V. In this example, time
implies the notional (normalized) time t whose full range is t=0 to t=1.

In this case, 21 equally spaced solutions are saved in the range t=0 to t=0.2,
corresponding to 0 V and 2.0 V (that is, in steps of 0.1 V). This is in addition to any
intermediate steps that may be solved but not saved. From t=0.2 to t=1.0 (2.0 V to
10.0 V), all solutions are saved in the file vg0_n3_des.plt.

Figure 15.10 Family of drain output characteristics (Id-Vds) in drain bias range 0–2 V

Figure 15.10 shows the family of drain output characteristics (Id-Vds) in the drain bias range from 0 V to 2 V.
The equal drain voltage steps of 0.1 V are suitable for SPICE parameter extraction. Figure 15.11 shows the
Ids-Vds characteristics plotted with the electron temperature at the drain end of the channel over the full range
of the simulations.

Figure 15.11 Ids-Vds characteristics plotted with electron temperature at drain
end of channel over full range of simulations
 15.25

PART 15 DESSISCHAPTER 1 GETTING STARTED
1.5.11 Two-dimensional output data

Figure 15.12 Contours of electron temperature computed at final solution (Vds=2.425 V, Id=30 mA)

Figure 15.13 Contours of impact ionization rate at final solution

1.6 Example: Mixed-mode CMOS inverter simulation
The mixed-mode capability of DESSIS allows for the simulation of a circuit that combines any number of
DESSIS devices of arbitrary dimensionality (1D, 2D, or 3D) with other devices based on compact models
(SPICE).

In this example (Examples Library project /GettingStarted/Dessis/Inverter), a transient mixed-mode
simulation is presented with two 2D physical devices; an n-channel and a p-channel MOSFET, combined with
a capacitor and a voltage source to form a CMOS inverter circuit. MDRAW is used to create the 2D
NMOSFET and PMOSFET devices. DESSIS computes the transient response of the inverter to a voltage
signal, which codes a 010 binary sequence.

Gate

Body

Drain

eTemp [K]

5.5e+03

2.5e+03

7.0e+02

3.0e+02

Gate

Body

Drain

G [s-1 cm-3]
2.0e+26

6.0e+22

1.8e+19

5.5e+15

1.7e+12
15.26

PART 15 DESSIS CHAPTER 1 GETTING STARTED
1.6.1 Input command file
#---#
#- DESSIS input deck for a transient mixed-mode simulation of the
#- switching of an inverter build with a nMOSFET and a pMOSFET.
#---#

Device NMOS {

Electrode {
{ Name="source" Voltage=0.0 Area=5 }
{ Name="drain" Voltage=0.0 Area=5 }
{ Name="gate" Voltage=0.0 Area=5 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 Area=5 }

}
File {

Grid = "@grid@"
Doping = "@doping@"
Plot = "nmos"
Current = "nmos"
Param = "mos"
}

Physics {
Mobility(DopingDep HighFieldSaturation Enormal)
EffectiveIntrinsicDensity(BandGapNarrowing (OldSlotboom))

}
}

Device PMOS{

Electrode {
{ Name="source" Voltage=0.0 Area=10 }
{ Name="drain" Voltage=0.0 Area=10 }
{ Name="gate" Voltage=0.0 Area=10 Barrier=0.55 }
{ Name="substrate" Voltage=0.0 Area=10 }

}
File {Grid = "@grid:+1@"

Doping = "@doping:+1@"
Plot = "pmos"
Current = "pmos"
Param = "mos"

 }
Physics {

Mobility(DopingDep HighFieldSaturation Enormal)
EffectiveIntrinsicDensity(BandGapNarrowing (OldSlotboom))

}
}

System {
Vsource_pset v0 (n1 n0) { pwl = (0.0e+00 0.0

1.0e-11 0.0
1.5e-11 2.0
10.0e-11 2.0
10.5e-11 0.0
20.0e-11 0.0)}

NMOS nmos("source"=n0 "drain"=n3 "gate"=n1 "substrate"=n0)
PMOS pmos("source"=n2 "drain"=n3 "gate"=n1 "substrate"=n2)
Capacitor_pset c1 (n3 n0){ capacitance = 3e-14 }
Set (n0 = 0)
Set (n2 = 2)
Set (n3 = 2)
Plot "nodes.plt" (time() n0 n1 n2 n3)

}

 15.27

PART 15 DESSISCHAPTER 1 GETTING STARTED
File {
Current= "inv"
Output = "inv"

}
Plot {

eDensity hDensity eCurrent hCurrent
ElectricField eEnormal hEnormal
eQuasiFermi hQuasiFermi
Potential Doping SpaceCharge
DonorConcentration AcceptorConcentration

}
Math {

Extrapolate
RelErrControl
Digits=4
Notdamped=50
Iterations=12
NoCheckTransientError

}
Solve {

#-build up initial solution
Coupled { Poisson }
Coupled { Poisson Electron Hole }
Unset (n3)

Transient (
InitialTime=0 FinalTime=20e-11
InitialStep=1e-12 MaxStep=1e-11 MinStep=1e-15
Increment=1.3

)
{ Coupled { nmos.poisson nmos.electron nmos.contact

pmos.poisson pmos.hole pmos.contact }
}

}

GettingStarted/Dessis/advanced_Inverter/des.cmd

1.6.2 Device section

The sequence of command sections is different when comparing mixed-mode to single-device simulation. For
mixed-mode simulations, the physical devices are defined in separate Device statement sections. The
following is the section for an n-channel MOSFET:

Device NMOS {
Electrode {

{ Name="source" Voltage=0.0 Area=5 }
{ Name="drain" Voltage=0.0 Area=5 }
{ Name="gate" Voltage=0.0 Area=5 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 Area=5 }

}
File {

Grid = "@grid@"
Doping = "@doping@"
Plot = "nmos"
Current = "nmos"
Param = "mos"

}
Physics {

Mobility(DopingDep HighFieldSaturation Enormal)
EffectiveIntrinsicDensity(BandGapNarrowing OldSlotboom)

}
}

15.28

PART 15 DESSIS CHAPTER 1 GETTING STARTED
For a mixed-mode simulation (see Section 3.3 on page 15.106), the physical devices are named NMOS and PMOS,
and are defined in separate Device statements.

Inside the Device statements, the Electrode, Physics and most of the File sections are defined in the same way
as in command files for single device simulations.

NOTE The p-channel has twice the AreaFactor of the n-channel MOSFET, which is equivalent to setting
twice the gate width.

Different physical models can be applied in each device type, as well as different coefficients if each device
has a dedicated parameter file.

NOTE Dessis{...} and Device{...} are synonymous.

The equivalent section for the p-channel device is defined almost identically except that the source files for
the p-channel structure are @grid+1@ and @doping+1@ (referring to the GENESISe node corresponding to the
MDRAW split for the p-channel structure), and the plot and current files have the prefix pmos. Further,
Barrier=+0.55 for the p-channel MOSFET.

1.6.3 System section

The circuit is defined in the System section, which uses a SPICE syntax. The two MOSFETs are connected to
form a CMOS inverter with a capacitive load and voltage source for the input signal.

System {
Vsource_pset v0 (n1 n0) {pwl = (0.0e+00 0.0

1.0e-11 0.0
1.5e-11 2.0
10.0e-11 2.0
10.5e-11 0.0
20.0e-11 0.0)}

NMOS nmos("source"=n0 "drain"=n3 "gate"=n1 "substrate"=n0)
PMOS pmos("source"=n2 "drain"=n3 "gate"=n1 "substrate"=n2)

Capacitor_pset c1 (n3 n0){ capacitance = 3e-14 }
Set (n0 = 0)
Set (n2 = 2)
Set (n3 = 2)
Plot "nodes.plt" (time() n0 n1 n2 n3)

}

Vsource_pset v0 (n1 n0)...

A voltage source that generates a piecewise linear (pwl) voltage signal is connected
between the input node (n1) and ground node (n0). The time–voltage sequence
generates a low-high-low or 010 binary sequence over a 200 ps time period.

NMOS nmos (...) The previously defined device named NMOS is instantiated with a tag nmos. Each of its
electrodes is connected to a circuit node. (If an electrode is not connected to the
circuit, it is driven by any bias conditions specified in the corresponding Electrode
statement.)
 15.29

PART 15 DESSISCHAPTER 1 GETTING STARTED
NOTE A physical device can be instantiated any number of times in a mixed-mode circuit. Therefore, it
is necessary to assign a name for each instance in the circuit. In this example, the name nmos is
chosen.

PMOS pmos (...) The PMOSFET is instantiated similarly.

Capacitor_pset c1 (n3 n0)...

Capacitive load (c1) is connected between the output node (n3) and ground node (n0).
Set (n0 = 0)

Set (n2 = 2)

Set (n3 = 2) The Set command defines the nodal voltages at the beginning of the simulation.
These definitions are kept until an Unset command is specified. Node n0 is tied to
ground and n2 is tied to the supply voltage 2 V. Node n3 is set to 2 V.

1.6.4 File section
File {

Current = "inv"
Output = "inv"

}

Output file names, which are not device-specific, are defined outside of the Device sections.

1.6.5 Plot section
Plot {

eDensity hDensity eCurrent hCurrent
ElectricField eEnormal hEnormal
eQuasiFermi hQuasiFermi
Potential Doping SpaceCharge
DonorConcentration AcceptorConcentration

}

In this case, the Plot statement is global and applies to all physical devices. It can also be specified inside
individual Device sections.

1.6.6 Math section
Math {

...
NoCheckTransientError

}

NoCheckTransientError This keyword disables the computation of error estimates based on time derivatives.
This error estimation scheme is inappropriate when abrupt changes in time are
enforced externally.

In this example, it is advantageous to specify this option because the inverter is driven by a voltage pulse with
very steep rising and falling edges.
15.30

PART 15 DESSIS CHAPTER 1 GETTING STARTED
1.6.7 Solve section

The circuit and physical device equations are solved self-consistently for the duration of the input pulse. A
transient simulation is performed for the time duration specified in the Transient command.

Solve {
#- initial solution solved in steps
Coupled { Poisson }
Coupled { Poisson Electron Hole }
Unset (n3)

Transient (
InitialTime=0 FinalTime=20e-11
InitialStep=1e-12 MaxStep=1e-11 MinStep=1e-15
Increment=1.3

)
{Coupled { nmos.poisson nmos.electron

pmos.poisson pmos.hole }
}

}

The initial solution is obtained in steps. It starts with the Poisson equation and introduces the electron and hole
carrier continuity equations, and the circuit equations, which are included by default.

Unset(n3) When the initial solution is established, the output node (n3) is released.

Transient(...) In the Transient command, the start time, final time, and step size constraints (initial,
maximum, minimum) are in seconds. Actual step sizes are determined internally,
based on the rate of convergence of the solution at the previous step. Increment=1.3
determines the maximum step size increase.

{Coupled { nmos.poisson nmos.electron
pmos.poisson pmos.hole } }
The Coupled statement illustrates how, in a mixed-mode environment, a specific set of
equations can be selected. In this example, the electron continuity equation is solved
in the NMOSFET. The hole continuity equation is solved for the PMOSFET. The
contact and circuit equations are included by default.

1.6.8 Results of inverter transient simulation

The simulation results are plotted automatically using INSPECT, driven by the command file pp3_ins.cmd,
which is created (or preprocessed) by GENESISe from the root command file ins.cmd. In Figure 15.14 on
page 15.32, the transient response of the output voltage and drain current through the n-channel device is
plotted, overlaying the input pulse.
 15.31

PART 15 DESSISCHAPTER 1 GETTING STARTED
Figure 15.14 INSPECT output from GENESISe project (GettingStarted/Dessis/lnverter)

1.7 Example: Small-signal AC extraction
This example demonstrates how to perform an AC analysis simulation for an NMOSFET. In DESSIS, AC
simulations are performed in mixed mode. In an AC simulation, DESSIS computes the complex (small signal)
admittance Y matrix.

This matrix specifies the current response at a given node to a small voltage signal at another node:

i = Y · u = A · u + j · ω · C · u (15.1)

where i is the vector containing the small-signal currents at all nodes and u is the corresponding voltage vector.

DESSIS output contains the components of the conductance matrix A and the capacitance matrix C (see
Section 3.8.3 on page 15.117). The conductances and capacitances are used to construct the small signal
equivalent circuit or to compute the other AC parameters, such as H, Z, and S.

1.7.1 Input command file
#--#
#- DESSIS input deck for
#- AC analysis at 1 MHz while Vg=-2 to 3V and Vd=2V
#--#
Device NMOS {

Electrode {
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=2.0 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}

15.32

PART 15 DESSIS CHAPTER 1 GETTING STARTED
File {
Grid = "@grid@"
Doping = "@doping@"
Current = "@plot@"
Plot = "@dat@"
Param = "mos"

}
Physics {

Mobility (DopingDep HighFieldSaturation Enormal)
EffectiveIntrinsicDensity(BandGapNarrowing (OldSlotboom))

}
Plot {

eDensity hDensity eCurrent hCurrent
ElectricField eEparallel hEparallel
eQuasiFermi hQuasiFermi
Potential Doping SpaceCharge
DonorConcentration AcceptorConcentration

}
}

Math {
Extrapolate
RelErrControl
Notdamped=50
Iterations=20

}
File {

Output = "@log@"
ACExtract = "@acplot@"

}
System {

NMOS trans (drain=d source=s gate=g substrate=b)
Vsource_pset vd (d 0) {dc=2}
Vsource_pset vs (s 0) {dc=0}
Vsource_pset vg (g 0) {dc=0}
Vsource_pset vb (b 0) {dc=0}

}
Solve (

#-a) zero solution
Poisson
Coupled { Poisson Electron Hole }

#-b) ramp gate to negative starting voltage
Quasistationary (

InitialStep=0.1 MaxStep=0.5 MinStep=1.e-5
Goal { Parameter=vg.dc Voltage=-2 }

)
{ Coupled { Poisson Electron Hole } }

#-c) ramp gate -2V to +3V
Quasistationary (

InitialStep=0.01 MaxStep=0.04 MinStep=1.e-5
Goal { Parameter=vg.dc Voltage=3 }

)
{ ACCoupled (

StartFrequency=1e6 EndFrequency=1e6
NumberOfPoints=1 Decade
Node(d s g b) Exclude(vd vs vg vb)

)
{ Poisson Electron Hole }

}
}

Example_Library/GettingStarted/Dessis/advanced_AC
 15.33

PART 15 DESSISCHAPTER 1 GETTING STARTED
1.7.2 Device section
Device NMOS {

Electrode {
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=2.0 }
{ Name="gate" Voltage=0.0 Barrier=-0.55 }
{ Name="substrate" Voltage=0.0 }

}
File {

Grid = "@grid@"
Doping = "@doping@"
Current = "@plot@"
Plot = "@dat@"
Param = "mos"

}
Physics {

Mobility (DopingDep HighFieldSaturation Enormal)
EffectiveIntrinsicDensity (BandGapNarrowing (OldSlotboom))

}
Plot {

eDensity hDensity eCurrent hCurrent
ElectricField eEparallel hEparallel
eQuasiFermi hQuasiFermi
Potential Doping SpaceCharge
DonorConcentration AcceptorConcentration

}
}

The AC analysis is performed in a mixed-mode environment (see Section 3.8.3 on page 15.117). In this
environment, the physical device named NMOS is defined using the Device statement.

The File section inside Device includes all device-specific files, but cannot contain the Output identifier. This
identifier is outside the Device statement in a separate global File section, with the file identifier for the data
file, which contains the extracted AC results (see Section 1.7.3).

1.7.3 File section
File {

Output = "@log@"
ACExtract = "@acplot@"

}

Output files that are not device-specific are specified outside of the Device section(s).

The computed small-signal AC components are saved into a file defined by @acplot@, which, for a DESSIS
node number X, is replaced by the GENESISe preprocessor with file name nX_ac_des.plt.

1.7.4 System section
System {

NMOS trans (drain=d source=s gate=g substrate=b)
Vsource_pset vd (d 0) {dc=2}
Vsource_pset vs (s 0) {dc=0}
15.34

PART 15 DESSIS CHAPTER 1 GETTING STARTED
Vsource_pset vg (g 0) {dc=0}
Vsource_pset vb (b 0) {dc=0}

}

A simple circuit is defined as a SPICE netlist in the System section. For a standard AC analysis, a voltage
source is attached to each contact of the physical device. Each voltage source is given a different instance
name.

In this example, the drain voltage is set to 2 V directly when defining the voltage source instance vd (and also
the drain voltage in the Electrode statement) in order to simplify and accelerate the simulation. Generally, it
is more reliable to use a Quasistationary ramp in the Solve section to bias the device.

1.7.5 Solve section
Solve {

#-a) zero solution
Poisson
Coupled { Poisson Electron Hole }

#-b) ramp gate to negative starting voltage
Quasistationary (

InitialStep=0.1 MaxStep=0.5 Minstep=1.e-5
Goal { Parameter=vg.dc Voltage=-2 }
)
{ Coupled { Poisson Electron Hole } }

#-c) ramp gate -2V..3V : AC analysis at each step.
Quasistationary (

InitialStep=0.01 MaxStep=0.04 MinStep=1.e-5
Goal { Parameter=vg.dc Voltage=3 }
)
{ ACCoupled (

StartFrequency=1e6 EndFrequency=le6
NumberOfPoints=1 Decade
Node(d s g b) Exclude(vd vs vg vb)
)
{ Poisson Electron Hole }
}

}

The initial solution is obtained in steps. It starts with the Poisson equation and introduces the electron and hole
carrier continuity equations, and the circuit equations, which are included by default.

#-c) ramp gate -2V to +3V : AC analysis
Quasistationary (

InitialStep=0.01 MaxStep=0.04 MinStep=1.e-5
Goal { Parameter=vg.dc Voltage=3 }
)

{ ACCoupled (
StartFrequency=1e6 EndFrequency=1e6
NumberOfPoints=1 Decade

This second Quasistationary statement performs an AC analysis at a single frequency (Hz) at each DC
bias step during a sweep of the voltage source vg, which is attached to the gate.

Analysis at multiple frequencies is possible by defining a value for StartFrequency and EndFrequency.

1 106×
 15.35

PART 15 DESSISCHAPTER 1 GETTING STARTED
Node(d s g b) The AC analysis is performed between the circuit nodes d, s, g, and b. The
conductance and capacitance matrices contain 16 elements each: a(d,d), c(d,d),
a(d,s), c(d,s), …, a(b,b), c(b,b).

Exclude(vd vs vg vb) Excludes all voltage sources from the AC analysis.

1.7.6 Results of AC simulation

When DESSIS is run inside the GENESISe project GettingStarted/Dessis/advanced_AC, the simulation results
are plotted automatically after completion by INSPECT, which is driven by the command file pp3_ins.cmd. The
total small-signal gate capacitance Cg=c(g,g) is plotted against gate voltage. Two small-signal conductances
are also plotted (see Figure 15.15), where gm=a(d.g) is the small-signal transconductance and gd=a(d,d) is the
small-signal drain output conductance.

Figure 15.15 INSPECT output from GENESISe project AC simulation
15.36

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
DESSIS

CHAPTER 2 Basic DESSIS

2.1 Overview
The DESSIS input file is divided into sections that are defined by a keyword and braces (see Figure 15.16).
A device is defined by the File, Electrode, Thermode, and Physics sections. The solve methods are defined by
the Math and Solve sections. Two sections are used in mixed-mode circuit and device simulation, see Chapter 3
on page 15.101. This part of the manual concentrates on the input to define single device simulations.

Figure 15.16 Different sections of a DESSIS input file

2.1.1 Specifying the device

A device is defined by its mesh and doping (File section), contacts and thermodes (Electrode and Thermode
sections), and the physical models that are selected. Physical models can be selected globally or for specific
materials, regions, or interfaces (in various Physics sections).

2.1.2 Defining the output

Device simulations generate substantial data. For a given simulation, the results to be saved are specified in
the Plot and CurrentPlot sections.

2.1.3 Specifying the simulation

With any structure, such as a device, different simulations are possible. These are defined in the Solve section,
and parameters for the methods used are defined in the Math section.

File {
...

}
Electrode {

...
}
Thermode {

...
}
Physics {

...
}

Plot {
...

}
CurrentPlot {

...
}
Math {

...
}

Solve {
...

}

 15.37

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.2 File section
File names for a simulation are specified in the File section. Each command uses a predefined file extension.
Therefore, file names are given without extensions. Table 15.1 lists the input file options.

In most cases, a device can be specified using only the Grid and Doping files. Where a simulation depends on
previous results, the Load command loads a previously computed solution. The Parameters command is used
to change the standard model parameters for a device. The outputs of a device simulation can be saved for
reuse (command Save) or plotting (command Plot). The voltage, charge, and current values at the electrodes
can be logged (command Current). The Plot option stores a default set of variables and any variables specified
by the user in the Plot section. The Save option saves only data that is necessary to restart the simulation after
a Load command. These differences are summarized in Table 15.2.

NOTE The keywords Compressed, SaveCompressed, PlotCompressed, and CurrentCompressed can be used to
obtain compressed output files and reduce disk space usage.

Other device-related files are OpticalGenerationFile, (see Section 13.4 on page 15.266) and Piezo (see
Chapter 22 on page 15.353).

Table 15.1 Device input files

File command Description GENESISe
reference

Grid Device geometry and mesh description file that is supplied by a mesh generator
(.grd).

@grid@

Doping Device doping file that describes impurity concentration. It is supplied by a mesh
generator (.dat) and matches the grid in the .grd file.

@doping@

LifeTime Loads lifetime profiles for electrons and holes (.dat).

Load Loads and continues the simulation with old device results (.sav).

Parameters Reads and uses model parameters from the file for the device (.par). A template
parameter file is generated using the DESSIS option -P (see Section 2.5.3 on
page 15.47). The template parameter file dessis.par is ASCII formatted and can
be renamed, modified, and loaded in order to adjust parameters of the physical
models.

@parameter@

Table 15.2 Device output files

File command Description GENESISe
reference

Save Stores a solution for future use as the initial solution after a Load command (_des.sav).

Plot Stores device physical output data for visualization with a graphics package (_des.dat). @dat@

Current Stores device currents, voltages, charges, and temperatures (and times, in transient
simulations) for subsequent plotting and analysis (_des.plt).

@plot@

ACExtract Specifies the file in which the results of small signal AC analysis are stored
(_ac_des.plt).

@acplot@
15.38

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
NOTE The GENESISe references in Table 15.1 and Table 15.2 on page 15.38 are valid using the
GENESISe default tooldb.tcl (see GENESISe, Section 3.5.3 on page 1.91).

2.3 Electrode section
The Electrode section defines the electrical contacts of a device.

2.3.1 Command syntax

Electrical boundary conditions are specified in this section by the keyword Electrode. Only one Electrode
section must be defined for each device. Each electrode is defined in a section within braces and must include
a name and default voltage. For example, a complete Electrode section is:

Electrode {
{ name = "source" Voltage = 1.0 }
{ name = "drain" Voltage = 0.0 }
{ name = "gate" Voltage = 0.0 Material = "PolySi"(P=6.0e19) }

}

By default, contacts are Ohmic or gate contacts (see Section 4.5.1 on page 15.138). Table 15.3 lists the
additional options that can be specified for each electrode.

Output The general output file command. This file is a plain text compilation of the run-time
output created by the simulation (_des.log).

@log@

NonLocalPlot Specifies the file for the output of data defined on nonlocal line meshes
(see Section 2.10.7.3 on page 15.85).

NewtonPlot Specifies a file name for the output of convergence-related data (see Section 2.10.8.2 on
page 15.88).

Table 15.3 Electrode options

Keyword Description

Resist = <float>
DistResist = <float>

Defines a resistive contact (*µm for 2D) or a distributed contact resistance at a contact
(*cm2).

DistResist = SchottkyResist Activates the doping dependent Schottky contact resistance model (see Section 4.5.1.5 on
page 15.141).

Current = <float> Defines a current boundary condition (A/µm for 2D). Voltage is only specified when
initialization is necessary.

Barrier = <float> Specifies a barrier voltage for gates [V].

Workfunction = <float>
or Material = "name"

Specifies a work function [eV] for a gate or Schottky electrode (see Section 5.2.1 on
page 15.151).

Table 15.2 Device output files

File command Description GENESISe
reference

Ω
Ω

 15.39

PART 15 DESSISCHAPTER 2 BASIC DESSIS
The parameters Charge and Current are conceptually different from the other parameters in that they determine
the boundary condition type for an electrode (which is related to an experimental setup), while the other
parameters describe physical properties of the electrodes (that relate to the device itself). By default,
electrodes have a voltage boundary condition type. The keyword Current changes the boundary to current
type, and the keyword Charge changes it to charge type. It is possible to change the boundary condition for an
electrode during the simulation from current type to voltage type (see Section 2.9.3 on page 15.58 and
Section 2.9.10 on page 15.73).

Parameters such as Voltage, Current, and Charge can be written with multiple values using the syntax [<float>,
<float>, ... , <float>]. The simulation is run as many times as values are specified. Most of the options,
except Barrier, AreaFactor, and (e/h)RecVelocity, cannot be used with other options.

Units of the parameters Resist, Current, and FGcap are specified for 2D cases. The influence of AreaFactor on
these values is based on a rule that the voltage drop across the resistor does not change for different values of
AreaFactor. Therefore, if the measured values R [], I [A], and C [F] are known, then the electrode values
should be computed as follows: Resist=R*AreaFactor, Current=I/AreaFactor, and FGcap=C/AreaFactor. For
example, if a 5 contact resistance is experimentally measured for a 10 µm wide contact, AreaFactor=10 and
Resist=50 (5x10 *µm) is used. However, to simulate a half contact, AreaFactor=20 and Resist=100 must be
used.

When distributed contact resistance is specified, each node of the electrode has a separate resistor with a
resistance proportional to , where is the area associated with the node.

Connections to circuit nodes must be resistive. If an electrode is not specified as being resistive and is
connected to a circuit node, DESSIS converts the electrode into a resistive contact (with a default value of
0.001). In some applications, a 0.001 resistor can influence simulation results, in which case an explicit
resistor definition using the keyword Resist is recommended.

2.3.2 Work function and material specifications for contacts

DESSIS supports the specification of a work function or material for an electrode instead of using the Barrier
definition. This is useful in two important cases: electrodes without any contact to semiconductors (such as
the gate in a MOSFET) and Schottky contacts on semiconductors.

Charge = <float> Defines a floating electrode with a given charge [C]. Voltage must not be specified (see
Section 4.5.1 on page 15.138 and Section 4.5.1.7 on page 15.144).

AreaFactor = <float> Specifies a factor by which the electrode current is multiplied.

Schottky Defines a Schottky contact. Attributes are Barrier/Workfunction and (e/h)RecVelocity
(see Section 4.5.1.3 on page 15.140).

eRecVelocity,
hRecVelocity = <float>

Defines recombination velocities for electrons and holes [cm/s] (defaults are 2.573 x 106
and 1.93 x 106 cm/s, respectively).

FGcap=(value=<float>
name="ContactName")

If the electrode is floating, this specifies the value of an additional capacitance (F/µm for
2D) coupling to any other electrode given by "ContactName" (see Section 4.5.1.6 on
page 15.143).

Table 15.3 Electrode options

Keyword Description

Ω

Ω
Ω

1 Ai⁄ Ai

Ω Ω
15.40

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
The work function is specified using the syntax Workfunction = <value> [eV] in the Electrode statement, for
example:

Electrode {
{ Name = "gate" Voltage = 0.0 Workfunction = 4.15 }

}

To use a default work function of a material (or from the parameter file), the material name can be specified:
Material = "Name". For electrodes such as a MOSFET gate, it is useful to specify both the semiconductor
material and doping concentration (for example, for polysilicon gates). In this case, the syntax is Material =
"Name"(N = <value>) for n-type impurities, and Material = "Name"(P = <value>) for p-type impurities, for
example:

Electrode {
{ Name = "gate" Voltage = 0.0 Material = "Silicon"(P=7.5e19) }

}

The built-in potential Vbi is approximated by the standard expression (kT/q)ln(N/ni). If the Fermi level is
required to be equal to the conduction or valence band energy, the doping specification must be omitted. For
example, for an n+-polysilicon gate:

Electrode {
{ Name = "gate" Voltage = 0.0 Material = "PolySi"(N) }

}

NOTE Using the Workfunction or Material specification is mandatory for Schottky electrodes that contact
several different semiconductors. In such a case, the Barrier specification gives the same barrier to
each semiconductor, which is incorrect.

NOTE If Material or WorkFunction is specified for an Ohmic contact that is in contact with both the
semiconductor and insulator, the electrostatic potential equals the built-in potential at
semiconductor nodes, but for insulator nodes, it corresponds to the electrode Workfunction.

Table 15.4 Various electrode declarations

Description Command statement

Gate electrode { name = "gate" voltage = 2 Material = "PolySi"(P) }

Schottky electrode { name = "anode" voltage = 2 Schottky WorkFunction = 4.9 }

Current boundary { name = "anode" voltage = 1.0 current = 1e-3 }

Floating electrode with charge { name = "floatgate" charge = 1e-15 }

Electrode with area factor { name = "anode" voltage = 2 AreaFactor=100 }

Electrode with 1 resistance { name = "emitter" voltage = 2 Resist=1 }

Multivalued voltage drive { name = "source" voltage = [0, 1.0, 2.0] }

In the above example, all commands of the Solve statement are executed with an initial 0 source voltage. Then, they are
repeated with "source" voltage = 1 V, then with "source" voltage = 2 V.

Time-dependent voltage drive { name = "source" voltage = (0 at 0, 0.2 at 1e-6, 0.5 at 2e-6) }

Ω

 15.41

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.4 Thermode section
The Thermode section defines the thermal contacts of a device.

2.4.1 Command syntax

The Thermode section is defined in the same way as the Electrode section. Each thermode is defined in a section
between braces and must include a name and default temperature, for example:

{ Name = "thermode1" Temperature=300 }

A complete Thermode section can be:

Thermode {
{ Name = "top" Temperature = 350 }
{ Name = "bottom" Temperature = 300 }

}

Table 15.5 lists the options available for the Thermode section.

In the above example, the source assumes these voltages during a transient simulation: 0 V at 0 s, 0.2 V at 1 µs, and
0.5 V at 2 µs.

Time-dependent voltage drive { name = "source" voltage = 0 voltage = (5 at 0, 10 at 1e-6) }

In the above example, both the initial voltage (0 V) and time-dependent values (5 V at 0 s, 10 V at 1 ms) have been
specified for the source. This combination is useful where an initial quasistationary command ramps the source voltage
from 0 V to 5 V, before the source voltage increases to 10 V during a subsequent transient analysis.

Table 15.5 Thermode options

Keyword Description

SurfaceResistance Defines a contact thermal resistivity [cm2K/W].

SurfaceConductance The alternative inverse value of SurfaceResistance (thermal conductivity).

Power = <float> Defines a heat flux boundary condition [W/cm2]. Temperature is specified
when initialization is necessary.

AreaFactor = <float> Specifies a multiplicative factor that multiplies the area of the thermode by a
given amount.

Table 15.6 Various thermode declarations

Command statement Description

{name = "surface" Temperature = 310
SurfaceResistance = 0.1}

This is a thermal resistive boundary condition with 0.1 cm2 K/W
thermal resistance, which is specified at the thermode ‘surface.’

{name = 0 Temperature = 300 Power = 1e6} Heat flux boundary condition.

Table 15.4 Various electrode declarations

Description Command statement
15.42

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.5 Physics section
The Physics section is used to select a global set of models that are used to simulate a device. Table 15.7 on
page 15.44 lists the principal options that are available and Table 15.8 on page 15.45 lists other options. Other
less frequently used parameters are presented in Chapter 4 on page 15.127.

The two types of option in the Physics section are:

Model selection commands (for example, Mobility, Recombination).

Modifiers of parameters for global models (for example, Thermodynamic, Hydrodynamic).

2.5.1 Example: Possible input parameters

This example illustrates many of the possible input parameters for the Physics section:

Physics {
Temperature=300
Charge(Concentration=0)
bandgap narrowing on:
EffectiveIntrinsicDensity (BandGapNarrowing (BennettWilson))
Mobility (

DopingDependence
default model:
CarrierCarrierScattering(ConwellWeisskopf)
HighFieldSaturation # default GradQuasiFermi
Enormal

)
Recombination (
no trap-assisted tunneling:
SRH (DopingDependence)
Auger
TrapAssistedAuger
using non-default driving force, but default model:
Avalanche(vanOverstraeten Eparallel)
Band2Band
)
AlphaParticle (

Energy=5e6 Time=0 # default time
Direction = (1,2)
Location = (5,0)

)
}

{name = 1 Temperature = 300 Power=1e5
power = (1e5 at 0, 1e6 at 1e-4, 1e3 at 2e-4)}

Thermode with time-dependent heat flux boundary condition.

Table 15.6 Various thermode declarations

Command statement Description
 15.43

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.5.2 Main and additional options

NOTE The hydrodynamic transport model can only be activated for the whole device. A region-specific
or material-specific activation is not possible, and the Hydrodynamic keyword(s) is ignored in any
Physics section other than the global one.

NOTE For the Traps and Charge statements, the syntax allows specification of both statements inside any
Physics section. However, Traps applies only to semiconductor regions and is ignored in insulators.
Charge applies only to insulators.

Table 15.7 Principal options for Physics section

Keyword Description

AreaFactor = <float> Specifies a global area factor for the device, which is equivalent to specifying
the area factor in each electrode and thermode.

Charge(Concentration=<float>) Specifies the oxide charge density [q/cm3] where q is the elementary charge.
Default is 0 q/cm3.

EffectiveIntrinsicDensity
(BandGapNarrowing (<models>)

Selects the model for the effective intrinsic density, ni,eff, and switches off band-
gap narrowing if required (see Section 5.2 on page 15.151).

Hydrodynamic
Hydrodynamic (<carrier>)

Switches on the hydrodynamic transport model (see Section 4.2.4 on
page 15.130).
Switches on the hydrodynamic transport model for a specified carrier only
(electron or hole).

Mobility(<models>) Selects the mobility model. The default is the temperature-dependent constant
mobility model. Doping dependence, saturation, normal field effects, and
carrier–carrier scattering are switched on with extra parameters (see Chapter 8
on page 15.175).

Recombination (<models>) Selects the generation–recombination model. The default is that all generation–
recombination models are switched off. Shockley–Read–Hall (SRH)
recombination, coupled defect level (CDL) recombination, Auger
recombination, trap-assisted Auger (TAA) recombination, band-to-band
tunneling, and avalanche generation are switched on with extra parameters
(see Chapter 9 on page 15.201).

Temperature = <float> Specifies the device lattice temperature [K]. Default is 300 K.

Thermodynamic Switches on the thermodynamic transport model (see Section 4.2.3 on
page 15.128).

Traps (<options>) Switches on bulk distributed traps for transient or steady state simulations
(see Chapter 10 on page 15.225).
15.44

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
Table 15.8 lists modifiers for models in the Physics section. Additional keywords may be found in Chapter 4
on page 15.127.

Table 15.8 Additional options for Physics section

Option Description

AlphaParticle (<options>) Switches on generation of electron–hole pairs by an impinging alpha particle for a
transient SEU simulation (see Section 14.1 on page 15.283).

Amorphous (<options>) Switches on bulk distributed traps, typical of amorphous and polycrystalline silicon
(see Chapter 10 on page 15.225).

AnalyticTEP Switches on analytic dependencies of thermoelectric power (default uses
experimental values) (see Section 24.5 on page 15.367).

Fermi Switches on Fermi–Dirac statistics, which can only be activated for the whole
device. A region-specific or material-specific activation is not possible (see
Section 4.4 on page 15.137).

GateCurrent(<model>) Selects a gate current model for memory cell and leakage problems. By default, all
models are off (see Section 15.3.1 on page 15.293).

HeavyIon (<options>) Switches on generation of electron–hole pairs by an impinging heavy ion for a
transient SEU simulation (see Section 14.2 on page 15.284).

IncompleteIonization Switches on incomplete ionization (see Chapter 6 on page 15.161).

MagneticField =
(<float>,<float>,<float>)

Specifies magnetic field [Tesla] (see Chapter 23 on page 15.363).

MoleFraction Specifies mole fraction distribution for compound semiconductors (see Section 18.4
on page 15.323).

Noise (<options>) Switches on noise sources (see Chapter 15 on page 15.291).

OptBeam (<options>) Used for simple simulation of optical generation (see Section 13.1 on page 15.243).

Piezo (<specifications>) Switches on piezoresistive effects (see Section 22.5 on page 15.359).

[e | h]QCvanDort Activates the van Dort quantum correction model (see Section 7.2 on page 15.166).

Radiation (<options>) Switches on the radiation model (see Chapter 12 on page 15.241).

RecGenHeat In hydrodynamic mode, switches on heat sources and sinks due to recombination
and generation processes (see Section 4.2.4 on page 15.130).

Schroedinger Switches on the 1D Schrödinger solver (see Section 7.3 on page 15.167).
 15.45

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.5.2.1 Effective intrinsic density keywords

Table 15.9 lists the parameters for the effective intrinsic density models.

2.5.2.2 Mobility keywords

Table 15.10 lists the optional keywords for mobility models. More than one mobility model can be activated
simultaneously.

NOTE An old option with electric field normal to current density vector is available and is activated by
the keyword ToCurrentEnormal, but it is less robust.

Table 15.9 Keywords for effective intrinsic density models

EffectiveIntrinsicDensity
(BandGapNarrowing (<model type>)):

<model type>

BennettWilson

oldSlotboom

Slotboom

delAlamo

Table 15.10 Keywords for mobility models

DopingDependence
Switches on the doping dependence of the mobility.

HighFieldSaturation(<driving force>)
Switches on the high field saturation model of the mobility. An
optional parameter defines driving force.
The default is GradQuasiFermi.

Optional:
[e|h]HighFieldSaturation (<driving force>)
Allow different driving forces to be specified for electron and
hole high field saturation mobility models.

<driving force>

GradQuasiFermi

Eparallel

CarrierTempDrive

CarrierTempDriveBasic

CarrierTempDriveME

NormalElectricField or Enormal
Switches on dependence of mobility to normal electric field.

The keywords ToInterfaceEnormal and Enormal are synonymous, that is, in the mobility degradation
model, electric field normal to silicon–oxide interface is used.

CarrierCarrierScattering (<model type>)
Switches on carrier–carrier scattering mobility model.
An optional model type can be specified.
The default is ConwellWeisskopf.

<model type>

ConwellWeisskopf

BrooksHerring

PhuMob (<donor species>)
Switches on the Philips unified mobility model.
An optional donor species can be specified.
The default is Arsenic.

<donor species>

Arsenic

Phosphorus
15.46

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.5.2.3 Generation–recombination keywords

By default, all generation–recombination models are switched off. They must be specified as options of the
keyword Recombination. Table 15.11 lists available models.

It is possible to specify different models or driving forces for the electron and hole avalanche generation
terms. This flexibility is achieved by using the keywords eAvalanche or hAvalanche with the appropriate options.

2.5.3 Region-specific and material-specific physics

In DESSIS, different physical models for different regions and materials within a device structure can be
specified. The syntax for this feature is:

Physics (material="material") {
<physics-body>

}

Table 15.11 Keywords for generation–recombination models

SRH(<model type>)
Switches on SRH recombination. Optional model types
can be specified (see Section 9.1 on page 15.201).

<model type>

DopingDependence

Tunneling (see Section 9.2 on page 15.204)

TempDependence

ExpTempDependence

CDL(<model type>)
Switches on the CDL recombination or trap-assisted
tunneling (see Section 9.5 on page 15.209).
Optional model types can be specified.

<model type>

DopingDependence

Tunneling

TempDependence

ExpTempDependence

[+|–]Radiative(<model type>)
Switches on radiative recombination (see Section 9.6 on page 15.211).

Auger
Switches on Auger recombination (see Section 9.7 on page 15.212).

TrapAssistedAuger
Switches on TAA recombination (see Section 9.8 on page 15.213).

Band2Band
Switches on band-to-band tunneling generation (see Section 9.11 on page 15.221
and Section 16.4 on page 15.306).

[e|h]Avalanche(<model type> <driving force>)
Switches on avalanche generation
(see Section 9.9 on page 15.213).
The default model type is VanOverstraeten.
The default driving force is GradQuasiFermi.

<model type> <driving force>

VanOverstraeten GradQuasiFermi

Okuto Eparallel

Lackner CarrierTempDrive
 15.47

PART 15 DESSISCHAPTER 2 BASIC DESSIS
or:

Physics (region="region-name") {
<physics-body>

}

This feature is also available for the Math section:

Math (material="material") {
<math-body>

}

or:

Math (region="region-name") {
<math-body>

}

For example, different charges can be defined in different insulator regions by specifying the statement
Charge(conc = <number>) (unit is cm–3) in the Physics section of the appropriate region.

A Physics section without any region or material specifications is considered the default section. The hierarchy
of region or material Physics and Math specifications is presented in Section 2.5.4.

NOTE Region names can be defined using MDRAW (see MDRAW, Section 2.4.6 on page 11.10).

Regionwise or materialwise specification is not allowed for these models:

AnalyticTEP Fermi Hydrodynamic MagneticField Piezo
QCVanDort RecGenHeat SiC Temperature Thermodynamic

See Section 2.13 on page 15.91.

2.5.4 Hierarchy of physical model specifications

To avoid confusion, it is important to understand the hierarchy of region and material Physics and Math
specifications. For specification of the Physics section, consider:

Physical models defined in the global Physics section (that is, in the section without any region or material
specifications) are applied in all regions of the device.

Physical models defined in a material-specific Physics section are added to the default models for all
regions containing the specified material.

The same applies to the physical models defined in a region-specific Physics section: all regionwise
defined models are added to the models defined in the default section.

NOTE If region-specific and material-specific Physics sections overlap, the region-specific declaration
overrides the material-specific declaration.
15.48

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
For example:

Physics {<Default models>}
Physics (Material="GaAs") {<GaAs models>}
Physics (Region="Emitter"){<Emitter models>}

If the "Emitter" region is made of GaAs, the models in this region are <Default models> and <Emitter models>,
that is, <GaAs models> is not added.

For some models, the model specification and numeric values of the parameters are defined in the Physics
sections. Examples of such models are Traps and the MoleFraction specifications. For these models, the
specifications in region or material Physics sections overwrite previously defined values of the corresponding
parameters.

If in the default Physics section, xMoleFraction is defined for a given region and, afterward, is defined for the
same region again, in a region or material Physics section, the default definition is overwritten. The hierarchy
of the parameter specification is the same as discussed previously.

2.5.5 Physics at interfaces

A special set of models can be activated at the interface between two different materials or two different
regions. Table 15.12 lists the interface models supported by DESSIS.

Table 15.12 Interface Physics options

Recombination(<model>)
Activates surface SRH recombination
or tunneling model at a
heterointerface.

<model>

surfaceSRH

[e|h]BarrierTunneling (Section 16.4 on page 15.306)

GateCurrent(<model>)
All gate current models can be applied
to selected interfaces.

<model>

Fowler (Section 16.2 on page 15.300)

DirectTunneling (Section 16.3 on page 15.302)

[e/h]Lucky (Section 17.2 on page 15.318)

[e/h]Fiegna (Section 17.3 on page 15.319)

[e/h]Thermionic
Activates the thermionic emission
model at an interface.

(Section 18.10 on page 15.330)

Traps(<options>)
Interface traps are specified in the
same way as bulk traps.

(Section 2.5.5.3 on page 15.50)

Charge(<option><parameters>)
Fixed charges can be specified at
selected interfaces.
The default option is Uniform.

<option> <parameters>

Uniform SurfConc=<float> [1/cm–2]

Gaussian SpaceMid=(<float>,<float> [,<float>])
[µm]

(Section 2.5.5.4 on page 15.51) SpaceSig=(<float>,<float> [,<float>])
[µm]
 15.49

PART 15 DESSISCHAPTER 2 BASIC DESSIS
As physical phenomena at an interface are not the same as in the bulk of a device, other physical models are
not allowed inside the Interface Physics statements. It is not possible to define any mobility models or band-
gap narrowing at interfaces.

NOTE Although the GateCurrent and Recombination(surfaceSRH) statements describe pure interface
phenomena, they can be defined in a region-specific Physics section. In this case, the models are
applied to all interfaces between this region and all adjacent insulator regions. If specified in the
global Physics section, these models are applied to all semiconductor–insulator interfaces.

2.5.5.1 Interface model syntax

Interface models are specified in the input file in the same way as Physics statements. Their respective
parameters are accessible in the parameter file. The syntax for specification of an interface model is:

Physics (MaterialInterface="material-name1/material-name2") {
<physics-body>

}

or:

Physics (RegionInterface="region-name1/region-name2") {
<physics-body>

}

These Interface Physics statements replace and enhance the InterfaceCondition statement that existed in
previous DESSIS versions. The following is an example illustrating the specification of fixed charges at the
interface between the materials oxide and aluminum gallium arsenide (AlGaAs):

Physics(MaterialInterface="Oxide/AlGaAs") {
 Charge(Conc=-1.e12)

}

2.5.5.2 Recombination and gate current

The use of these models is detailed in the Physics sections of Section 9.4 on page 15.208 and Section 15.3.1
on page 15.293, respectively.

2.5.5.3 Interface traps

The Traps statement inside a material Physics section has the same syntax as the Traps statement in a regular
(bulk) Physics section (see Chapter 10 on page 15.225). However, for interfaces, the sheet concentration (Conc)
is given in units of cm–2.

NOTE Wherever a contact exists at a specified region interface, DESSIS does not recognize the interface
traps within the bounds of the contact because the contact itself constitutes a region and effectively
overwrites the interface between the two ‘material’ regions. This is true even if the contact is not
declared in the Electrode statement.
15.50

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.5.5.4 Interface charge

Fixed charges at interfaces are specified with either Gaussian or uniform distributions:

Charge([Uniform | Gaussian]
SurfConcentration = <number> # [cm-2]

SpaceMid = (<x,y,[z]>) # [mm]
SpaceSig = (<x,y,[z]>)) # [mm]

NOTE The default is Uniform. For uniform distributions, the variable SurfConcentration (synonym Conc)
specifies the uniform charge concentration. The optional keywords SpaceMid and SpaceSig allow the
charges to be restricted to the part of the interface that intersects a box with its center at the point
SpaceMid. The variable SpaceSig contains the distances in the x and y (and z, for 3D) directions from
the center to the sides of the box.

For Gaussian distributions, the variable SurfConcentration specifies the maximum charge concentration. The
vector SpaceMid points to the peak of the Gaussian, and SpaceSig denotes the standard deviations in the x and
y (and z, for 3D) directions. The charge distribution at the interface is given by the intersection of the
Gaussian with the interface.

It is possible to have several specifications sections in a single Charge statement:

Charge((<spec_1>) (<spec_2>) ... (<spec_n>))

For example, the syntax allows the specification of a piecewise constant interface charge distribution:

Charge ((Uniform Conc=-1.e12 SpaceMid=(0.02,0) SpaceSig=(0.01,0)
(Gaussian Conc=2.e12 SpaceMid=(0.04,0) SpaceSig=(0.01,0)))

2.5.5.5 Interface model parameters

If a model is defined in an Interface Physics section, the parameters of that model must be specified in the
parameter file in a section corresponding to the same interface. For example, for the statement:

Physics (MaterialInterface="Oxide/Silicon") {
Recombination(surfaceSRH)

}

the corresponding model parameters must be defined in the DESSIS parameter file:

MaterialInterface="Oxide/Silicon"{
SurfaceRecombination * surface SRH recombination:
{ # S0 = 1e3 , 1e3 # [cm/s]

S0 = 100 , 100 # [cm/s]
}

}

This parameter definition also applies to:

Physics (RegionInterface="Region.0/Region.1") {
Recombination(surfaceSRH)

}

if the Region.0/Region.1 interface is an oxide–silicon interface.
 15.51

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.5.6 Physics at electrodes

An electrode-specific Physics section can be defined for a Schottky electrode with appropriate keywords for
the barrier tunneling model (see Section 16.4 on page 15.306), for example:

Physics(Electrode="Gate"){
Recombination(BarrierTunneling)

}

To activate the barrier tunneling model, the electrode Gate must also be specified as Schottky in either the
Electrode section (see Section 4.5.1.3 on page 15.140) or the same Physics section as follows:

Physics(Electrode="Gate"){
Schottky
eRecVel = <value>
hRecVel = <value>
Barrier = <value> or Workfunction = <value>

}

2.6 Plot section
The Plot section specifies the data that is saved by the Plot command in the File section. Each data field is
defined with a keyword. Appendix E on page 15.619 lists the keywords.

NOTE To save these variables as a vector, add /Vector to the corresponding keyword.

These quantities do not have to be defined in the Physics section to be saved in a plot file. The plot file saves
only the current data generated by the simulation.

2.7 CurrentPlot section
This section is used to include selected mesh data into the current plot file (.plt). The same variables can be
selected as in the Plot section (see Appendix E on page 15.619).

Data can be plotted according to node numbers or coordinates. The node numbers are obtained by probing the
mesh using Tecplot-ISE (see Tecplot-ISE, Section A.6 on page 5.29).

Node numbers are given as plain integers. However, a coordinate is given as one to three (depending on device
dimensions) numbers in parentheses, which distinguish coordinates from node numbers. When plotting
according to coordinates, the plotted values are interpolated as required.

Furthermore, it is possible to output averages, and maximum and minimum of quantities over specified
domains. To do this, specify the keyword Average, Maximum, or Minimum, respectively, followed by the
specification of the domain in parentheses. A domain specification consists of any number of the following:

Region specification: Region=<regionname>

Material specification: Material=<materialname>

Any of the keywords Semiconductor, Insulator, and Everywhere, which match all semiconductor regions, all
insulator regions, or the entire device, respectively
15.52

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
The average (or maximum or minimum) is applied to all of the specified parts of the device. Multiple
specifications of the same part of the device are insignificant. In addition, Name=<plotname> is used to specify a
name under which the average (or maximum or minimum) is written to the .plt file. (By default, the name is
automatically obtained from a concatenation of the names in the domain specification, which yields
impractically long names for complicated specifications.)

Parameters from the DESSIS parameter file can also be added to the current plot file. The general
specification looks like:

[Material = <material> | MaterialInterface = <interface> |
Region = <region> | RegionInterface = <interface>]

Model = <model> Parameter = <parameter>

Specifying the location (material, material interface, region, or region interface) is optional. However, the
model name and parameter name must always be present. Section 2.9.3.2 on page 15.60 describes how model
names and parameter names can be determined. Finally, DESSIS also provides a current plot PMI (see
Section 33.28 on page 15.600).

NOTE Do not confuse the CurrentPlot section with the CurrentPlot statement in the Solve section
introduced in Section 2.9.9 on page 15.71.

2.7.1 Example: Node numbers

Consider this device declaration in a DESSIS input file:

Device CAP {
Electrode { { Name = "Top" Voltage = 0.0 }

{ Name = "Bot" Voltage = 0.0 } }

File { grid = "cap_mdr"
doping = "cap_mdr" }

Plot { Potential ElectricField/Vector SpaceCharge
eDensity eCurrent/Vector eQuasiFermi
hDensity hCurrent/Vector hQuasiFermi }

CurrentPlot { Potential (7, 8, 9)
ElectricField (7, 8, 9) }

}

In addition to the usual contact currents, the current file of the device CAP contains the electrostatic potential
and electric field for the mesh vertices 7, 8, and 9.

2.7.2 Example: Mixed mode

In mixed-mode simulations, the CurrentPlot section can appear in the body of a physical device within the
System section (it is also possible to have a global CurrentPlot section), for example:

System {
Set (gnd = 0)
CAP Cm (Top=node2 Bot=gnd) { CurrentPlot { Potential (7, 8, 9) } }
...

}

 15.53

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.7.3 Example: Advanced options

This example is a 2D device that uses the more advanced CurrentPlot features. It generates 11 curves:

CurrentPlot {
eDensity (0 1) * plot electron density at nodes 0 and 1
hDensity((0 1)) * hole density at position (0um, 1um)
ElectricField/Vector((0 1)) * Electric Field Vector
Potential (

(0.1 -0.2) * coordinates need not be integers
Average(Region="Channel") * average over a region
Average(Everywhere) * average over entire device
Maximum(Material="Oxide") * Maximum in a material
Maximum(Semiconductor) * in all semiconductors
* material specification is redundant, therefore the same as above will be plotted:
Maximum(Semiconductor Material="Silicon")
* minimum in a material and a region, output under the name "x":
Minimum(Name="x" Material="Oxide" Region="Channel")
* minimum in a region and all insulator regions:
Minimum(Region="Channel" Insulator)

)
}

2.7.4 Example: Physical parameter values

The following example adds five parameters to the current plot file:

CurrentPlot {
Model = DeviceTemperature Parameter = "Temperature"
Material = Silicon Model = Epsilon Parameter = epsilon
MaterialInterface = "AlGaAs/InGaAs" Model = "SurfaceRecombination" Parameter = "S0_e"
Region = "bulk" Model = LatticeHeatCapacity Parameter = cv
RegionInterface = "Region.0/Region.1" Model = "SurfaceRecombination" Parameter = "S0_h"

}

2.8 NonLocalPlot section
The NonLocalPlot section is used to visualize data defined on nonlocal lines (see Section 2.10.7.3 on
page 15.85).

2.9 Solve section
The Solve section is the only section in which the order of commands and their hierarchy are important. It
consists of a series of simulation commands to be performed that are activated sequentially, according to the
order of commands in the input file. Many Solve commands are high-level commands that have lower level
commands as parameters.

Figure 15.17 on page 15.55 shows an example of these different command levels:

The Coupled command (the base command) is used to solve a set of equations.

The Plugin command is used to iterate between a number of coupled equations.
15.54

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
The Quasistationary command is used to ramp a solution from one boundary condition to another.

The Transient command is used to run a transient simulation.

Furthermore, small-signal AC analysis can be performed with the ACCoupled command. An advanced ramping
by continuation method can be performed with the command Continuation. (The ACCoupled and Continuation
commands are presented in Section 3.6 on page 15.113.)

Figure 15.17 Different levels of Solve commands

2.9.1 Coupled command

The Coupled command activates a Newton-like solver over a set of equation–variable pairs. In DESSIS, the
basic semiconductor model equations are the Poisson equation, the two continuity equations, and the different
thermal and energy equations. Table 15.13 presents a list of the equation–variable pairs that can be used in a
Coupled command (see Table 15.48 on page 15.114).

The syntax of the Coupled command is:

Coupled (<optional parameters>){ <equation-variables> }

Table 15.13 Equation–variable pairs for Coupled command

Keyword Corresponding equation Corresponding variable

Electron Electron continuity Electron density

Hole Hole continuity Hole density

Poisson Poisson Electrostatic potential

Temperature Temperature Temperature

eTemperature Electron temperature Electron temperature

hTemperature Hole temperature Hole temperature

eQuantumPotential Electron quantum potential Electron quantum potential

hQuantumPotential Hole quantum potential Hole quantum potential

Coupled

Plugin Poisson
Electron
Hole
Temperature
eTemperature
hTemperature
eQuantumPotential
hQuantumPotential

Continuation

Transient

ACCoupled

Super
Pardiso
Slip
Blocked

Base CommandsIterative LevelRamping Commands Base Options

Quasistationary

 15.55

PART 15 DESSISCHAPTER 2 BASIC DESSIS
or equivalently:

<equation-variable>

This last form uses only the keyword equation-variable, which is equivalent to a coupled with default
parameters and the single equation–variable. For example, if the following command is used:

Coupled { Poisson Electron }

the electrostatic potential and electron density are computed from the resolution of the Poisson equation and
electron continuity equation (using the default parameters).

If the following command is used:

Poisson

only the electrostatic potential is computed using the Poisson equation.

The Coupled command is based on a Newton solver. This is an iterative algorithm in which a linear system is
solved at each step simulation. The possible parameters of the command are:

The maximum number of iterations allowed.

The desired precision of the solution.

The linear solver that must be used.

Whether the solution is allowed to worsen over a number of iterations.

These parameters are summarized in Table 15.14. The command is controlled by both an absolute criterion
and a relative error criterion. The relative error control can be specified with the optional parameter Digits.
The absolute error control can be specified in the Math section (see Section 2.10 on page 15.73).

The following example limits the previous Coupled { Poisson Electron } example to ten iterations and uses the
Slip linear solver:

Coupled (Iterations=10 Method=Slip) { Poisson Electron }

Table 15.14 Optional parameters for Coupled command

Parameter Description

Iterations = <integer> Maximum number of iterations of the Newton algorithm.

Digits = <float> Loops until this relative precision is reached.

Method = <linear solver> Specifies the linear solver to be used.

SubMethod = <linear solver> For a two-level Blocked linear solver, this specifies the second linear solver to use for
the inner loop.

NotDamped = <integer> Allows a solution to worsen for a specified number of iterations. If specified, after
the given number of undamped iterations, the Newton steps are limited by the
Bank–Rose algorithm so that the solution error does not worsen, that is, the solution
is damped.

LineSearchDamping = <float> Sets the minimal damping coefficient for line search damping. <float> must be
greater than zero and not greater than 1. A value of 1 disables line search damping.
15.56

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
NOTE Use a large number of iterations when the coupled iteration is not inside a ramping process. In this
context, allow the Newton algorithm to proceed as far as possible. Inside a ramping command (for
example, Quasistat, Transient), the maximum number of iterations must be limited to
approximately ten because if the Newton process does not converge rapidly, it is preferable to try
again with a smaller step size than to pursue an iterative process that is not likely to converge.

The linear method used in a coupled iteration depends on the type and size of the problem solved. Table 15.15
lists the basic rules for making this decision. Line search damping (option LineSearchDamping) and Bank–Rose
damping (option NotDamped) are unrelated. Unlike the right-hand side that DESSIS shows in the solve report,
line search damping is based on the Fedorenko norm. Therefore, despite damping, the right-hand side in the
solve report can increase.

2.9.2 Plugin command

The Plugin command controls an iterative loop over two or more Coupled commands. It is used when a fully
coupled method would use too many resources of a given machine, or when the problem is not yet solved and
a full coupling of the equations would diverge. The Plugin syntax is defined as:

Plugin (<optional parameters>) (<list-of-coupled-commands>)

Plugin commands can have any complexity but, usually, only a few combinations are effective. One standard
form is the Gummel iteration in which each basic semiconductor equation is solved consecutively. With the
Plugin command, this is written as:

Plugin {
 Coupled { Poisson }
 Coupled { Electron }
 Coupled { Hole }

}

or using the abbreviated Coupled command, as:

Plugin { Poisson Electron Hole }

Table 15.15 Hints on choice of linear solver

 Solver type Problem type

Blocked Multiple device problems (mixed-mode simulations).

ILS Single or multiple device problems with over 8000 vertices.

ParDiSo Single device problems with meshes up to 10000 vertices.

Slip Single device problems with over 8000 vertices.

Super Single device problems with meshes up to 10000 vertices.

UMF Single or multiple device problems with up to 10000 total mesh vertices.
 15.57

PART 15 DESSISCHAPTER 2 BASIC DESSIS
As the Plugin command loops through a number of Coupled commands, it takes as its parameters:

The maximum number of iterations to be performed.

The required precision of the result.

The capability to stop the iterative process if an inner Coupled does not converge.

Table 15.16 lists the corresponding keywords of these parameters.

NOTE Plugin commands can be used with other Plugin commands, such as:
Plugin{ Plugin{ ... } Plugin { ... } }. Figure 15.18 illustrates the corresponding loop structure.
A hierarchy of Plugin commands allows more complex iterative solve patterns to be created.

Figure 15.18 Example of hierarchy of Plugin commands

2.9.3 Quasistationary command

The Quasistationary command is used to ramp a device from one solution to another through the modification
of its boundary conditions (for example, ramping the voltage at a contact) or parameter values. The command
must start with a device that has been solved already.

The simulation continues by iterating between the modification of the boundary conditions or parameter
values, and re-solving the device (see Figure 15.19). The command to re-solve the device at each iteration is
given with the Quasistationary command.

Figure 15.19 Structure of Quasistationary command

Table 15.16 Parameters for Plugin command

 Parameter Description

BreakOnFailure Instructs DESSIS to stop when there is a bad convergence report if an inner Coupled fails.

Digits = <float> Specifies the number of digits of precision for the solution.

Iterations = <integer> Sets the maximum number of iterations over the Plugin loop. The special value of 0 is
used to perform one loop without error testing.

Plugin Plugin

Plugin

Step Boundary Re-solve Device
15.58

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.9.3.1 Ramping boundary conditions

To ramp boundary conditions, such as voltages on electrodes, the Quasistationary command is:

Quasistationary (<parameter-list>) { <solve-command> }

The possible parameters are listed in Table 15.17, and the solve command is Coupled, Plugin, or possibly
another Quasistationary.

For example, ramping a drain voltage of a device to 5 V is performed by:

Quasistationary(Goal {Voltage=5 Name=Drain }){
Coupled { Poisson Electron Hole }

}

Internally, the Quasistationary command works by ramping a variable t from 0.0 to 1.0. This means that the
corresponding voltage at the contact changes according to the formula V= V0 + t (V1 – V0) where V0 is the
initial voltage and V1 is the final voltage, which is specified in the Goal statement.

Greater control of the command is possible with the Step control parameters that affect the behavior of the t
variable. (The control is not made over contact values because more than one contact can be ramped
simultaneously.)

Step control parameters are InitialStep, MaxStep, MinStep, Increment, and Decrement. InitialStep controls the
size of the first step of the ramping. The step size is automatically augmented or reduced depending on the
rate of success of the inner solve command. MaxStep and MinStep limit this change. The rate of increase is
controlled by the number of performed Newton iterations, and by the factor Increment.The step size is only
reduced by the factor Decrement, when the inner solve fails. Consequently, the ramping process stops when the
MinStep condition is reached.

As some of the control of the Quasistationary command is through an internal variable t, some conversion
may be necessary. The relation is linear. For example, if a contact has an initial value of 2 V and the goal of

Table 15.17 Base parameters for Quasistationary command

 Parameter Description

Goal {Voltage = <float> name = <string>},
Goal {Current = <float> name = <string>},
Goal {Temperature = <float> name = <string>},
Goal {Power = <float> name = <string>}

Sets the new target values for a specified contact (name).
Contact type can be a fixed voltage (Voltage), current source
(Current), fixed temperature (Temperature), or heat source
(Power).

InitialStep = <float> Initial step size (default is 0.1).

MaxStep = <float> Maximum step size (default is 1.0).

MinStep = <float> Minimum step size (default is).

Increment = <float> The step size is multiplied by this value before being added to
the current t value if the equation(s) for the current t is solved
successfully (default is 2).

Decrement = <float> The step size is divided by this value before being added to the
previously successful value t if the equation(s) for the current
t is not solved successfully (default is 2).

DoZero The equation section is solved for t=0.

1.0 3–×10
 15.59

PART 15 DESSISCHAPTER 2 BASIC DESSIS
the Quasistationary command is 5 V on this contact, an InitialStep of 0.1 corresponds to a 0.3 V step on the
contact. This conversion process is often necessary to specify when to plot data during the ramping.

Each contact has a type, which can be voltage, current, or charge. Each Quasistationary command has a goal,
which can also be voltage, current, or charge. The goal and contact type must match. If they do not match,
DESSIS changes the contact type to match the goal. If the goal is current and the contact type is voltage,
DESSIS changes the contact type to current. If the goal is voltage and the contact type is current, DESSIS
changes the contact type to voltage. However, DESSIS cannot change a contact of charge type to another type.

The initial value (for t=0) is the current or voltage computed for the contact before the Quasistationary
command starts. Contacts keep their boundary condition type after the Quasistationary command finishes. To
change the boundary condition type of a contact explicitly, use the Set command (see Section 2.9.10 on
page 15.73).

2.9.3.2 Ramping physical parameter values

A Quasistationary command allows parameters from the DESSIS parameter file to be ramped. The Goal
statement has the form:

Goal { [Device = <device>]
[Material = <material> | MaterialInterface = <interface> |
Region = <region> | RegionInterface = <interface>]
Model = <model> Parameter = <parameter> Value = <value> }

Specifying the device and location (material, material interface, region, or region interface) is optional.
However, the model name and parameter name must always be specified.

A list of model names and parameter names is obtained by using:

dessis --parameter-names

This list of parameters corresponds to those in the DESSIS parameter file, which can be obtained by using
dessis -P (see Section 2.13.2 on page 15.91).

The following command produces a list of model names and parameter names that can be ramped in the
command file:

dessis --parameter-names <command file>

DESSIS reads the devices in the command file and reports all parameter names that can be ramped. However,
no simulation is performed. The models in Table 15.18 contain command file parameters that can be ramped.

Table 15.18 Command file parameters

Model name Parameters

OptBeam(<index>)
RayBeam(<index>)

RefractiveIndex, SemAbs, SemSurf, SemVelocity_Vx, SemVelocity_Vy, SemVelocity_Vz,
SemWindow_xmax, SemWindow_xmin, SemWindow_ymax, SemWindow_ymin, SemWindow_zmax,
SemWindow_zmin, WaveDir_x, WaveDir_y, WaveDir_z, WaveEnergy, WaveInt, WaveLength,
WavePower, WaveTime_tmax, WaveTime_tmin, WaveTsigma, WaveXYsigma

RadiationBeam Dose, DoseRate, DoseTSigma, DoseTime_end, DoseTime_start

Traps(<index>) Conc, EnergyMid, EnergySig, eGfactor, eJfactor, eXsection, hGfactor, hJfactor,
hXsection

DeviceTemperature Temperature
15.60

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
NOTE Certain models such as optical beams and traps must be specified with an index:
Model="OptBeam(0)"

Model="Traps(1)"

The index denotes the exact model for which a parameter should be ramped. Usually, DESSIS assigns an
increasing index starting with zero for each optical beam, trap, and so on. However, the situation becomes
more complex if material and region specifications are present. To confirm the value of the index, using the
following command is recommended:

dessis --parameter-names <command file>

Mole fraction–dependent parameters can be ramped. For example, if the parameter p is mole
fraction–dependent, the parameter names listed in Table 15.19 can appear in a Goal statement.

Mole fraction–dependent parameters can be ramped in all materials. In mole fraction–dependent materials,
the interpolation values p(...) and the interpolation coefficients B(p(...)) and C(p(...)) must be ramped. In
a non-mole fraction–dependent material, only the parameter p can be ramped.

If a parameter is not found, DESSIS issues a warning, and the corresponding goal statement is ignored.

Parameters in PMI models can also be ramped.

2.9.3.3 Saving and plotting data during a Quasistationary solve
sequence

Data can be saved and plotted during a Quasistationary ramping process by using the Plot command.
Table 15.20 shows how the Plot command is specified.

Table 15.19 Mole fraction–dependent parameters as Quasistationary Goals

Parameter in Goal statement Description

Parameter=p Parameter p in non-mole fraction–dependent materials.

Parameter="p(0)"
Parameter="p(1)"
...

Interpolation value of p at Xmax(0), Xmax(1), …

Parameter="B(p(1))"
Parameter="C(p(1))"
Parameter="B(p(2))"
Parameter="C(p(2))"
...

Quadratic and cubic interpolation coefficients of p in intervals
[Xmax(0), Xmax(1)], [Xmax(1), Xmax(2)], …

Table 15.20 Plot parameter in Quasistationary command

Plot { Range = (<float> <float>)
 Intervals = <integer> }

Specifies at which internal variable t (between 0 and 1)
the save and plot files are saved.
 15.61

PART 15 DESSISCHAPTER 2 BASIC DESSIS
The Plot parameter is placed with the other Quasistationary parameters, for example:

Quasistationary(
Goal {Voltage=5 Name=Drain}
Plot {Range = (0 1) Intervals=5})

{Coupled{ Poisson Electron Hole }}

In this example, six plot files are saved at five intervals: t=0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Another way to plot data is with the Plot statement in the Solve command rather than inside the Quasistationary
statement (see Section 2.9.6 on page 15.66). This command is added after the given Solve command, such as:

Quasistationary(Goal {Voltage=5 Name=Drain }){
Coupled { Poisson Electron Hole }
Plot (Time= (0.2; 0.4; 0.6; 0.8; 1.0) NoOverwrite)

}

2.9.4 Transient command

The Transient command is used to perform a transient time simulation. The command must start with a device
that has already been solved. The simulation continues by iterating between incrementing time and re-solving
the device (see Figure 15.20). The command to solve the device at each iteration is given with the Transient
command.

Figure 15.20 Structure of Transient command

The syntax of the Transient command is:

Transient (<parameter-list>) { <solve-command> }

Table 15.21 lists the possible parameters. The solve command is Coupled or Plugin.

An example of performing a transient simulation for is:

Transient(InitialTime = 0.0 FinalTime=1.0e-5){
Coupled { Poisson Electron Hole }

}

Table 15.21 Base parameters for Transient command

 Parameter Description

InitialTime = <float> Start time of the simulation (default is 0.0 s).

FinalTime = <float> Final time of the simulation.

InitialStep = <float> Initial step size (default is 0.1 s).

MaxStep = <float> Maximum step size (default is 1.0 s).

MinStep = <float> Minimum step size (default is s).

Increment Time Re-solve Device

1.0 3–×10

10 µs
15.62

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
The Transient command allows the user to overwrite time-step control parameters, which have default values
or are globally defined in the Math section. The error control parameters that are accepted by the Transient
command are listed in Table 15.22. The parameters TransientError, TransientErrRef, and TransientDigits
control the error over the transient integration method.

NOTE This differs from the error control for the Coupled command, which only controls the error of each
nonlinear solution. As with the error parameters for the Coupled command, the transient error
controls can be both absolute and relative. Absolute values are parameterized according to
equation–variable type.

The plot controls of the Transient command and Quasistationary command are identical, except that the
parameter t is identical to the time.

In two similar examples, the Plot parameter is placed with the other Transient parameters, for example:

Transient(InitialTime = 0.0 FinalTime = 1.0e-5
Plot { Range = (0 3.0e-6) Intervals=3 })
{ Coupled { Poisson Electron Hole } }

This example saves four plot files at t = 0.0, 1.0e–6, 2.0e–6, and 3.0e–6.

By placing Plot in the Solve section (see Section 2.9.6 on page 15.66), this example can be rewritten:

Transient(InitialTime = 0.0 FinalTime = 1.0e-5)
{ Coupled{ Poisson Electron Hole }
Plot (Time=(1.0e-6; 2.0e-6; 3.0e-6) NoOverwrite)

}

2.9.5 Large signal cyclic analysis

For high-speed and high-frequency operations, devices are often evaluated by cyclic biases. After a time,
device variables change periodically. This cyclic-bias steady state [129] is a condition that occurs when all
parameters of a simulated system return to the initial values after one cycle bias is applied.

Table 15.22 Error control parameters for Transient command

 Parameter Description

TransientDigits = <float> Overwrites the number of relative digits required for the transient
control.

TransientErrRef(<equation-pair>)=<float> Overwrites the error reference in time-step control for a given equation
pair (for example, Poisson, Electron).

TransientError(<equation-pair>)=<float> Overwrites the absolute transient error in time-step control for a given
equation pair (for example, Poisson, Electron).

TrStepRejectionFactor Overwrites the value of frej factor (see Section 32.4.3 on page 15.529).

CheckTransientError |
NoCheckTransientError

Enables/disables all error controls through the transient integration
method. If disabled, error control is managed only by the convergence
property of the inner solve method.
 15.63

PART 15 DESSISCHAPTER 2 BASIC DESSIS
In fact, such a cyclic steady state is reached by using standard transient simulation. However, this is not always
effective, especially if some processes in the system have very long characteristic times in comparison with
the period of the signal.

For example, deep traps usually have relatively long characteristic times. A suggested approach [130] allows
for significant acceleration of the process of reaching a cyclic steady state solution. The approach is based on
iterative correction of the initial guess at the beginning of each period of transient simulation, using previous
initial guesses and focusing on reaching a cyclic steady state. This approach is implemented in DESSIS.

2.9.5.1 Description of the method

The original method [130] is summarized. Transient simulation starts from some initial guess. A few periods
of transient simulation are performed and, after each period, the change over the period of each independent
variable of the simulated system is estimated (that is, the potential at each vertex of all devices, electron and
hole concentrations, carrier temperatures, and lattice temperature if hydrodynamic or thermodynamic models
are selected, trap occupation probabilities for each trap type and occupation level, and circuit node potentials
in the case of mixed-mode simulation).

If denotes the value of any variable in the beginning of the n-th period, and denotes the same value
at the end of the period, the cyclic steady state is reached when:

(15.2)

is equal to zero. Considering linear extrapolation and that the goal is to achieve , the next initial
guess can be estimated as:

(15.3)

where is a user-defined relaxation factor to stabilize convergence.

As (Eq. 15.3) contains uncertainty such as 0/0, especially when is close to zero (when the solution is close
to the steady state), special precautions are necessary to provide robustness of the algorithm.

Consider the derivation of (Eq. 15.3) in a different fashion – near the cyclic steady state. If such a steady state
exists, the initial guess is expected to behave with time as , where . It is easy
to show that (Eq. 15.3) gives , that is, a desirable cyclic steady state solution. It follows that the ratio r:

(15.4)

can be estimated as . From this, it is clear that because α is positive, the condition
must be valid. Moreover, r can be very large if some internal characteristic time (like the trap characteristic
time) is much longer than the period of the cycle. Using the definition of r from (Eq. 15.4), (Eq. 15.3) can be
rewritten as:

(15.5)

Although (Eq. 15.4) and (Eq. 15.5) are equivalent to (Eq. 15.3), it is more convenient inside DESSIS to use
(Eq. 15.4) and (Eq. 15.5). DESSIS never allows r to be less than 1 because of the above arguments.

xn
I xn

F

∆xn xF
n xI

n–=

∆xn 1+ 0=

xI
n 1+ xI

n γ
xI

n xI
n 1––

∆xn ∆xn 1––
-------------------------------∆xn–=

γ

∆x

y xI= y a αt–() b+exp= α 0>
xI b=

r xI
n xI

n 1––
∆xn ∆xn 1––
-------------------------------–=

r 1 1 αt–()exp–()⁄≈ r 1≥

xI
n 1+ xI

n γr∆xn+=
15.64

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
To provide convergence and robustness, it is reasonable also not to allow r to become very large. In DESSIS,
r cannot exceed a user-specified parameter rmax. The user can also specify the value of the parameter rmin.

An extrapolation procedure, which is described by (Eq. 15.4) and (Eq. 15.5), is performed for every variable
of all the devices, in each vertex of the mesh. Instead of densities, which can spatially vary over the device by
many orders of magnitude, the extrapolation procedure is applied to the appropriate quasi-Fermi potentials.

For the trap equations, extrapolation can be applied either to the trap occupation probability (the default)
or, optionally, to the ‘trap quasi-Fermi level,’ . The cyclic steady state is supposedly
reached if the following condition is satisfied:

(15.6)

Values of are the same as ErrRef values of the Math section. For every object of the simulated system (that
is, every variable of all devices), an averaged value of the ratio r is estimated and can be optionally
printed. Estimation of is performed only at such vertices of the object, where the condition:

 (15.7)

is fulfilled, that is, the same condition as (Eq. 15.6), but with a possibly different tolerance .

The following extrapolation procedures are allowed:

1. Use of averaged extrapolation factors for every object. This is the default option.

2. Use of the factor r independently for every mesh vertex of all objects. If for some reason, the criterion in
(Eq. 15.7) is already reached, the value of factor r is replaced by the user-defined parameter rmin. The
option is activated by the keyword -Average in the Extrapolate statement inside Cyclic specification.

3. The same as Step 2, but for the points where (Eq. 15.7) is fulfilled, the value of factor r is replaced by the
averaged factor . The option is activated by the keyword -Average in the Extrapolate statement inside
the Cyclic specification, accompanied by specification of the parameter rmin = 0.

2.9.5.2 Syntax and implementation

Cyclic analysis is activated by specifying the parameter Cyclic in the parameter list of the Transient statement.
Cyclic is a complex structure–like parameter and contains cyclic options and parameters in parentheses:

Transient(InitialTime=0 FinalTime=2.e-7 InitialStep=2.e-14 MinStep=1.e-16
Cyclic(<cyclic-parameters>)

) { ... }

Table 15.23 lists the available Cyclic parameters.

Table 15.23 Parameters for cyclic analysis

 Parameter Description

Period = <float> Defines the period of the cycle [s]. The default is no cyclic analysis.

StartingPeriod = <integer> Defines the number of the period from which the extrapolation procedure
starts. It cannot be less than 2 (the default).

fT
ψT 1 fT–() fT⁄()ln–=

∆x
x xref+
----------------- εcyc<

xref
rav

ob

rav
ob

∆x
x xref+

εcyc
f

---------<

ε1cyc εcyc f⁄=

rav
ob
 15.65

PART 15 DESSISCHAPTER 2 BASIC DESSIS
In the parentheses of the optional parameter Extrapolate (in a Cyclic statement), additional options of the
cyclic extrapolation procedure are defined. Table 15.24 lists these options.

An example of a Transient command with Cyclic specification is:

Transient(InitialTime=0 FinalTime=2.e-7 InitialStep=2.e-14 MinStep=1.e-16
Cyclic(Period=8.e-10 StartingPeriod=4

Accuracy=1.e-4 RelFactor=1
Extrapolate (Average Print MaxVal=50))

) { ... }

NOTE The value of the parameter Period in the Cyclic statement must be divisible by the period of the bias
signal. A periodic bias signal must be specified elsewhere in the input file.

2.9.6 Plot, Save, and Load commands

Specifying input and output through the File section has the disadvantage of being predefined for the full
simulation. When a simulation is composed of different parts, it is useful to have more control over file input/
output. This is performed through the use of the Plot, Save, and Load commands in the Solve section. The Plot
and Save statements can be used at any level of the Solve section.

The Load statement can only be used as a base level Solve statement. For example, in the case of a transient
simulation, Load can only be used before or after the transient, not during it.

Accuracy = <float> Defines the tolerance .

RelFactor = <float> Defines the relaxation factor .

Extrapolate() Defines, in parentheses, optional parameters for cyclic extrapolation.

Table 15.24 Optional parameters of Extrapolate statement in cyclic specification

 Parameter Description

Forward <bool> DESSIS proceeds as in a standard transient, that is, without cyclic
extrapolation procedure. The default is false.

QFtraps <bool> For trap probabilities, the extrapolation procedure applies to ‘trap quasi-Fermi
level’ instead of trap occupation probabilities . The default is false.

Average <bool>
-Average

For each object, averaged factor is used. The default is true.
Factor r is defined separately for each vertex.

Factor = <float> Defines the coefficient f for estimation. The default is 1.

MaxVal = <float> Defines rmax. The default is 25.

MinVal = <float> Defines rmin. The default is 1.

Print <bool> Averaged factors for each object are printed.

Table 15.23 Parameters for cyclic analysis

 Parameter Description

εcyc

ϒ

ψT fT

rav
ob

rav
ob

rav
ob
15.66

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
The Save statement generates files of type .sav. The Plot statement generates files of type .dat. An important
distinction between these file types is that a .sav file automatically contains all contact biases and currents.
The biases are reloaded in the Load statement, which means:

Contact biases specified in the Electrode section are overwritten after loading the .sav file. This statement
does not apply if a .dat file is loaded.

Multiple load and save operations are allowed in one input file.

The commands are defined as:

<command> (<parameters-opt>) <system-opt>

where:

<command> is either Plot, Save, or Load. Plot refers to data specified in the Plot section.

<parameters-opt> is a list of the options delimited by parentheses (see Table 15.25).

Table 15.25 Optional parameters for Plot, Save, and Load commands

 Parameter Description

FilePrefix = "<fileprefix>" The prefix of the file name to which data is saved or from which graphs
are plotted. The file names consist of the file prefix, the instance name, an
optional local number (depending on the option Overwrite/noOverwrite),
and the extension _des.sav. The default file prefix is
save<globalsaveindex> for Save and plot<globalplotindex> for Plot.

Time = (list of time entries) A list of the times when data is saved or plotted. Time entries are
separated by semicolons (see Section 2.9.6.1 on page 15.69).

Iterations = (list of numbers) Used in plugins to save or plot at certain iterations. Numbers are separated
by semicolons. The default is to save or plot for all iterations.

IterationStep = <number> Used in plugins, quasistationaries, continuations, and transients to save or
plot all <number> steps.

Compressed | unCompressed Specifies if save or plot files are written in a compressed or uncompressed
format (with the extensions _des.sav.Z or _des.dat.Z, respectively). The
default is unCompressed. This option must not be used if DESSIS runs as
an application of GENESISe.

Number = <number> When a sequence of solutions is saved during a Quasistationary or
Transient simulation, DESSIS automatically indexes the file names (for
example, n3_0001_des.sav, n3_0002_des.sav, …).
The keyword Number specification is essential in a Load command to
reload a specific solution (in the example, Number=2 reloads the solution
file n3_0002_des.sav).

Voltage (Intervals = <number>) Only for Continuation simulations. The specified voltage range (that is,
MinVoltage and MaxVoltage of Continuation) is divided into intervals, and
the save or plot files are written every time the voltage enters one of these
new intervals.

Current (Intervals = <number>) Only for Continuation simulations. Similar to the voltage specification
shown previously. If LogCurrent is given in a Continuation simulation, a
log current range is used.
 15.67

PART 15 DESSISCHAPTER 2 BASIC DESSIS
NOTE The plot parameters in Table 15.25 are also available in the ACCompute option discussed in
Section 3.8.3 on page 15.117.

Use <system-opt> to obtain a list of optional entries delimited by braces. Table 15.26 lists these optional
entries.

If no parameters are specified, the defaults are used. If no <system-opt> is specified, all physical devices and
circuits are saved or plotted. The Load statement requires a file prefix. Therefore, system-opt must be empty if
the current or all mixed-mode device is selected.

Voltage (Difference = <value>) Only for Continuation simulations. Similar to the voltage specification
shown previously. In this example, Difference specifies the intervals in
terms of positive voltage differences [V].

Current (Difference = <value> |
LogDifference = <value>)

Only for Continuation simulations. Similar to the voltage specification
shown previously. Difference [A]; LogDifference is the logarithm of the
current difference [A]. The value must be positive. The specification of
LogDifference or Difference is independent of the keyword LogCurrent
in the Continuation parameters.

Overwrite/noOverwrite Overwrite allows each save or plot file to rewrite over the same file name
at each loop. NoOverwrite forces each new save or plot file name to be
given a new name by numbering the files. The default is Overwrite.

When (Contact = <contact name>
Voltage = <voltage>)
When (Contact = <instance
name>.<contact name>
Voltage = <voltage>)
When (Contact = <contact name>
Current = <current>)
When (Contact = <instance
name>.<contact name>
Current = <current>)
When (Node = <node name>
Voltage = <voltage>)

These options are available for Plot, Save, and CurrentPlot commands
inside a Quasistationary, Transient, or Continuation statement. They
are used to monitor the (inner) voltage at a contact, the current at a
contact, or the voltage at a circuit node, and to plot or save whenever this
value exceeds a threshold.
If the instance name is omitted, DESSIS uses the empty name (" "). This
is a shortcut for pure device simulations (no System section).
A plot or save occurs whenever one of these conditions applies:
vc(last iteration)<threshold≤vc(this iteration)
vc(last iteration)>threshold≥vc(this iteration)
Here, vc(iteration) denotes the voltage or current for a given iteration in
the enclosing statement. Consequently, plots or saves may occur both for
increasing and decreasing values.

Table 15.26 System options for Plot, Save, and Load commands

 Option Description

<device-name> Selected if the device <device-name> is to be plotted, saved, or loaded.

Circuit Selected if the circuit devices and circuitry are to be saved or loaded (not for plot)
(see Chapter 3 on page 15.101).

Table 15.25 Optional parameters for Plot, Save, and Load commands

 Parameter Description
15.68

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.9.6.1 Example: Solve section of input file with Plot, Save, and Load
operations

Solve {
Plugin {

Poisson
Plot (FilePrefix = "output/poisson")
Coupled { Poisson Electron Hole }
Plot (FilePrefix = "output/electric" noOverwrite)

}
Save
Coupled { Poisson Electron Hole Temperature }
Save (FilePrefix = "output/therm_init_des")
Transient {

Coupled { Poisson Electron Hole Temperature }
Plot (FilePrefix = "output/trans"

Time = (range = (0 1) ;
range = (0 1) intervals = 4 ; 0.7)
NoOverwrite)

}
Load (FilePrefix = "output/therm_init_des")
...

}

The first Plot statement in Plugin writes (after the computation of the Poisson equation) to a file named output/
poisson_des.dat. The second Plot statement in Plugin writes to a file called output/electric_0000_des.dat and
increases the internal number for each call.

In the first base-level Save, no file prefix is specified. The default file prefix Save<globalindex> is used
(Plot<globalindex> is used for plots). In this example, the simulation writes to the file save1_des.sav because it
is the second Save and the index starts with zero.

The second base-level Save writes a file for each physical device, for example, output/therm_init_des.sav.

The Plot statement in this transient simulation example specifies three different types of time entries
(separated by semicolons). The first entry indicates all the times within this range when a plot file must be
written. The second time entry forces the transient simulation to compute solutions for the given times. In this
example, the given times are 0.25, 0.5, 0.75, and 1.0. The third entry is for the single time of 0.7. This format
is similar to quasistationaries.

The Load statement reads the files output/therm_init_des.sav (or the corresponding compressed files), and the
simulation continues with the loaded parameters.

2.9.6.2 Example: Solve section of input file with multiple Save and
Load operations

...
Solve {

...
 # Ramp the gate and save structures
 # First gate voltage
 Quasistationary (InitialStep=0.1 MaxStep=0.1 MinStep=0.01

Goal {Name="gate" Voltage=1})
{Coupled {Poisson Electron Hole}}

 Save(FilePrefix="vg1")
 # Second gate voltage
 15.69

PART 15 DESSISCHAPTER 2 BASIC DESSIS
 Quasistationary (InitialStep=0.1 Maxstep=0.1 MinStep=0.01
 Goal {Name="gate" Voltage=3})

{Coupled {Poisson Electron Hole}}
Save(FilePrefix="vg2")

 # Load the saved structures and ramp the drain
 # First curve
 Load(FilePrefix="vg1")
 NewCurrentPrefix="Curve1"
 Quasistationary (InitialStep=0.1 MaxStep=0.5 MinStep=0.01

Goal {Name="drain" Voltage=2.0})
{Coupled {Poisson Electron Hole}}

 # Second curve
 Load(FilePrefix="vg2")
 NewCurrentPrefix="Curve2"
 Quasistationary (InitialStep=0.1 MaxStep=0.5 MinStep=0.01

Goal {Name="drain" Voltage=2.0})
{Coupled {Poisson Electron Hole}}

}
...

2.9.7 System command

The System command allows UNIX commands to be executed during a DESSIS simulation:

System ("UNIX command")

The System command can appear as an independent command in the Solve section, as well as within a
Transient, Continuation, Plugin, or Quasistationary command. The string argument of the System command is
passed to a UNIX shell for evaluation.

By default, the return status of the UNIX command is ignored. If the variant:

+System ("UNIX command")

is used, DESSIS examines the return status. The System command is considered to have converged if the return
status is zero. Otherwise, it has not converged.

2.9.8 NewCurrentPrefix statement

By default, DESSIS saves all current plots in one file (as defined by the variable Current in the File section).
This behavior can be modified by the NewCurrentPrefix statement in the Solve section:

NewCurrentPrefix = prefix

This statement appends the given prefix to the default, current file name, and all subsequent Plot statements
are directed to the new file. Multiple NewCurrentPrefix statements can appear in the Solve section, for example:

Solve {
Circuit
Poisson
NewCurrentPrefix = "pre1"
Coupled {Poisson Electron Hole Contact Circuit}
NewCurrentPrefix = "pre2"
Transient (

MaxStep= 2.5e-6 InitialStep=1.0e-6
InitialTime=0.0 FinalTime=0.0001
15.70

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
Plot {range=(10e-6,40e-6) Intervals=10}
)
{Coupled {Poisson Electron Hole Contact Circuit}}

}

In this example, the current files specified in the File and System sections contain the results of the Circuit and
Poisson solves. The results of the Coupled solution are saved in a new current file with the same name but
prefixed with pre1. The last current file contains the results of the Transient solve with the prefix pre2.

NOTE The file names for current plots defined in the System section, and the plot files of AC analyses are
also modified by a NewCurrentPrefix statement.

2.9.9 CurrentPlot section

The CurrentPlot statement in the Solve section provides full control over the plotting of device currents and
circuit currents. By default, currents are plotted after each iteration in a Plugin, Quasistationary, or Transient
command. This behavior can be modified by a CurrentPlot statement in the body of these commands. If a
CurrentPlot statement is present, it determines the exact location of all plot points that are written to the .plt
file. DESSIS can still perform computations for some intermediate points, but they are not written to the file.

NOTE Do not confuse the CurrentPlot statement in the Solve section with the CurrentPlot section as
described in Section 2.7 on page 15.52.

The syntax of the CurrentPlot statement is:

CurrentPlot (options) {body}

Both options and body are optional and can be omitted. options is a space-separated list, which can consist of
the following entries:

Time = (<float> ; <float> ; <float> ;)

The list of time entries enumerates the times for which a current plot is requested. The
entries are separated by semicolons. A time entry can have these forms:

floating point number The time value for which a current plot is requested.

Range = (a b) This option specifies a free plot range between a and b. All the time points in this
range are plotted.

Range = (a b) Intervals = n
This option specifies n intervals in the range between a and b. In other words, these
plot points are generated:

(15.8)

Iterations = (<integer>; <integer>; <integer>;)

The list of integers specifies the iterations for which a plot is required. This option is
available for the Plugin command.

t a t, a b a–
n

------------ … t, ,+ b b a–
n

------------– t, b= = = =
 15.71

PART 15 DESSISCHAPTER 2 BASIC DESSIS
IterationStep = <integer>

This option requests a current plot every n iterations. It is available for the Plugin
command.

When (<when condition>)

A When option can be used to request a current plot whenever a condition has been met.
This option works in the same way as in a Plot or Save command (see Table 15.25 on
page 15.67).

Body is a space-separated list of devices. If Body is not present, DESSIS plots all device currents and the circuit
(in mixed-mode simulations). If Body is present, only the currents of the given devices are plotted. The
keyword Circuit can be used to request a circuit plot.

2.9.9.1 Example: CurrentPlot statements

A CurrentPlot statement by itself creates a current plot for each iteration:

Quasistationary (InitialStep=0.2 MinStep=0.2 MaxStep=0.2
Goal { Name="drain" Voltage=0.5 })

{ Coupled { Poisson Electron Hole }
CurrentPlot }

If no current plots are desired, a current plot for the ‘impossible’ time t = –1 can be specified:

Quasistationary (InitialStep=0.2 MinStep=0.2 MaxStep=0.2
Goal { Name ="drain" Voltage=0.5 })

{ Coupled { Poisson Electron Hole }
CurrentPlot (Time = (-1)) }

In this example, the currents of the device nmos are plotted for t=0, t= , and t= :

Transient (MaxStep=1e-8 InitialTime=0 FinalTime=1e-6)
{ Coupled { Poisson Circuit }
CurrentPlot (Time = (0 ; 1e-8; 1e-7)) { nmos } }

This CurrentPlot statement produces 11 equidistant plot points in the interval 0, :

Transient (MaxStep = 1e-8 InitialTime=0 FinalTime=1e-5)
{ Coupled { Poisson Circuit }
CurrentPlot (Time = (range = (0 1e-5) intervals = 10)) }

In this example, a current plot for iteration 1, 2, 3, and for every tenth iteration is specified:

Plugin { Poisson Electron Hole
CurrentPlot (Iterations = (1; 2; 3) IterationStep = 10) }

A CurrentPlot statement can also appear at the top level in the Solve section. In this case, the currents are
plotted when the flow of control reaches the statement.

A CurrentPlot statement is also recognized within a Continuation command. In this case, the time in the
CurrentPlot statement corresponds to the arc length in the Continuation command.

However, only free plot ranges are supported.

10 8– 10 7–

10 5–
15.72

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.9.10 Set command

The Set command changes the boundary condition type for an electrode. The Electrode section (see
Section 2.3 on page 15.39) specifies the initial boundary condition. To change the boundary condition of a
current contact <name> to voltage type, use Set(<name> mode voltage). To change the boundary condition of a
voltage contact <name> to current type, use Set(<name> mode current). For example, use:

Set ("drain" mode current)

to change the boundary condition for the voltage contact drain from voltage type to current type. If the
boundary condition for drain was of current type before the Set command is executed, nothing happens.

The Set command does not change the value of the voltage or current at the electrode. The boundary value for
the new boundary condition type results from the solution previously obtained for the bias point at which the
Set command appears.

An alternative method to change the boundary condition type of a contact is to use the Quasistationary
statement (see Section 2.9.3 on page 15.58). This alternative is usually more convenient. However, a goal
value for the boundary condition must be specified, whereas the Set command allows the user to fix the
current or voltage at a contact to a value reached during the simulation, even if this value is not known
beforehand. In mixed-mode simulations, the Set command can be used to determine the boundary conditions
at nodes (see Section 3.4.4 on page 15.110 and Section 3.8.6 on page 15.121).

2.10 Math section
The Math section is used to specify defaults for the different Solve commands. The two types of Math entries
are device-specific and global. Device-specific entries refer to parameters that affect the solve methods of a
device. Global entries are device independent and affect the global solution methods.

2.10.1 Device-specific Math keywords

Device-specific keywords are used in the Math section and device-specific Math sections. In this section,
keywords are grouped by functionality. The Math parameters for the physics can be placed in the Physics
section; however, the parameters are in the Math section because they strongly affect the math. Table 15.27 on
page 15.74 lists four numeric performance keywords:

Cylindrical specifies that the device is simulated using cylindrical coordinates. In this case, a 3D device
is specified by a 2D mesh and the vertical axis around which the device is rotated.

EdgeMagneticDiscretization specifies that the device is to respond to external magnetic fields.

RecomputeQFP recomputes the quasi-Fermi potentials when the electrostatic potential changes.

ComputeIonizationIntegrals computes the ionization integrals from the local field maxima.
 15.73

PART 15 DESSISCHAPTER 2 BASIC DESSIS
For most problems, Newton iterations converge best with full derivatives. Furthermore, for small-signal
analysis, and noise and fluctuation analysis, using full derivatives is mandatory. Therefore, by default,
DESSIS takes full derivatives into account. For rare occasions where omission of derivatives improves
convergence or performance significantly, use the keywords -AvalDerivatives and -Derivatives to switch off
mobility and avalanche derivatives. The derivatives are usually computed analytically, but a numeric
computation can be used by specifying Numerically. Table 15.28 summarizes the different derivative
keywords.

In some very important cases, DESSIS allows the use of different discretization approaches, which are
controlled by the keywords in Table 15.29 on page 15.75.

The option -NewDiscretization switches on an old discretization scheme for the transport equations.

Table 15.27 Math parameters for physics

Parameter Description

ComputeIonizationIntegrals (flags) Switches on the computation of ionization integrals for paths that cross
local field maxima in a semiconductor.

Cylindrical (<float>) Cylindrical coordinates are used to simulate a 2D device. This allows a
2D device to be rotated around a vertical axis. The optional argument is
the horizontal coordinate of the axis of rotation (default is 0), which must
be less than or equal to the smallest horizontal device coordinate. It is
switched off by default.

EdgeMagneticDiscretization Switches on the discretization of the carrier current densities used for
galvanometric transport equations. This keyword must be specified for
nonzero magnetic simulations.

RecomputeQFP Keeps density variables constant, and recomputes quasi-Fermi potentials
when the electrostatic potential changes and carrier equations are not
solved.

NonLocal (...} Defines a subregion and internal submesh near a Schottky barrier or
heterointerface where barrier tunneling models are applied.

MetalConductivity Switches off the conductivity of metals (see Section 4.2.5 on
page 15.134), but the thermal conductivity is simulated according to the
thermodynamic model.

Table 15.28 Math parameters for derivatives

Parameter Description

-AvalDerivatives Switches off the analytic derivatives of the avalanche terms (switched on by
default).

-Derivatives Switches off the analytic derivatives of the mobility and avalanche terms
(switched on by default).

Numerically (<equation-pair>,
<equation-pair>,...)

Switches on numeric derivatives, that is, the Jacobian is determined using a finite-
difference scheme. The optional equation list can be used to restrict the calculation
of the numeric Jacobian to specific equations. This is recommended only for
debugging purposes because this causes the simulation to run very slowly. (It is
switched off by default and does not work with the method Blocked.)
15.74

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
NOTE The option -NewDiscretization will be withdrawn in a future DESSIS release. Its use is discouraged
except when using models that explicitly require it.

The parameter EvEpara controls the discretization of the electric field parallel to the current.

The electrostatic potential can be computed from an arbitrary reference potential level . In DESSIS,
is computed from the vacuum level, using the following rules:

If there is silicon in any simulated semiconductor structure, the intrinsic Fermi level of silicon is selected
as reference, .

Otherwise, if any simulated device structure contains GaAs, .

In all other cases, DESSIS selects the material with the smallest band gap (assuming a mole fraction of
0) and takes the value of its intrinsic Fermi level as .

The keywords DirectCurrentComputationAtContact and CurrentWeighting control current output. By default, the
current is computed using integration over doping wells. CurrentWeighting modifies this method to minimize
error contributions. In the DirectCurrent option, the current is computed directly, without any additional
integration.

For some models (van Dort quantum correction model and Lombardi mobility model), the electric field
normal to the interface (called Enormal) is used. By default, such an interface is the semiconductor–insulator
interface.

Table 15.29 Math parameters for discretization methods

Parameter Description

CurrentWeighting Contact currents are computed using an optimal weighting scheme (it is
switched off, by default).

DirectCurrentComputationAtContact Contact currents are computed directly, using only contact nodes and their
neighbors (it is switched off, by default).

EvEpara This option provides accurate and reliable calculations for models that depend
on the parallel electric field, such as avalanche generation and high field
velocity saturation. It is switched on, by default.
Alternatively, computations can be based on the averaging field-dependent
mobility or avalanche generation rate over elements. This approach is fast for
simple situations, but does not guarantee high accuracy and fast convergence
rates of the Newton iteration process. To switch manually to such a mode,
specify the keyword -EvEpara to switch off EvEpara.

-NewDiscretization Switches back to the obsolete discretization scheme for continuity equations,
lattice temperature equations, and carrier temperature equations.

-ConstRefPot Selects a position-dependent , which is the local value of the intrinsic
Fermi potential.

ConstRefPot=<value> Specifies a user-defined value for .

EnormalInterface Specifies the interface for electric field computation normal to that interface.

ψref ψref

ψref Φintr Si()=

ψref Φintr GaAs()=

ψref

ψref

ψref
 15.75

PART 15 DESSISCHAPTER 2 BASIC DESSIS
To change the default, this interface must be specified explicitly in the Math section, using the syntax:

Math {...
EnormalInterface(regioninterface=["regionK1/regionL1" "regionK2/regionL2" ...],

materialinterface=["materialM1/materialN1" "materialM2/materialN2" ...]
}

For the interface definition, DESSIS takes the union of all specified interfaces.

2.10.2 Math parameters for nonlinear iterations convergence
control

During a Solve statement, DESSIS tries to determine the value of an equation variable x, such that the
computed update ∆x (after k-th nonlinear iteration) is small enough:

(15.9)

where:

(15.10)

and is a scaling constant.

NOTE The condition (Eq. 15.9) only holds for a scalar equation. It can be generalized in the case of a
vector of unknowns (see Section 32.5.1 on page 15.529).

It is clear that (Eq. 15.9) is equivalent to:

(15.11)

where:

(15.12)

By default, DESSIS uses the condition (Eq. 15.11), but the keyword -RelErrControl can be used to switch to
(Eq. 15.9). For large values of x (), the conditions (Eq. 15.9) and (Eq. 15.11) are equivalent to the
relative error criterion:

(15.13)

Conversely, for small values of x (), the absolute error conditions are:

 or (15.14)

∆x
x*

εR
x
x*
----- εA+

-------------------------- 1<

εR 10 Digits–=

x*

∆x
x xref+
-------------------- εR<

xref
εA
εR
-----x*=

x ∞→

∆x
x

--------- εR<

x 0→

∆x
x*
------ εA< ∆x xref εR⋅<
15.76

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
respectively. DESSIS uses the expressions (Eq. 15.9) and (Eq. 15.11) to ensure a smooth transition between
absolute and relative error control.

If -RelErrControl has been specified to disable relative error control, the user must specify the value of Digits
to change the default value of the relative error. DESSIS uses (Eq. 15.10) to define internally. In absolute
error specifications, the values of and can be defined independently for each equation variable.

NOTE By default, DESSIS uses relative error control. In this case, the (unscaled) absolute error in
nonlinear iterations is specified by either the keyword Error () or ErrRef ().

Table 15.30 summarizes the available keywords for error control during nonlinear iterations. Table 15.31 lists
the default values for the error control criteria.

2.10.3 Math parameters for transient analysis

A set of keywords is available in the Math section to control transient simulation. DESSIS uses implicit
discretization of nonstationary equations and supports two discretization schemes: the trapezoidal rule/
backward differentiation formula (TRBDF), which is a default, and the simpler backward Euler (BE) method.

Table 15.30 Math parameters for nonlinear iterations error control

Parameter Description

Digits = <float> Relative error convergence criterion. Digits approximates the number
of digits of accuracy to which an equation must be solved before being
considered to have converged. When either (Eq. 15.9) or (Eq. 15.11) is
met, DESSIS assumes the equation is solved. Default is 5.

Error(<equation-variable>) = <float> Defines the value of in (Eq. 15.9).

ErrRef(<equation-variable>) = <float> Defines the value of in (Eq. 15.11).

RelErrControl | -RelErrControl Specifies that the unscaled expression (Eq. 15.11) is used for error
control. The default is RelErrControl.

Table 15.31 Equation variables and their default errors

<equation-variable> Error criterion for
equations

Default of error (without
RelErrControl)

Default of ErrRef (with
RelErrControl)

Poisson Poisson 0.0258 V

Electron Electron continuity cm–3

Hole Hole continuity cm–3

Temperature Temperature 300 K

ElectronTemperature Electron temperature 300 K

HoleTemperature Hole temperature 300 K

Contact Contact current 0.0258 V

Circuit Circuit equations 0.0258 V

εR
εA xref

εA xref

εA

xref

1.0 3–×10

1.0 5–×10 1010

1.0 5–×10 1010

1.0 3–×10

1.0 4–×10

1.0 4–×10

1.0 3–×10

1.0 3–×10
 15.77

PART 15 DESSISCHAPTER 2 BASIC DESSIS
To activate a particular transient method, Transient=<transient-method> must be specified, where <transient-
method> can be TRBDF or BE. Together with error control of nonlinear equations convergence (which is needed
for both DC and transient analysis), time-step control is necessary during transient simulation (see
Section 32.4 on page 15.527, where equations and criteria for time-step control are described).

To activate time-step control, CheckTransientError must be specified (it is switched off by default, that is, time-
step depends only on convergence of Newton iterations). For time-step control, DESSIS uses a separate set
of criteria, but as with Newton iterations, the control of both relative and absolute errors is performed.
Relative transient error is defined similarly to in (Eq. 15.10):

(15.15)

Similarly, for and , the equation:

(15.16)

is valid. The keyword TransientDigits must be used to specify relative error in transient simulations. An
absolute error in time-step control can be specified by either the keyword TransientError () or
TransientErrRef (), and their values can be defined independently for each equation variable. The same
flag as in Newton iteration control, RelErrControl, is used to switch to unscaled (TransientErrRef) absolute
error specification. Table 15.32 summarizes the keywords available in the Math section for transient analysis.

NOTE All transient parameters in the Math section, except Transient = <transient-method>, can be
overwritten in the Transient command of the Solve section (see Section 2.9.4 on page 15.62).

Table 15.32 Math parameters for transient analysis

Parameter Description

Transient = <transient-method> Defines the transient discretization scheme. Available options for
transient method are TRBDF and BE. The default is TRBDF.

TransientDigits = <float> Defines relative error convergence criterion in time-step control
((Eq. 15.15)). The default is TransientDigits = 3.

TransientError(<equation-variable>)
= <float>

Defines the value of in time-step control.

TransientErrRef(<equation-variable>)
= <float>

Defines the value of in time-step control.

CheckTransientError |
NoCheckTransientError

Enables or disables all error controls through the transient integration
method. If disabled, error control is only managed by the convergence
property of the inner solve method. Default is NoCheckTransientError.

TrStepRejectionFactor Defines the value of frej factor (see Section 32.4.3 on page 15.529).

εR tr, εR

εR tr, 10 Digits,tr–=

xref,tr εA tr,

xref,tr
εA tr,
εR tr,
-----------x*=

εR tr,
εA tr,

xref,tr

εR tr,

εA tr,

xref,tr
15.78

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.10.4 Solver-oriented Math keywords

The Math parameters to the solution algorithms are device independent and must only appear in the base Math
section. These can be grouped by solver type. The control parameters for the linear solvers are Method and
SubMethod. The keyword Method selects the linear solver to be used, and the keyword SubMethod selects the inner
method for block-decomposition methods (see Table 15.33).

The UMF solver recognizes the parameters shown in Solvers, Chapter 4 on page 19.13. These parameters can
be specified inside the Math section as follows:

method = UMF (PrintLevel = 2
DenseRow = 0.2
DenseColumn = 0.2
AMDDense = 10
Strategy = 0
Tolerance_2by2 = 0.01
Aggressive = 1
PivotTolerance = 0.2
SymPivotTolerance = 0.001
BlockSize = 32
AllocInit = 0.7
FrontAllocInit = 0.5
Scale = 1
IrStep = 2
FixQ = 0)

The Coupled command is sensitive to the Math parameters Iterations, LineSearchDamping, NotDamped, RhsMin, and
RhsFactor. Iterations, LineSearchDamping, and NotDamped in the Math section set the defaults to the equivalent
parameters as in the Coupled command.

Table 15.33 Math parameters for linear solver

Method = <solver>
Selects the linear solver to be used in
the Coupled command.

<solver>

Blocked: Selects a block decomposition solver (default).
Extra parameter SubMethod specifies the inner solver to be used.

ILS: Selects the (parallel) iterative linear solver ILS.

ParDiSo: Selects the (parallel) supernodal direct solver.

Slip: Selects the Slip iterative solver.

Super: Selects the direct supernodal solver.

UMF: Selects the UMFPACK solver.

SubMethod = <solver>
Specifies the solver to use in the
inner solver.

<solver>

ILS: Selects the (parallel) iterative linear solver ILS.

ParDiSo: Selects the (parallel) direct supernodal solver.

Slip: Selects the Slip iterative solver.

Super: Selects the direct supernodal solver.

UMF: Selects the UMFPACK solver.

ExitOnFailure Selects termination of the simulation as soon as a Solve command fails.
 15.79

PART 15 DESSISCHAPTER 2 BASIC DESSIS
RhsMin and RhsFactor add control to the size of the RHS (that is, the residual of the equations). RhsMin sets a
maximum RHS value for the convergence to be accepted, and RhsFactor sets a limit to the amount by which
the RHS can augment during a single Newton step.

The Quasitationary and Transient commands are sensitive to the Math parameters Extrapolate, Smooth, and
BreakAtIonIntegral. The keyword Extrapolate allows the previous solutions of the Quasistationary or Transient
to be used to extrapolate a new solution at each step. When the keyword Smooth is specified, the solution is
always evaluated twice: with simplified physics and, then, with all physical models. This method is
sometimes useful in difficult situations. BreakAtIonIntegral forces a Quasistationary to stop when the largest
ionization integral is greater than one.

Table 15.34 Math parameters for coupled solver

Keyword Description

Iterations = <int> Maximum number of iterations. If the equation being solved has not converged
after this number of iterations, the solution step stops and the next Solve command
starts (as determined in the Solve statement) (default is Iterations = 50).
If the equation being solved is converging quadratically, the number of iterations is
automatically extended beyond Iterations. If the user defines Iterations = 0,
however, only one iteration is performed, regardless of the convergence behavior.

NotDamped = <int> Number of iterations in each Newton iteration in which the RHS-norm is allowed to
increase (default is NotDamped = 1000) without Bank–Rose damping being
activated.

LineSearchDamping = <float> Sets the smallest allowed damping coefficient for line search damping. The default
is LineSearchDamping=1.

Traps(Damping = <float>) Sets damping for Traps (see Chapter 10 on page 15.225) for the nonlinear Poisson
equation. Larger values increase damping; a value of 0 disables damping. The
default is Traps(Damping=10).

RhsMin = <float> Minimum size of L2-norm of the RHS in each Newton iteration
(default RhsMin = 10–5).

RhsMax = <float> Maximum size of L2-norm of the RHS in each Newton iteration
(default RhsMax = 1015). This parameter is only used during transient simulations.

RhsFactor = <float> Maximum increase of the L2-norm of the RHS between Newton iterations
(default RhsFactor = 1010).

Table 15.35 Math parameters for quasistationary and transient solvers

Parameter Description

Extrapolate Extrapolation is used in quasistationary and transient simulations. The variables for the initial
solution for a given time step or quasistationary step are computed using an extrapolation from
the previous two steps. (Extrapolation is off by default.)

Smooth Smoothing iterations that keep mobility and recombination data from the previous step to
obtain better initial conditions for extreme nonlinear iterations. (Smoothing is off by default.)

BreakAtIonIntegral Used to terminate the quasistationary simulation when the largest ionization integral is greater
than one. The complete syntax of this keyword is BreakAtIonIntegral (number value) where
a quasistationary simulation finishes if the number ionization integral is greater than value,
where the ionization integrals are ordered with respect to decreasing value.
15.80

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
NOTE Another Math section parameter, the keyword NoAutomaticCircuitContact, is used in the context of
mixed circuit and device systems (see Chapter 3 on page 15.101).

2.10.5 Break criteria

DESSIS prematurely terminates a simulation if certain values exceed a given limit. This feature is useful
during a nonisothermal simulation to stop the calculations when the silicon starts to melt or to stop a
breakdown simulation when the current through a contact exceeds a predefined value.

The following values can be monitored during a simulation:

Contact voltage (inner voltage)

Contact current

Lattice temperature

Current density

Electric field (absolute value of field)

It is possible to specify values to a lower bound and an upper bound. Similarly, a bound can be specified on
the absolute value.

The limits for contact voltages and contact currents must be specified in the global Math section, for example:

Math {
...
BreakCriteria {

Voltage (Contact = "drain" absval = 10)
Current (Contact = "source" minval = -0.001 maxval = 0.002)

}
...

}

In this example, the stopping criterion is met if the absolute value of the inner voltage at the drain exceeds
10 V. In addition, DESSIS terminates the simulation if the source current is less than –0.001 A/µm or greater
than 0.002 A/µm.

NOTE The unit A/µm is valid for 2D devices; the unit A/µm2 is valid for 1D devices; and the unit A is
valid for 3D devices.

The break criteria for lattice temperature, current density, and electric field can be specified by region and
material. If no region or material is given, the stopping criteria apply to all regions. A sample specification is:

Math (material = "Silicon") {
...
BreakCriteria {

LatticeTemperature (maxval = 1000)
CurrentDensity (absval = 1e7)

}
...

}

 15.81

PART 15 DESSISCHAPTER 2 BASIC DESSIS
Math (region = "Region.1") {
...
BreakCriteria {

ElectricField (maxval = 1e6)
}
...

}

DESSIS terminates the simulation if the lattice temperature in silicon exceeds 1000 K, the current density in
silicon exceeds A/cm2, or the electrical field in the region Region.1 exceeds V/cm.

An upper bound for the lattice temperature can also be specified in the Physics section, for example:

Physics {
...
LatticeTemperatureLimit = 1693 # melting point of Si
...

}

NOTE The break criteria of the lattice temperature are only valid for nonisothermal simulations, that is,
the keyword LatticeTemperature (or Temperature) must appear in the corresponding Solve section.

2.10.6 Parallelization

DESSIS uses thread parallelism to accelerate simulations on shared memory computers. The following
computations have been parallelized:

Mobility

Avalanche

Current density

Energy flux

The required number of threads and the stack size per thread can be specified in the global Math section of the
DESSIS command file:

Math {
number_of_threads = number of threads
stacksize = stacksize in bytes

}

Alternatively, the following UNIX environment variables are recognized:

DESSIS_NUMBER_OF_THREADS, ISE_NUMBER_OF_THREADS
DESSIS_STACKSIZE, ISE_STACKSIZE

By default, DESSIS uses only one thread and the stack size is 1 MB. For most simulations, the default stack
size is adequate. The following restriction applies:

On Sun and Linux, it is possible to run PARDISO™ on multiple processors. Unfortunately, the additional
threads created by PARDISO are not suspended after the solution of the linear system. As a result, the
PARDISO threads and DESSIS threads may compete for the same processors, resulting in a performance
loss.

107 106
15.82

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
Observe the following recommendations to obtain the best results from a parallel DESSIS run:

Speedups are only obtained for sufficiently large problems. As a general rule, the device grid should have
at least 5000 vertices. Three-dimensional problems are good candidates for parallelization.

It is sensible to run a parallel DESSIS job on an empty computer. As soon as multiple jobs compete for
processors, performance decreases significantly.

Use the keyword wallclock in the Math section of the DESSIS command file to display wall clock times
rather than CPU times.

The parallel execution of PARDISO produces different rounding errors. Therefore, the number of Newton
iterations may change.

On HP-UX 11, it is recommended to set the UNIX environment variable MP_GANG=OFF. This disables gang
scheduling.

2.10.7 Nonlocal line meshes

Nonlocal line meshes are one dimensional, special-purpose meshes that DESSIS needs to implement one-
dimensional, nonlocal physical models. A nonlocal line mesh consists of nonlocal lines, each of which
connects a vertex of the normal mesh to the interface or the contact for which the nonlocal line mesh is
constructed. Each nonlocal line mesh is subdivided into nonlocal mesh points, to allow for the discretization
of the equations that constitute the physical models.

The 1D Schrödinger equation (see Section 7.3 on page 15.167) and the nonlocal tunneling model (see
Section 16.4 on page 15.306) use nonlocal line meshes. The documentation of these models introduces the
use of nonlocal line meshes in the context of the particular model and is restricted to typical cases. This section
describes the construction of nonlocal line meshes in detail.

2.10.7.1 Specifying nonlocal line meshes

Nonlocal line meshes are specified by the Nonlocal keyword in an interface-specific or a contact-specific Math
section. The options of the keyword NonLocal control the construction of the nonlocal line mesh. DESSIS takes
some of the options (Length, Permeation, Direction, MaxAngle, and -Outside) from the Math section specific to the
interface or contact for which a nonlocal line mesh is constructed, and other options (-Endpoint, -Transparent,
-Permeable, and -Refine) from the Math sections specific to materials or regions. For a summary of available
options, see Table 15.36 on page 15.84.

For example, with:

Math(Electrode="Gate") {
Nonlocal(Length=5e-7)

}

DESSIS constructs nonlocal lines for semiconductor vertices up to a distance of 5 nm from the Gate electrode.
 15.83

PART 15 DESSISCHAPTER 2 BASIC DESSIS
2.10.7.2 Visualizing nonlocal line meshes

DESSIS can visualize the nonlocal line meshes it constructs. This feature is used to verify that the nonlocal
line mesh constructed is the one actually intended. For visualizing data defined on nonlocal line meshes, see
Section 2.10.7.3 on page 15.85.

To enable visualization of nonlocal line meshes, use the keyword NonLocal in the Plot section (see Section 2.6
on page 15.52). The keyword causes DESSIS to write two vector fields to the plot file that represent the
nonlocal line meshes constructed in the device.

For each vertex (of the normal mesh) for which a nonlocal mesh line exists, the first vector field
NonLocalDirection contains a vector that points from the vertex to the end of the nonlocal mesh line in the
direction of the interface or contact for which the nonlocal mesh line was constructed. The vector in the
second field NonLocalBackDirection points from the vertex to the other end of the nonlocal mesh line. The unit
of both vectors is .

For vertices for which no nonlocal mesh line exists, both vectors are zero. For vertices for which more than
one nonlocal mesh line exists, DESSIS plots the vectors for one of these lines.

Table 15.36 Options to NonLocal to control the construction of a nonlocal mesh

Keyword Application Description

Length=<len> Interface or contact Sets the distance from the interface or contact up to which nonlocal mesh
lines are constructed; <len> in centimeters.

Permeation=<len> Interface or contact Length [cm] by which nonlocal mesh lines are extended across the interface
or contact (default is zero).

Direction=<vector> Interface or contact Specifies a direction as a 3D vector. If nonzero, the construction of nonlocal
mesh lines with a direction more than MaxAngle degrees different from the
vector is suppressed (default is (0 0 0)).

MaxAngle=<val> Interface or contact Suppresses construction of nonlocal mesh lines that enclose an angle of
more than <val> degrees with the vector specified by Direction (default is
180).

-Outside Interface or contact Prohibits nonlocal mesh lines leaving the device (default is Outside).

-Endpoint Region or material Prohibits construction of nonlocal lines that end in the region. Default is
Endpoint for semiconductor regions. For other regions, DESSIS uses
-Endpoint always, and ignores Endpoint options in the command file.

-Transparent Region or material Prohibits nonlocal lines crossing the region (default is Transparent).

-Refined Region or material Disables the refinement of nonlocal mesh in the interior of the region
(default is Refined).

-Permeable Region or material Inhibits extension of nonlocal lines (as specified by the Permeation
parameter) into or across the region (default is Permeable).

µm
15.84

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.10.7.3 Visualizing data defined on nonlocal line meshes

To visualize data defined on nonlocal line meshes:

In the File section (see Section 2.2 on page 15.38), specify a file name using the NonLocalPlot keyword.

On the top level of the command file, specify a NonLocalPlot section. There, NonLocalPlot is followed by a
list of coordinates in parentheses and a list of datasets in braces.

DESSIS writes nonlocal plots at the same time it writes normal plots. Nonlocal plot files have the extension
.plt.

DESSIS picks nonlocal mesh lines close to the coordinates specified in the NonLocalPlot section for output.
The datasets given in the NonLocalPlot section are the datasets that can be used in the Plot section (see
Section 2.6 on page 15.52). NonLocalPlot does not support the /Vector option. Additionally, the Schrödinger
equation provides special-purpose datasets available only for NonLocalPlot (see Section 7.3.4 on page 15.170).

In addition to the datasets explicitly specified, DESSIS automatically includes the Distance dataset in the
output. It provides the coordinate along the nonlocal mesh line. Data in the Distance dataset is measured in

. The interface or contact for which a nonlocal mesh line was constructed is located at zero, and its mesh
vertex is located at positive coordinates. For example:

NonLocalPlot(
(0 0) (0 1)

){
eDensity hDensity

}

plots the electron and hole densities for the nonlocal lines close to the coordinates and in the
device.

2.10.7.4 Constructing nonlocal line mesh

Figure 15.21 on page 15.86 shows four examples of nonlocal mesh lines (denoted by the letters A, B, C, and
D) connected to a contact or an interface. For simplification, the figure shows a tensorial patch of the normal
mesh and a planar contact. (This is not required for the nonlocal line mesh construction to work.)

The construction in Figure 15.21 assumes that regions R1, R2, and R3 are semiconductor regions, that none
of the interfaces between those regions is treated as a heterointerface, and that all options for nonlocal mesh
generation have their default values. The circles denote nonlocal mesh points. The nonlocal mesh points are
not part of the normal mesh that DESSIS uses; they are part of the special-purpose nonlocal mesh only.
However, the nonlocal mesh points with index ‘0’ (A0, B0, C0, and D0) coincide with normal vertices, namely,
with the vertex for which their nonlocal line was constructed.

The nonlocal mesh points with the indices ‘–1’ and ‘1’ are the intersections of the nonlocal mesh line with the
box (see Section 32.1 on page 15.519) associated to its vertex (Figure 15.21 does not show the boxes
themselves). DESSIS generates further nonlocal mesh points wherever a nonlocal mesh line crosses the
boundary of elements. This approach guarantees that DESSIS can interpolate data from the normal mesh to
the nonlocal mesh lines with optimal accuracy.

Mesh vertices on heterointerfaces receive special treatment. DESSIS constructs separate nonlocal lines for
each region at the heterointerface. For example, if the interface between R2 and R3 in Figure 15.21 is a
heterointerface, DESSIS constructs two nonlocal lines for the vertex A0.

µm

0 0 0, ,() 0 1 0, ,()
 15.85

PART 15 DESSISCHAPTER 2 BASIC DESSIS
Figure 15.21 Construction of a nonlocal mesh

The nonlocal mesh line that links a vertex to a contact or interface does so on the geometrically shortest path.
The parameter Length determines the maximum distance of the vertex to the contact; therefore, all points
indexed by ‘0’ in the figure are not further away from the contact than this distance. However, the distance of
the vertices indexed by ‘–1’ from the interface or contact may be larger. Length is a parameter specific to the
interface or contact for which the nonlocal mesh is constructed.

The property that nonlocal mesh lines connect a vertex to a contact or an interface on the geometrically
shortest path is fundamental. If any of the other rules described in this section inhibits the construction of a
nonlocal mesh line for this path, but a longer connection obeys all these restrictions, DESSIS still does not
use this connection to construct an alternative nonlocal line.

When the device is not convex, the shortest connection from a mesh vertex to an interface or a contact can be
partly or entirely outside the device. To suppress the construction of nonlocal mesh lines that leave the device,
specify -Outside for the interface or contact in question.

If the option -Endpoint is present for a region or the region is an insulator, DESSIS does not construct nonlocal
mesh lines that end in this region. For example, if -Endpoint is specified for region R2 in Figure 15.21, DESSIS
does not construct line D. Line C will be shorter and will end at C0 rather than C–1. In addition, DESSIS omits
point A1.

If the -Transparent option is present for a region, DESSIS does not construct nonlocal mesh lines that cross it.
For example, if -Transparent is specified for region R2 in Figure 15.21, DESSIS constructs only line C; all
other lines must cross R2 at least partially.

The Direction parameter specifies a direction that the nonlocal mesh lines approximately should have.
Nonlocal mesh lines with directions that deviate from the specified direction by an angle greater than MaxAngle
are suppressed. If Direction is the zero vector or MaxAngle exceeds 90 (this is the default), nonlocal lines can
have any direction. For example, Direction=(1 0 0) and MaxAngle=5 allow only nonlocal mesh lines that run
horizontally, with a tolerance of 5o. In Figure 15.21, all lines would be suppressed.

The -Refined option for a region suppresses the generation of nonlocal mesh points at element boundaries in
the interior of that region. For example, if -Refined is specified for region R2 in Figure 15.21, DESSIS does
not generate the points A2 and B3. However, DESSIS always generates nonlocal mesh points at region
interfaces. For example, if -Refined is specified for both R2 and R3 in Figure 15.21, DESSIS generates B2
nevertheless.

R2

R3

R1

A

A

A

A
B

B

B

B B

B

C

C D

D

D

-1

-1

-1

0

0

0

0

1

D1

1A

2

2

23

3

4

B5

Interface or Contact

-1
15.86

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.10.7.5 Special handling of 1D Schrödinger equation

For performance reasons, DESSIS solves the 1D Schrödinger equation (see Section 7.3 on page 15.167) only
on a reduced subset of nonlocal mesh lines that still cover all vertices of the normal mesh for which nonlocal
mesh lines are constructed according to the rules outlined above.

To avoid artificial geometric quantization, DESSIS extends nonlocal mesh lines used for the 1D Schrödinger
equation that are shorter than Length beyond the mesh points indexed by ‘–1’ in Figure 15.21 on page 15.86
to reach full length. Furthermore, the parameter Permeation specifies a length by which DESSIS extends the
nonlocal mesh lines at the other end, across the interface. For both ends, DESSIS never extends the lines
outside the device or into regions flagged by the -Permeable option. The extension is not affected by the
Transparent and Endpoint options. The extensions of the nonlocal mesh lines are ignored by the nonlocal
tunneling model (see Section 16.4 on page 15.306).

For nonlocal mesh line segments in regions not marked by -Refined and -Endpoint, DESSIS computes the
intersections with the boxes of the normal mesh. These intersection points form a refinement of the nonlocal
mesh lines in addition to what Figure 15.21 shows. DESSIS needs this information to interpolate results from
the 1D Schrödinger equation back to the normal mesh. Therefore, in regions where -Refined or -Endpoint is
specified, 1D Schrödinger density corrections are not available, even when the regions are covered by
nonlocal mesh lines.

2.10.7.6 Special handling of nonlocal tunneling model

The nonlocal mesh points with the indices ‘–1’ and ‘1’ in Figure 15.21 are the intersections of the nonlocal
mesh line with the boxes (see Section 32.1 on page 15.519). The nonlocal tunneling model (see Section 16.4)
uses these two points to limit the spatial range of the integrations DESSIS must perform to compute the
contribution to tunneling that comes from the particular vertex.

If A0 in Figure 15.21 was on a heterointerface, two nonlocal mesh lines would be constructed for it. The
spatial integrations for the first nonlocal mesh line go from A1 to A0, and the integrations for the second
nonlocal mesh line go from A0 to A–1.

Conversely, if the option -Endpoint is specified for region R2 in Figure 15.21, DESSIS omits point A1 and
extends the integrations for line A from A3 to A–1 in order to pick up the Fowler–Nordheim tunneling current
that may enter region R2.

For nonlocal line meshes used only for nonlocal tunneling, when Permeation zero, DESSIS assumes that the
nonlocal lines it constructs for an interface cross the interface. Therefore, if -Endpoint is specified for one of
the regions that forms the interface for which the nonlocal mesh is constructed, DESSIS constructs only mesh
lines that go through that region and, therefore, end in the facing region. For example, if -Endpoint is specified
for the region above the interface shown in Figure 15.21, DESSIS does not construct any of the four nonlocal
mesh lines. If -Endpoint is specified for the region below, DESSIS constructs all of the nonlocal mesh lines,
provided this region does not coincide with R1, R2, or R3.

2.10.7.7 Performance suggestions

To limit the negative performance impact of the nonlocal tunneling model, it is important to limit the number
of nonlocal mesh lines. To this end, most importantly, select Length to be only as long as necessary. The option
-Endpoint can be used to suppress the construction of lines to regions for which you know, in advance, that
will not receive much tunneling current. The option -Transparent allows users to neglect tunneling through
 15.87

PART 15 DESSISCHAPTER 2 BASIC DESSIS
materials with comparatively high tunneling barrier, for example, oxides near a Schottky contact or
heterointerface for which nonlocal tunneling has been activated.

Another use of the option -Transparent is at heterointerfaces, where there is no tunneling to the side of the
material with the lower band edge (as there is no barrier to tunnel through). To restrict the construction of
nonlocal mesh lines to lines that go through the larger band-edge material, declare the lower band-edge
material as not transparent by using -Transparent.

The option -Refined does not reduce the number of nonlocal lines, but it can reduce the degree of nonlocality.
For example, if -Refined is specified to region R2 in Figure 15.21 on page 15.86, the tunneling current for line
B is independent of the solution variables in the interior of region R2. The option -Refined is most useful for
insulator regions, where the band-edge profile is approximately linear.

2.10.8 Monitoring convergence behavior

When DESSIS has convergence problems, it can be helpful to know in which parts of the device and for which
equations the errors are particularly large. With this information, it is easier to make adjustments to the mesh
or the models used, to improve convergence.

DESSIS can print the locations in the device where the largest errors occur (see Section 2.10.8.1). This
provides limited information and has negligible performance impact. DESSIS can also plot solution error
information for the entire device after each Newton step (see Section 2.10.8.2). This information is
comprehensive, but can generate many files and can take significant time to write.

Both approaches provide access to DESSIS internal data. Therefore, in both cases, the output is
implementation dependent. Its proper interpretation can change between different DESSIS releases.

2.10.8.1 CNormPrint

To obtain basic error information, specify the CNormPrint keyword in the global Math section. Then, after each
Newton step and for each equation solved, DESSIS prints to the standard output:

The largest error according to (Eq. 15.11) that occurs anywhere in the device for the equation.

The vertex where the largest error occurs.

The coordinates of the vertex.

The current value of the solution variable for that vertex.

2.10.8.2 NewtonPlot

DESSIS can plot the solution variable, the right-hand sides, and the solution updates after each Newton step.
To use this feature:

Use the NewtonPlot keyword in the File section (see Section 2.2 on page 15.38) to specify a file name for
the plot. This name can contain up to two C-style integer format specifiers (for example, %d). If present,
for the file name generation, the first one is replaced by the iteration number in the current Newton step
and the second, by the number of Newton steps in the simulation so far. DESSIS does not enforce any
particular file name extension, but prepends the device instance name to the file name in mixed mode.
15.88

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
Optionally, specify the data for output as options to the NewtonPlot keyword in the Math section. By default,
DESSIS writes the current values of the solution variables only. Table 15.37 lists the available options.

2.11 Thermodynamic simulations
Apart from the standard drift-diffusion model, DESSIS can simulate self-heating effects by using the
thermodynamic model. A description of the physical background of the thermodynamic model and its
formulation (differential equations, boundary conditions, parameters) is in Section 4.2.3 on page 15.128.
When the electrostatic potential, and the electron and hole densities (or quasi-Fermi potentials) have been
determined, the amount of heat generation in the device can be determined and plotted.

To simulate self-heating effects on the temperature distribution and, consequently, the effects of the
nonuniform temperature distribution on the electrical characteristics, an additional equation is solved whose
keyword is Temperature. The Solve statement in this case is:

Solve {
Coupled {Poisson Electron Hole Temperature}

}

It is recommended that the coupled mode be used for nonisothermal simulation. The plugin mode can also be
used in nonisothermal simulations, particularly if the coupling between drift-diffusion equations and lattice
temperature equations is not very strong.

2.11.1 Nonisothermal simulation recommendations

In nonisothermal simulations, it is recommended to always include as much of the substrate die as possible,
as well as packaging materials and heat sinks. Simulations of the thermal boundary conditions make the
choice of the thermal surface resistance (or conductance) less critical.

Furthermore, since the area of thermal interest is sometimes orders of magnitude greater than the area of
electrical interest, confining nonisothermal simulations to the electrical simulation domain is problematic.
This is because the accuracy of the maximum, minimum, and average temperatures, and the temperature
distribution are greatly compromised by unnatural and unrealistic thermal boundary conditions.

2.12 Hydrodynamic simulations
Another transport model in DESSIS is the hydrodynamic model. A description of the physical background of
the hydrodynamic model is in Section 4.2.4 on page 15.130. To activate the hydrodynamic simulation mode,
the user must include the keyword Hydrodynamic in the Physics section of the DESSIS input file.

Table 15.37 Options to NewtonPlot

Option Description

Plot Writes all data specified in the Plot section (see Section 2.6 on page 15.52).

Residual Writes the residuals (right-hand sides) of all equations.

Update Writes the updates of all solution variables from the previous step.
 15.89

PART 15 DESSISCHAPTER 2 BASIC DESSIS
The electron, hole, and lattice temperatures (Tn, Tp, and TL) are solved by specifying the keywords
ElectronTemperature, HoleTemperature, and LatticeTemperature (or Temperature) respectively, in the Solve section
of the DESSIS input file.

DESSIS allows both coupled and plugin hydrodynamic simulations. A Scharfetter–Gummel-like
discretization scheme is used for the discretization of the continuity equations and energy balance equations.
Different sets of equations can be included in the model. If only the equation for one carrier temperature is to
be solved, to ensure a consistent model, it is recommended that it is specified explicitly by using it as a
parameter to the keyword Hydrodynamic (that is, Hydrodynamic(eTemp) or Hydrodynamic(hTemp)). Hydrodynamic
without a parameter must be specified if equations for both carrier temperatures are to be included in the
model.

Equations can be solved in arbitrary plugin-coupled combinations. The syntax for a pure coupled Solve
statement is, for example:

Solve {
Coupled {Poisson Electron Hole ElectronTemperature

HoleTemperature LatticeTemperature}
}

A plugin iteration for a system of four equations (Poisson, electron, hole, and electron temperature), for a
suggested strategy [8], can be written as:

Solve {
Plugin {

Coupled {Poisson Electron Hole}
Coupled (Iteration=0) {Electron ElectronTemperature}

}
}

For the conditions remote from breakdown, the convergence rate for the above plugin strategy can be almost
as fast as for coupled iterations [9][10].

For physical models, it is recommended that a carrier temperature–dependent model is selected for the high
field saturation of the mobility, and not the usual Canali field-dependent model.

This can be performed by using the construct HighFieldSaturation(CarrierTempDrive) as an option to Mobility
in the Physics section of the DESSIS input file (see Section 8.8 on page 15.193). Analogously, it is possible
to select a local carrier temperature–dependent, impact ionization model using the construct
Avalanche(CarrierTempDrive) as an option to the keyword Recombination (see Section 9.9 on page 15.213). To
use different driving forces for electrons and holes, the following syntax can be used:

eHighFieldSaturation(<drivingforce>), hHighFieldSaturation(<driving force>),
eAvalanche(<model type> <driving force>), and
hAvalanche(<model type> <driving force>).

If the keyword Save is specified in the File section of the DESSIS input file, the three temperatures , ,
and are stored in the .sav file with the electrical state variables y, n, and p. These values are used as an
initial guess if Load is specified.

Tn Tp
TL
15.90

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.13 Parameter and model specification

2.13.1 Region and material parameter specification

It is possible to redefine parameters for some or all physical models and to restrict the redefined parameters
to certain regions and materials. For the simulation of new materials for which physical parameters are not
well established, it is important to be able to modify the default parameters. These redefinitions are performed
by changing the parameter file as described in the following sections.

2.13.2 Generating a copy of parameter file

To redefine a parameter value for a particular material, a copy of the default parameter file must be created.
To do this, the command dessis -P prints the parameter file for silicon, with insulator properties. Table 15.38
lists the principal options for the command dessis -P.

NOTE One restriction to the use of a parameter file is that only one file is permitted in any simulation.
Therefore, the parameter sections for all the various materials and regions must be concatenated
into a single .par file, which can be unwieldy and lead to errors. It is more convenient to create a
‘library’ of parameter files (see Section 2.13.5 on page 15.92).

2.13.3 Changing parameter values in parameter file

The section of the parameter file for predefined materials is:

Material = "material" {
<parameter file body>

}

For example, the beginning of the silicon parameter file is:

Material = "Silicon" {
Epsilon
{ * Ratio of the permittivities of material and vacuum

epsilon = 11.7 # [1]
}
...

}

Table 15.38 Principal options for generating parameter file

Option Description

-P:All Prints a copy of the parameter file for all materials. Materials are taken from the file datexcode.txt.
The first section of the parameter file does not contain material reference. It includes all models and
parameters available inside DESSIS. Sections with references to specific materials include only the
default models defined for the particular material.

-P:Material Prints model parameters for the specified material.

-P filename Prints model parameters for materials and interfaces used in the file name.
 15.91

PART 15 DESSISCHAPTER 2 BASIC DESSIS
For region-specific parameter specifications, the syntax is:

Region = "region-name" {
<parameter file body>

}

In the region and material parameter specifications, any model and parameter from the default section is
usable, even if it is not printed for the particular material. Some models offer a choice between different
representations or formulas for the same (or equivalent) physical parameters, for example, effective mass or
density of states (DOS). To choose a particular representation, the parameter Formula is usually selected.

2.13.4 Hierarchy of parameter specifications

To avoid confusion, it is important to understand the hierarchy of region and material parameter
specifications. A methodology used for the specification of a parameter is similar to the hierarchy of physical
models described in Section 2.5.4 on page 15.48:

Default parameters are defined in the parameter file section for the particular material.

NOTE The parameters of a particular model may not be defined for a given material. However, if this
model is used and parameters are not redefined in the appropriate region or material section of the
parameter file, parameters of the default material (silicon) are used.

The material section of the parameter file allows the user to overwrite default values for a particular
material.

The region section also overwrites the default values for the appropriate material. However, if for the
region reg with material mat, both the region and material sections of the parameter file are defined,
changes from the mat section are valid in all regions with this material except the region reg. In the region
reg only, the changes from the region sections of the parameter file are applied.

2.13.5 Library of materials

As a more flexible alternative to the use of a parameter file, DESSIS supports a library of material parameters.
A library is a collection of parameter files for individual materials, interfaces, and electrodes contained in a
specific directory. By default, DESSIS assumes a location of the library in the directory:

$ISEROOT/tcad/$ISERELEASE/lib/dessis/MaterialDB

If a user-specific library is required or a group of users need to create a shared parameter library, it is necessary
to create the library as a directory and define a new environment variable DESSISDB with a path to that directory.
The library must contain a number of parameter files with each material having a separate parameter file, for
example, Silicon.par, GaAs.par, and Oxide.par. The DESSIS command option dessis -L is used to create such
files. Table 15.39 on page 15.93 lists the options of this command.
15.92

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
For example, the simulation of the simple MOSFET structure from Section 1.4 on page 15.7 (nmos_mdr.grd,
nmos_mdr.dat) consists of four gate oxide regions on a silicon region and four electrodes (gate, drain, source,
and substrate).

The DESSIS command file pp1_des.cmd contains the following File section:

File {* input files:
Grid = "nmos_mdr.grd"
Doping = "nmos_mdr.dat"
...

}

By using the command:

dessis -L pp1_des.cmd

a parameter file is created in the current directory for each material, material interface, and electrode found in
nmos_mdr.grd. In this example, the appropriate files are Silicon.par, Oxide.par, Oxide%Silicon.par,
Oxide%Oxide.par, and Electrode.par.

In addition, the following dessis.par file is created in the current directory:

Region = "Region0" { Insert = "Silicon.par" }
Region = "Region1" { Insert = "Oxide.par" }
Region = "Region3" { Insert = "Oxide.par" }
Region = "Region4" { Insert = "Oxide.par" }
Region = "Region5" { Insert = "Oxide.par" }
RegionInterface = "Region1/Region0" { Insert = "Oxide%Silicon.par" }
RegionInterface = "Region4/Region1" { Insert = "Oxide%Oxide.par" }
RegionInterface = "Region3/Region4" { Insert = "Oxide%Oxide.par" }
RegionInterface = "Region5/Region3" { Insert = "Oxide%Oxide.par" }
RegionInterface = "Region5/Region1" { Insert = "Oxide%Oxide.par" }
Electrode = "gate" { Insert = "Electrode.par" }
Electrode = "source" { Insert = "Electrode.par" }
Electrode = "drain" { Insert = "Electrode.par" }
Electrode = "substrate" { Insert = "Electrode.par" }

This dessis.par file can be renamed, but it is only used in the simulation if it is specified in the File section of
the DESSIS command file:

File {...
Parameter = "dessis.par"
...

}

Table 15.39 Principal options for creating a library of materials

Option Description

-L:All Creates separate parameter files for all materials that DESSIS recognizes.

-L:Material Creates a model parameter file for a specified material.

-L <inputfile.cmd> DESSIS automatically examines the device structure to be simulated. It scans the .grd
file specified in the File section of the input file <inputfile.cmd>. Separate parameter
files for each material, interface, and electrode found in the .grd file are created, and a
parameter file dessis.par is written.
 15.93

PART 15 DESSISCHAPTER 2 BASIC DESSIS
NOTE The dessis.par file contains a list of references to other parameter files by using the keyword Insert.
Generally, any parameter file can have inserts of other parameter files; the files can be nested. An
inserted file defines defaults, and it is easy to change default values after an Insert statement as
required. Such a parameter file is easy to read and minimizes mistakes in parameter definition.

DESSIS uses the following strategy to search for inserted files. First, the current simulation directory is
checked. If the file does not exist, definition of the environment variable DESSISDB is verified. If DESSISDB is
defined, DESSIS checks the directory associated with the variable. Otherwise, DESSIS checks the default
library location $ISEROOT/tcad/$ISERELEASE/lib/dessis/MaterialDB. In all cases, DESSIS shows a real path to the
file and displays an error message if it cannot be found.

NOTE The environment variable DESSISDB is also used to locate the file Molefraction.txt

(see Section 2.13.5 on page 15.92).

NOTE The optical database file optikdata can be placed in the library, so that there is one location for all
material parameters. The ability to define the environment variable OPTIKDB as in earlier DESSIS
versions is still available (see Section 2.13.5).

2.13.6 Parameters of compound materials

A detailed parameter representation of compound materials in DESSIS is described in Section 18.6 on
page 15.325. The command to print default parameters of such materials is the same as for regular
monomaterials (see Section 2.13.2 on page 15.91), but for certain models (see Section 18.5 on page 15.324),
it prints polynomial coefficients of approximations, which are dependent on a composition fraction.

Sometimes, it is difficult to analyze such coefficients to obtain a real value of physical models (for example,
the band gap) for certain composition mole fractions. By using the command dessis -M <inputfile.cmd>,
DESSIS creates a dessis-M.par file, which will contain regionwise parameters with only constant values
(instead of the polynomial coefficients) for regions where the composition mole fraction is constant. For
regions where the composition is not a constant, DESSIS prints default material parameters.

2.13.7 Undefined physical models

For a nonsilicon simulation, the default DESSIS behavior is to use silicon parameters for models that are not
defined in a material used in the simulation. It is useful for noncritical models, but it can lead to confusion,
for example, if the semiconductor band gap is not defined, DESSIS uses a silicon one. Therefore, DESSIS has
a list of critical models and stops the simulation, with an error message, if these models are not defined.

NOTE The model is defined in a material if it is present in the default DESSIS parameter file for the
material or it is specified in a user-defined parameter file.
15.94

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
Table 15.40 lists the critical models (with names from the DESSIS parameter file) with materials where these
models are checked.

The models Bandgap, DOSmass, and Epsilon are checked always. For other models, this check is performed for
each region, but only if appropriate models in the Physics section and equations in the Solve section are
activated. The thermal conductivity model Kappa is checked only if the lattice temperature equation is
included.

Drift-diffusion or hydrodynamic simulations activate the checking mobility models ConstantMobility and
DopingDependence (with appropriate models in the Physics section).

NOTE This checking procedure can be switched off by the keyword -CheckUndefinedModels in the Math
section.

2.14 Material and doping specification
DESSIS supports all materials that are declared in the file datexcodes.txt (see Utilities, Chapter 2 on
page 6.23).

By default, DESSIS supports all typical species of silicon technology (donors: As, P, Sb, and N, and acceptors:
B and In) and allows user-defined ones (see Section 2.14.2 on page 15.98).

DESSIS loads doping distributions from the input doping file specified in the File section (see Section 2.2 on
page 15.38) and reads the following datasets:

Net doping (DopingConcentration in the input doping file)

Total doping (TotalConcentration in the input doping file)

Concentrations of individual species

Table 15.40 List of critical models

Model Insulator Semiconductor Conductor

Auger x

Bandgap x

ConstantMobility (e/h) x

DopingDependence (e/h) x

DOSmass (e/h) x

Epsilon x x

Kappa x x x

RadiativeRecombination x

RefractiveIndex x x

Scharfetter x

SchroedingerParameters x x
 15.95

PART 15 DESSISCHAPTER 2 BASIC DESSIS
DESSIS supports the following rules of doping specification:

DESSIS takes the net doping dataset from the file if this dataset is present. Otherwise, net doping is
recomputed from the concentrations of the separate species.

The same rule is applied for the total doping dataset, Total.

NOTE Total concentration, which originates from process simulators (DIOS or FLOOPS-ISE™), is the
sum of the chemical concentrations of dopants. However, if the total concentration is recomputed
inside DESSIS, active concentrations are used.

DESSIS takes the active concentration of a dopant if it is in the input doping file (for example,
BoronActiveConcentration). Otherwise, the chemical dopant concentration is used (for example,
BoronConcentration).

To perform any simulation, DESSIS must prepare four major doping arrays:

Nnet (the net doping concentration used in the Poisson equation, , see Section 4.2.1 on
page 15.128)

Nd and Na (the donor and acceptor concentrations that are used in the main physical models, such as the
carrier mobility and lifetime)

Ntot (the total doping concentration that is used only in surface recombination and incomplete
ionization models)

After loading the input doping file, DESSIS has the arrays DopingConcentration and TotalConcentration, and a
number of SpeciesConcentration arrays, and uses the following scheme to compute the required simulation
doping arrays (Nnet, Nd, Na, Ntot):

1. The input doping file does not have any species: Nnet = DopingConcentration, Ntot = TotalConcentration,
or Ntot = Abs(DopingConcentration) without TotalConcentration;
Nd = 0.5 (TotalConcentration + DopingConcentration); Na = 0.5 (TotalConcentration - DopingConcentration).

2. The input doping file has species: Nd and Na are computed as a sum of donor and acceptor
SpeciesConcentration; Nnet = DopingConcentration or Nnet = Nd - Na without DopingConcentration;
Ntot = TotalConcentration or Ntot = Nd + Na without TotalConcentration.

3. The DESSIS input file contains trap levels (see Chapter 10 on page 15.225) in the Physics section with
the keyword Add2TotalDoping (see Section 10.5 on page 15.229). In this case, the donor trap concentration
(from the DESSIS input file) is added to Nd and Ntot, and the acceptor trap concentration is added to Na
and Ntot.

NOTE Only Nnet is recomputed in DESSIS simulation if the incomplete ionization model is activated (see
Chapter 6 on page 15.161).

N
D+ N

A––

ND NA+
15.96

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
2.14.1 User-defined materials

DESSIS can manage arbitrary materials in devices, and new materials can be defined in the local working
directory. The following search strategy is observed to locate the datexcodes.txt files:

$ISEROOT_LIB/datexcodes.txt or $ISEROOT/tcad/$ISERELEASE/lib/datexcodes.txt if the environment variable
ISEROOT_LIB is not defined (lowest priority)

$HOME/datexcodes.txt (medium priority)

datexcodes.txt in local directory (highest priority)

Definitions in later files replace or add to the definitions in earlier files. In this way, the local file only needs
to contain new materials that the user wants to add.

NOTE The DATEX environment variable is no longer used.

To add a new material, add its description to the Materials section of datexcodes.txt:

Materials {
Silicon {

label = "Silicon"
group = Semiconductor
color = #ffb6c1

}
Oxide {

label = "SiO2"
group = Insulator
color = #7d0505

}
...

}

The label value is used as a legend in visualization tools such as MDRAW and Tecplot-ISE.

The group value identifies the type of new material. The available values are:

Conductor
Insulator
Semiconductor

The field color defines the color of the material in visualization tools. This field must have the syntax:

color = #rrggbb

where rr, gg, and bb denote hexadecimal numbers representing the intensity of red, green, and blue,
respectively. The values of rr, gg, and bb must be in the range 00 to ff. Table 15.41 lists sample values for color.

Table 15.41 Sample color values

Color code Color Color code Color

#000000 Black #ffffff White

#ff0000 Red #40e0d0 Turquoise

#00ff00 Green #7fff00 Chartreuse
 15.97

PART 15 DESSISCHAPTER 2 BASIC DESSIS
Section 18.3 on page 15.321 discusses how compound semiconductors can be defined in DESSIS.

2.14.2 User-defined species

DESSIS supports the most important dopants used in silicon technology: the donors As, P, Sb, N, and the
acceptors B and In. For the simulation of other semiconductors such as III–V compounds, the actual dopants
(such as Si and Be) are supported only through user-defined species. All such species used during a simulation
must be declared in the Variables section of the file datexcodes.txt (see Section 2.14 on page 15.95). If the
incomplete ionization model is activated (see Chapter 6 on page 15.161), the model parameters of user-
defined species must be specified in the Ionization section of the material parameter file.

The following example shows the definition of two species for SiC material, with N as a donor and Al as an
acceptor. The file datexcodes.txt is:

Variables {
...
Nitrogen {

code = 960
label = "total (chemical) Nitrogen concentration"
symbol = "NitrogenTotal"
unit = "/cm3"
factor = 1.0e+12
precision = 4
interpol = log
material = Semiconductor
doping = donor(ionized_code = 961)

}
NitrogenPlus {

code = 961
label = "Nitrogen+ concentration (incomplete ionization)"
symbol = "N-Nitrogen+"
unit = "/cm3"
factor = 1.0e+12
precision = 4
interpol = log
material = Semiconductor

}
Al {

code = 962
label = "total (chemical) Al concentration"
symbol = "AlTotal"
unit = "/cm3"
factor = 1.0e+12
precision = 4
interpol = log
material = Semiconductor
doping = acceptor(ionized_code = 963)

#0000ff Blue #b03060 Maroon

#ffff00 Yellow #ff7f50 Coral

#ff00ff Magenta #da70d6 Orchid

#00ffff Cyan #e6e6fa Lavender

Table 15.41 Sample color values

Color code Color Color code Color
15.98

PART 15 DESSIS CHAPTER 2 BASIC DESSIS
}
AlMinus {

code = 963
label = "Al- concentration (incomplete ionization)"
symbol = "P-Al-"
unit = "/cm3"
factor = 1.0e+12
precision = 4
interpol = log
material = Semiconductor

}
...

}

Therefore, each new dopant must have two subsections in the file datexcodes.txt. One subsection must have
the field:

doping = type(ionized_code = <code value>)

where type can be a donor or an acceptor, and ionized_code is the code of another subsection that corresponds
to the ionized dopant concentration.

User-defined species can be plotted by specifying the following keywords in the Plot section:

Plot {
UserSpeciesConcentration
UserSpeciesIncompleteConcentration

}

If the options UserSpeciesConcentration or UserSpeciesIncompleteConcentration are activated, all user-defined
species are saved.
 15.99

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
DESSIS

CHAPTER 3 Mixed-mode DESSIS

3.1 Overview
DESSIS is a single device simulator, and mixed-mode device and circuit simulator. A single device command
file is defined through the mesh, contacts, physical models, and solve command specifications.

For a multidevice simulation, the command file must include specifications of the mesh (File section),
contacts (Electrode section), and physical models (Physics section) for each device. A circuit netlist must be
defined to connect the devices (see Figure 15.22), and solve commands must be specified that solve the whole
system of devices.

Figure 15.22 Each device in a multidevice simulation is connected with a circuit netlist

The Dessis command defines each physical device. A command file can have any number of Dessis sections.
The Dessis section defines a device, but a System section is required to create and connect devices.

DESSIS also provides a number of compact models for use in mixed-mode simulations.

3.1.1 Compact models

DESSIS provides three different types of model:

SPICE These include compact models from Berkeley SPICE 3 Version 3F5. The
BSIM3v3.2, BSIM4.1.0, and BSIMPDv2.2.2 MOS models are also available.

Built-in There are several special-purpose models.

User-defined A compact model interface (CMI) is available for user-defined models. These models
are implemented in C++ and linked to DESSIS at run-time. No access to the DESSIS
source code is necessary.

This section describes the incorporation of compact models in mixed-mode simulations. The Compact
Models manual provides references for the three model types.

Single Device Multiple Devices

File {...}
Electrode {...}
Physics {...}

File {...}
Electrode {...}
Physics {...}

Netlist
 15.101

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
3.1.2 Hierarchical description of compact models

In DESSIS, the compact models comprise three levels:

Device This describes the basic properties of a compact model and includes the names of the
model, electrodes, thermodes, and internal variables; and the names and types of the
internal states and parameters. The devices are predefined for SPICE models and
built-in models. For user-defined models, the user must specify the devices.

Parameter set Each parameter set is derived from a device. It defines default values for the
parameters of a compact model. Usually, a parameter set defines parameters that are
shared among several instances. Most SPICE and built-in models provide a default
parameter set, which can be directly referenced in a circuit description. For more
complicated models, such as MOSFETs, the user can introduce new parameter sets.

Instance Instances correspond to the elements in the DESSIS circuit. Each instance is derived
from a parameter set. If necessary, an instance can override the values of its
parameters.

For SPICE and built-in models, the user defines parameter sets and instances. For user-defined models, it is
possible (and required) to introduce new devices. This is described in the Compact Models manual.

The parameter sets and instances in a circuit simulation are specified in external SPICE circuit files (see
Section 3.2 on page 15.105). These files are recognized by the extension .scf and are parsed by DESSIS at
the beginning of a simulation.

Table 15.42 lists the built-in models and Table 15.43 presents an overview of the SPICE models.

Table 15.42 Built-in models in DESSIS

Model Device Default parameter set

Electrothermal resistor Ter Ter_pset

Parameter interface Param_Interface_Device Param_Interface

SPICE temperature interface Spice_Temperature_Interface_Device Spice_Temperature_Interface

Table 15.43 SPICE models in DESSIS

Model Device Default parameter set

Resistor Resistor Resistor_pset

Capacitor Capacitor Capacitor_pset

Inductor Inductor Inductor_pset

Coupled inductors mutual mutual_pset

Voltage-controlled switch Switch Switch_pset

Current-controlled switch CSwitch CSwitch_pset

Voltage source Vsource Vsource_pset

Current source Isource Isource_pset

Voltage-controlled current source VCCS VCCS_pset
15.102

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
3.1.3 Example: Compact models

Consider the following simple rectifier circuit:

The circuit comprises three compact models and can be defined in the file rectifier.scf as:

PSET D1n4148
DEVICE Diode
PARAMETERS

is = 0.1p // saturation current
 rs = 16 // Ohmic resistance
 cjo = 2p // junction capacitance
 tt = 12n // transit time
 bv = 100 // reverse breakdown voltage
 ibv = 0.1p // current at reverse breakdown voltage
END PSET

INSTANCE v

Voltage-controlled voltage source VCVS VCVS_pset

Current-controlled current source CCCS CCCS_pset

Current-controlled voltage source CCVS CCVS_pset

Junction diode Diode Diode_pset

Bipolar junction transistor BJT BJT_pset

Junction field effect transistor JFET JFET_pset

MOSFET Mos1 Mos1_pset

Mos2 Mos2_pset

Mos3 Mos3_pset

Mos6 Mos6_pset

BSIM1 BSIM1_pset

BSIM2 BSIM2_pset

BSIM3 BSIM3_pset

BSIM4 BSIM4_pset

B3SOI B3SOI_pset

GaAs MESFET MES MES_pset

Table 15.43 SPICE models in DESSIS

Model Device Default parameter set
 15.103

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
PSET Vsource_pset
 ELECTRODES in 0
 PARAMETERS sine = [0 5 1meg 0 0]
END INSTANCE

INSTANCE d1
 PSET D1n4148
 ELECTRODES in out
 PARAMETERS
 temp = 30
END INSTANCE

INSTANCE r
 PSET Resistor_pset
 ELECTRODES out 0
 PARAMETERS resistance = 1000
END INSTANCE

The parameter set D1n4148 defines the parameters shared by all diodes of type 1n4148. Instance parameters are
usually different for each diode, for example, their operating temperature.

NOTE A parameter set must be declared before it can be referenced by an instance.

The Compact Models manual further explains the SPICE parameters in this example. The DESSIS input file
for this simulation can be:

File {
SPICEPath = ". lib spice/lib"

}
System {

Plot "rectifier" (time() v(in) v(out) i(r 0))
}
Solve {

Circuit
NewCurrentPrefix = "transient_"
Transient (InitialTime = 0 FinalTime = 0.2e-5

InitialStep = 1e-7 MaxStep = 1e-7) {Circuit}
}

The SPICEPath in the File section is assigned a list of directories. All directories are scanned for .scf files
(SPICE circuit files).

Check the DESSIS log file to see which circuit files were found and used in the simulation.

The System section contains a Plot statement that produces the plot file rectifier_des.plt. The simulation time,
the voltages of the nodes in and out, and the current from the resistor r into the node 0 are plotted. The Solve
section describes the simulation. The keyword Circuit denotes the circuit equations to be solved.

The instances in a circuit can also appear directly in the System section of the DESSIS input file, for example:

System {
Vsource_pset v (in 0) {sine = (0 5 1meg 0 0)}
D1n4148 d1 (in out) {temp = 30}
Resistor_pset r (out 0) {resistance = 1000}

Plot "rectifier" (time() v(in) v(out) i(r 0))
}

15.104

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
3.2 SPICE circuit files
Compact models can be specified in an external SPICE circuit file, which is recognized by the extension .scf.
The declaration of a parameter set can be:

PSET pset
DEVICE dev
PARAMETERS
parameter0 = value0
parameter1 = value1
...

END PSET

This declaration introduces the parameter set pset that is derived from the device dev. It assigns default values
for the given parameters. The device dev should have already declared the parameter names. Furthermore, the
values assigned to the parameters must be of the appropriate type. Table 15.44 lists the possible parameter
types.

Similarly, the circuit instances can be declared as:

INSTANCE inst
PSET pset
ELECTRODES e0 e1 ...
THERMODES t0 t1 ...
PARAMETERS

parameter0 = value0
parameter1 = value1
...

END INSTANCE

According to this declaration, the instance inst is derived from the parameter set pset. Its electrodes are
connected to the circuit nodes e0, e1, ..., and its thermodes are connected to t0, t1, ...

This instance also defines or overrides parameter values. The complete syntax of the input language for
SPICE circuit files is given in Compact Models, Section 3.11 on page 16.112.

NOTE The tool SPICE2DESSIS is available to convert Berkeley SPICE circuit files (extension .cir) to
DESSIS circuit files (extension .scf) (see Utilities, Chapter 9 on page 6.65).

Table 15.44 Parameters in SPICE circuit files

Parameter type Example Parameter type Example

char c = 'n' char[] cc = ['a' 'b' 'c']

int i = 7 int[] ii = [1 2 3]

double d = 3.14 double[] dd = [1.2 -3.4 5e6]

string s = "hello world" string[] ss = ["hello" "world"]
 15.105

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
3.3 Dessis section
The Dessis (synonym Device) sections of the input file define the different device types used in the system to
be simulated. Each device type must have an identifier name that follows the keyword Dessis. Each Dessis
section can include the Electrode, Thermode, File, Plot, Physics, and Math sections. For example:

Dessis resist {
Electrode {
...
}
File {
...
}
Physics {
...
}

...
}

If information is not specified in the Dessis section, information from the lowest level of the input file is taken
(if defined there), for example:

Default Physics section
Physics{
...
}
Dessis resist {

This device contains no Physics section
so it uses the default set above
Electrode{
...
}
File{
...
}

}

3.4 System section
The System section defines the netlist of physical devices and circuit elements to be solved. The netlist is
connected through circuit nodes. By default, a circuit node is electrical, but it can be declared to be electrical
or thermal:

Electrical { enode0 enode1 ... }
Thermal { tnode0 tnode1 ... }

Each electrical node is associated with a voltage variable, and each thermal node is associated with a
temperature variable. Node names are numeric or alphanumeric. The node 0 is predefined as the ground node
(0 V).

Compact models can be defined in SPICE circuit files (see Section 3.2 on page 15.105). However, instances
of compact models can also appear directly in the System section of the DESSIS input file:

parameter-set-name instance-name (node0 node1 ...) {
<attributes>

}

15.106

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
The order of the nodes in the connectivity list corresponds to the electrodes and thermodes in the SPICE
device definition (see the Compact Models manual).

The connectivity list is a list of contact-name=node-name connections, separated by white space. Contact-
name is the name of the contact from the grid file of the given device, and node-name is the name of the circuit
netlist node as previously defined in the definition of a circuit element.

Physical devices are defined as:

device-type instance-name (connectivity list) { <attributes> }

The connectivity list of a physical device explicitly establishes the connection between a contact and node.
For example, the following defines a physical diode and circuit diode:

Diode_pset circuit_diode (1 2) {...} # circuit diode
Diode243 device_diode (anode=1 cathode=2) {...} # physical diode

Both diodes have their anode connected to node 1 and their cathode connected to node 2. In the case of the
circuit diode, the device specification defines the order of the electrodes (see Compact Models, Section 3.11
on page 16.112). Conversely, the connectivity for the physical diode must be given explicitly. The names
anode and cathode of the contacts are defined in the grid file of the device. The device types of the physical
devices must be defined elsewhere in the input file (with Dessis sections) or an external .dessis file.

The System section can contain the initial conditions of the nodes. Three types of initialization can be specified:

Fixed permanent values (Set)

Fixed until transient (Initialize)

Initialized only for the first solve (Hint)

In addition, the Unset command is available to free a node after a Set command.

The System section can also contain Plot statements to generate plot files of node values, currents through
devices, and parameters of internal circuit elements. For a simple case of one device without circuit
connections (besides resistive contacts), the keyword System is not required because the system is implicit and
trivial given the information from the Electrode, Thermode, and File sections at the base level.

3.4.1 Physical devices

A physical device is instantiated using a previously defined device type, name, connectivity list, and optional
parameters, for example:

device_type instance-name (<connectivity list>) {
<optional device parameters>

}

If no extra device parameters are required, the device is specified without braces, for example:

device-type instance-name (<connectivity list>)

The device parameters overload the parameters defined in the device type. As for a DESSIS device type, the
parameters can include Electrode, Thermode, File, Plot, Physics, and Math sections.
 15.107

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
NOTE Electrodes have Voltage statements that set the voltage of each electrode. If the electrodes are
connected to nodes through the connectivity list, these values are only hints (as defined by the
keyword Hint) for the first Newton solve, but do not set the electrodes to those values as with the
keyword Set. By default, an electrode that is connected to a node is floating.

Electrodes must be connected to electrical nodes and thermodes to thermal nodes. This enables
electrodes and thermodes to share the same contact name or number.

3.4.2 Circuit devices

SPICE instances can be declared in SPICE circuit files as discussed in Section 3.2 on page 15.105. They can
also appear directly in the System section of the DESSIS input file, for example:

pset inst (e0 e1 ... t0 t1 ...) {
parameter0 = value0
parameter1 = value1
...

}

This declaration in the DESSIS input file provides the same information as the equivalent declaration in the
SPICE circuit file.

Array parameters must be specified with parentheses, not braces, for example:

dd = (1.2 -3.4 5e6)
ss = ("hello" "world")

Certain SPICE models have internal nodes that are accessible through the form instance_name.internal_node.
For example, a SPICE inductance creates an internal node branch, which represents the current through the
instance. Therefore, the expression v(l.branch) can be used to gain access to the current through the
inductor l. This is useful for plotting internal data or initializing currents through inductors (see the Compact
Models manual for a list of the internal nodes for each model).

3.4.3 Electrical and thermal netlist

DESSIS allows both electrical and thermal netlists to coexist in the same system, for example:

System {
Thermal (ta tc t300)
Set (t300 = 300)
Hint (ta = 300 tc = 300)

Isource_pset i (a 0) {dc = 0}
PRES pres ("Anode"=a "Cathode"=0 "Anode"=ta "Cathode"=tc)
Resistor_pset ra (ta t300) {resistance = 1}
Resistor_pset rc (tc t300) {resistance = 1}

Plot "pres" (v(a) t(ta) t(tc) h(pres ta) h(pres tc) i(pres 0))
}

15.108

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
The current source i drives a resistive physical device pres. This device has two contacts Anode and Cathode
that are connected to the circuit nodes a and 0, and are also used as thermodes, which are connected to the heat
sink t300 through two thermal resistors ra and rc.

The Plot statement accesses the voltage of the node a, the temperature of the nodes ta and tc, the heat flux
from pres into ta and tc, and the current from pres into the ground node 0.

Many SPICE models provide a temperature parameter for electrothermal
simulations. In DESSIS, a temperature parameter is connected to the
thermal circuit by a parameter interface.

For example, in this simple circuit, the resistor r is a SPICE
semiconductor resistor whose resistance depends on the value of the
temperature parameter temp:

(15.17)

To feed the value of the thermal node t as a parameter into the resistor r, a parameter interface is required:

System {
Thermal (t)
Set (t = 300)

Isource_pset i (1 0) {dc = 1}
cres_pset r (1 0) {temp = 27 l = 0.01 w = 0.001}
Param_Interface rt (t) {parameter = "r.temp" offset = -273.15}

Plot "cres" (t(t) p(r temp) i(r 0) v(1))
}

The parameter set cres_pset for the resistor r is defined in an external SPICE circuit file:

PSET cres_pset
DEVICE Resistor
PARAMETERS

rsh = 1
narrow = 0
tc1 = 0.01
tnom = 27

END PSET

The parameter interface rt updates the value of temp in r when the variable t is changed. This is the general
mechanism in DESSIS, which allows a circuit node to connect to a model parameter.

NOTE It is important to declare the parameter interface after the instance to which it refers. Otherwise,
DESSIS cannot establish the connection between the parameter interface and the instance.

DESSIS temperatures are defined in kelvin. SPICE temperatures are measured in degree Celsius. Therefore,
an offset of –273.15 must be used to convert kelvin to degree Celsius.

r0 rsh l narrow–
w narrow–
---------------------------⋅=

r temp() r0 1 tc1 temp tnom–() tc2 temp tnom–()2⋅+⋅+()⋅=
 15.109

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
The parameter Spice_Temperature in the Math section is used to initialize the global SPICE circuit temperature
at the beginning of a simulation. It cannot be used to change the SPICE temperature later. To modify the
SPICE temperature during a simulation, a so-called SPICE temperature interface must be used.

A SPICE temperature interface has one contact that can be connected to an electrode or a thermode. When
the value u of the electrode or thermode changes, the global SPICE temperature is updated according to:

(15.18)

By default, and . Therefore, the SPICE temperature interface ensures that the
global SPICE temperature is identical to the value u.

In the following example, a SPICE temperature interface is used to ramp the global SPICE temperature from
300 K to 400 K:

System {
Set (st = 300)
Spice_Temperature_Interface ti (st) { }

}
Solve {

Quasistationary (Goal {Node = st Value = 400} DoZero
InitialStep = 0.1 MaxStep = 0.1) {
Coupled {Circuit}
}

}

3.4.4 Set, Unset, Initialize, and Hint

The keywords Set, Initialize, and Hint are used to set nodes to a specific value.

Set establishes the node value. This value remains fixed during all subsequent simulations until a Set or Unset
command is used in the Solve section (see Section 3.8.6 on page 15.121), or the node becomes a Goal of a
Quasistationary, which controls the node itself (see Section 3.8.2 on page 15.116). For a set node, the
corresponding equation (that is, the current balance equation for electrical nodes and the heat balance equation
for thermal nodes) is not solved, unlike an unset node.

NOTE The Set and Unset commands exist in the Solve section. These act like the System level Set but allow
more flexibility (see Section 3.4 on page 15.106).

The Set command can also be used to change the value of a parameter in a compact model. For example, the
resistance of the resistor r1 changes to 1000 Ω:

Set (r1."resistance" = 1000)

Initialize is similar to the Set statement except that node values are kept only during nontransient
simulations. When a transient simulation starts, the node is released with its actual value, that is, the node is
unset.

Spice temperature offset c1u c2u2 c3u3+ + +=

offset c2 c3 0= = = c1 1=
15.110

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
NOTE The keyword Initialize can be used with an internal node to set a current through an inductor
before a transient simulation. For example, the keyword:
Inductor_pset L2 (a b){ inductance = 1e-5 }

Initialize (L2.branch = 1.0e-4)

Hint provides a guess value for an unset node for the first Newton step only. The numeric value is given in
volt, ampere, or kelvin. A current value only makes sense for internal current nodes in circuit devices. The
commands are used as follows:

Set (<node> = <float> <node> = <float> ...)
Unset (<node> <node> ...)
Initialize (<node> = <float> <node> = <float> ...)
Hint (<node> = <float> <node> = <float> ...)

For example:

Set (anode = 5)

3.4.5 System Plot

The System section can contain any number of Plot statements to print voltages at nodes, currents through
devices, or circuit element parameters. The output is sent to a given file name. If no file name is provided, the
output is sent to the standard output file and the log file. The Plot statement is:

Plot (<plot command list>)
Plot <filename> (<plot command list>)

where <plot command list> is a list of nodes or plot commands as defined in Table 15.45.

NOTE Plot commands are case sensitive.

Table 15.45 Parameters for System Plot command

Parameter Description

node Prints the voltage at the node.

v(node) Prints the voltage at the node.

v(node1 node2) Prints the voltage difference between two given nodes.

t(node) Prints the temperature at the node.

t(node1 node2) Prints the temperature difference between two given nodes.

i(device node) Prints the current that exits in the given device through the given node.

h(device node) Prints the heat that exits in the given device through the given node.

p(device attribute) Prints a given attribute of a given circuit element.

time() Prints the current time.

freq() Prints the current AC analysis frequency.
 15.111

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
Two examples are:

Plot (a b i(r1 a) p(r1 rT))
Plot "plotfile" (time() v(a b) i(d1 a))

NOTE The Plot command does not print the time by default. When plotting a transient simulation, the
time() command must be added.

3.4.6 AC System Plot

An ACPlot statement in the System section can be used to modify the output in the DESSIS AC plot file:

System {
ACPlot (<plot command list>)

}

The <plot command list> is the same as the system plot command discussed in Section 3.4.5 on page 15.111.

If an ACPlot statement is present, the given quantities are plotted in the DESSIS AC plot file with the results
from the AC analysis. Otherwise, only the voltages at the AC nodes are plotted with the results from the AC
analysis.

3.5 File section
In the File section, one of the following can be specified:

Output file name and the small signal AC extraction file name

DESSIS directory path

Search path for SPICE models and compact models

Default file names for the devices

Device-specific keywords are defined under the file entry in the Device section (see Section 2.2 on
page 15.38).

The variables in Table 15.46 can be assigned a file name. Only a file name without an extension is required.
DESSIS automatically appends a predefined extension.

Table 15.46 Keyword options in mixed-mode File section

Option Description

ACExtract Specifies the file in which the results of the small signal AC analysis are stored (_ac_des.plt).

Output Logs the screen output (.log).
15.112

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
The variables in Table 15.47 represent search paths. They must be assigned a list of directories for which
DESSIS searches.

The default device files are given in the Device section. By default, the textual output of the simulator is written
to the output file, for example:

File {
output = "mct"
ACExtract = "mct"

}

3.6 SPICE circuit models
DESSIS supports SPICE circuit models for mixed-mode simulations. These models are based on Berkeley
SPICE 3 Version 3F5. A detailed description of the Spice models can be found in the Compact Models
manual.

3.7 User-defined circuit models
DESSIS provides a compact model interface (CMI) for user-defined circuit models. The models are
implemented in C++ by the user and linked to DESSIS at run-time. Access to the DESSIS source code is not
required.

Table 15.47 Search path options in mixed-mode File section

Variable Description

DessisPath Instructs DESSIS to load all files with the extension .dessis in the given directory path. A
list of defined physical device types is created internally. The corresponding definition is used
if instantiated by the user in the System section (and not overwritten by a definition with the
same name as the input file) (see Section 3.4 on page 15.106). The directory path has the
format dir1:dir2:dir3, for example:
File {
 DessisPath = ".../devices:/usr/local/tcad/dessis:."
}

SPICEPath Defines a search path for SPICE circuit files (extension .scf). The files are parsed and added
to the System section of the input file. If the environment variable ISEROOT_LIB is defined, the
directory $ISEROOT_LIB/dessis/spice is automatically added to SPICEPath, for example:
File {

SPICEPath = ". lib lib/spice"
}

CMIPath Defines a search path for compact circuit files (extension .ccf) and the corresponding shared
object files (extension .so.arch). The files are parsed and added to the System section of the
input file. If the environment variable ISEROOT_ARCH_OS_LIB is defined, the directory
$ISEROOT_ARCH_OS_LIB/dessis is automatically added to CMIPath, for example:
File {

CMIPath = ". libcmi"
}

 15.113

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
To implement a new user-defined model:

1. Provide a corresponding equation for each variable in the compact model. For electrode voltages,
compute the current flowing from the device into the electrode. For an internal model variable, use a
model equation.

2. Write a formal description of the new compact model. This compact circuit file is read by DESSIS before
the model is loaded.

3. Implement a set of interface subroutines C++. DESSIS provides a run-time environment.

4. Compile the model code into a shared object file, which is linked at run-time to DESSIS. A cmi script
executes this compilation.

5. Use the variable CMIPath in the File section of the DESSIS command file to define a search path.

6. Reference user-defined compact models in compact circuit files (with the extension .ccf) or directly in
the System section of the DESSIS input file.

3.8 Solve section
The Solve commands do not fundamentally change when used in mixed mode. The major differences are with
the Coupled command, the extra goals available for the Quasistationary command, and the ACCoupled and
Continuation commands that only work in mixed mode.

3.8.1 Coupled command

The Coupled command in mixed mode addresses contact and circuit equation variables. Devices can be
selected individually or together.

3.8.1.1 Circuit and contact equation-variable keywords

The Coupled command takes a set of equation-variable pairs as parameters. The Contact and Circuit, and
TContact and TCircuit equation-variable pairs are introduced for mixed-mode problems. Table 15.48 provides
the full list of equation-variable pair keywords. These four keywords are accessible if the keyword
NoAutomaticCircuitContact is specified in the Math section (at the top level).

Table 15.48 Keywords of equation-variable pairs for Coupled command

Keyword Corresponding equation Corresponding variable

Poisson Poisson Electrostatic potential

Contact Electrical contact interface Electrostatic potential

TContact Thermal contact interface Temperature

Circuit Electrical circuit Voltage, current

TCircuit Thermal circuit Temperature

Electron Electron continuity Electron density

Hole Hole continuity Hole density
15.114

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
The keyword Circuit controls the resolution of the electrical circuit models and nodes. Contact controls the
resolution of the electrical interface condition at the contacts. Similarly, TContact and TCircuit control the
resolution of the thermal interface condition and thermal circuit, respectively. By default, the keywords
TContact and TCircuit are not used because the Poisson equation-variable also covers the contact and circuit
domains.

When the keyword NoAutomaticCircuitContact is used in the Math statement, the Poisson keyword only covers
the device. The TCircuit and TContact keywords can then be used for the circuit and contact parts (see
Figure 15.23).

Figure 15.23 Range of equation-variable keywords Circuit, Contact, Poisson, Electron, and Hole

3.8.1.2 Selecting individual devices

The default usage of an equation–variable keyword such as Poisson activates the given equations and variables
for all devices. With complex multiple-device systems, such an action is not always desirable especially when
a fully consistent solution has not yet been found. DESSIS allows each equation–variable pair to be restricted
to a specific device by adding the name of the device instance to the equation–variable keyword separated
with a period. The syntax is:

<identifier>.<equation-variable>

Device-specific solutions are used to obtain the initial solution for the whole system. For example, with two
or more devices, it is often better to solve each device individually before coupling them all. Such a scheme
can be written as:

System {
... device1 ...
... device2 ...

}
Solve {

Solve Circuit equation-variable
Circuit

Solve poisson and full coupled for each device
Coupled { device1.Poisson device1.Contact}

Temperature Temperature Temperature

eTemperature Electron temperature Electron temperature

hTemperature Hole temperature Hole temperature

Table 15.48 Keywords of equation-variable pairs for Coupled command

Keyword Corresponding equation Corresponding variable

Circuit

Contact

Poisson

Poisson

Default NoAutomaticCircuitContact

Electron
Hole

Electron Hole
 15.115

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
Coupled { device1.Poisson device1.Contact
device1.Electron device1.Hole }

Coupled { device2.Poisson device2.Contact }
Coupled { device2.Poisson device2.Contact

device2.Electron device2.Hole }

Solve full coupled over all devices
Coupled { Circuit Poisson Contact Electron Hole }

}

3.8.2 Quasistationary command

The Quasistationary command is extended in mixed mode to include goals on nodes and circuit model
parameters. Table 15.49 defines the syntax of these goals.

The goal on a node is usually used on a node that has been fixed with the Set or Initialize command in the
System section. For example, the node a is set to 1 V and ramped to 10 V:

System {
Resistor_pset r1(a 0){resistance = 1}
Set(a=1)

}

Solve{
Circuit
Quasistationary(Goal{Node=a Voltage=10}){ Circuit }

}

A goal on circuit model parameters can be used to change the configuration of a system. Any circuit model
parameter can be changed. For example, the resistor r1 is ramped from to :

System {
Resistor_pset r1(a 0){resistance = 1}
Set(a=1)

}

Solve{
Circuit
Quasistationary(Goal{Parameter=r1."resistance" Value=0.1})

{ Circuit }
}

NOTE When a node is used in a goal, it is set during the quasistatic simulation. At the end of the ramp, the
node reverts to its previous ‘set’ status, that is, if it was not set before, it is not set afterward. This
can cause unexpected behavior in the Solve statement following the Quasistationary statement.
Therefore, it is better to set the node in the Quasistationary statement using the Set command.

Table 15.49 Mixed-mode parameters for Quasistationary command

Keyword Description

Goal { Node=<string> Voltage=<float> } Sets the new target voltage to a specified node (name).

Goal { Parameter = <i-name>.<p-name>
 value = <float> }

Sets the new target value to a specified parameter (p-name)
of a device instance (i-name).

1 Ω 0.1 Ω
15.116

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
3.8.3 ACCoupled: Small-signal AC analysis

An ACCoupled solve section is an extension of a Coupled section with an extra set of parameters allowing small-
signal AC analysis. Table 15.50 describes these parameters.

The options StartFrequency, EndFrequency, NumberOfPoints, Linear, and Decade are used to select the frequencies
at which the analysis is performed and the frequency distribution.

A Node list must be given. With it, for each frequency, the compact equivalent small signal model is generated
between the given nodes. This conductive-capacitive matrix is stored in an ACExtract file specified in the File
or ACCoupled statement (default is extraction_ac_des.plt). This ASCII file contains the frequency, voltages at
the nodes, and entries of the matrix. If the file name prefix ACPlot is specified, for each node in the Node list
and for each frequency, DESSIS writes a file with the (complex-valued) derivatives of the solution variables
with respect to voltage at the node.

The Exclude list is used to remove a set of circuit or physical devices from the AC analysis. Typically, the
power supply is removed so as not to short-circuit the AC analysis, but the list can also be used to isolate a
single device from a whole circuit.

Table 15.50 Parameters for Small Signal AC Analysis

Parameter Description

StartFrequency = <float> Analyzes lower frequency.

EndFrequency = <float> Analyzes upper frequency.

NumberOfPoints = <integer> Defines the number of frequencies with which to perform the analysis.

Linear Applies linear intervals between the frequencies.

Decade Applies logarithmic intervals between the frequencies.

Node(<node-name> <node-name>...) Defines nodes over which the small-signal analysis is performed.

Exclude(<device-name>
...<device-name>...)

Defines devices that must not be included in the small-signal analysis.

ObservationNode(<node-name>
...<node-name>...)

Activates noise analysis (see Chapter 15 on page 15.291).

Optical Switches on optical AC analysis (see Section 3.8.4 on page 15.119).

ACCompute (<options>) Perform an AC or noise analysis only for selected bias points inside a
Quasistationary command.

ACPlot=<file name prefix> Activates plotting of the responses of the solution variables to the AC
signals. The string specified is used as a prefix for the names of the files
to which the responses are written.

NoisePlot=<file name prefix> Specifies a prefix for a file name (see Chapter 15 on page 15.291).

ACExtract=<file name prefix> Specifies a prefix for the name of the file to which the results of AC
analysis are written (overrides the specification from the File section).
 15.117

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
NOTE The system analyzed consists of the equations specified in the body of the ACCoupled statement,
without the instances removed by the Exclude list. The Exclude list only specifies instances,
therefore, all equations of these instances are removed.

The ACCompute option controls AC or noise analysis performances within a Quasistationary command. The
parameters in ACCompute are identical to the parameters in the Plot and Save commands (see Table 15.28 on
page 15.74), for example:

Quasistationary (...) {
ACCoupled (...

ACCompute (Time = (0; 0.01; 0.02; 0.03; 0.04; 0.05)
Time = (Range = (0.9 1.0) Intervals = 4)
Time = (Range = (0.1 0.2); Range = (0.7 0.8))
When (Node = in Voltage = 1.5))

{...}
}

In this example, an AC analysis is performed only for the time points:

t = 0, 0.01, 0.02, 0.03, 0.04, 0.05
t = 0.9, 0.925, 0.95, 0.975, 1.0

and for all time points in the intervals [0.1, 0.2] and [0.7, 0.8]. Additionally, an AC analysis is triggered
whenever the voltage at the node in reaches the 1.5 V threshold.

If the AC or noise analysis is suppressed by the ACCompute option, an ACCoupled command behaves like an
ordinary Coupled command inside a Quasistationary.

3.8.3.1 Example: AC analysis of simple device

This example illustrates AC analysis of a simple device. A 1D resistor is connected to ground (through resistor
to_ground) and to a voltage source drive at reverse bias of –3 V. After calculating the initial voltage point at
–3 V, the left voltage is ramped to 1 V in 0.1 V increments. The AC parameters between nodes left and right
are calculated at one frequency f = Hz. The circuit element drive and to_ground are excluded from the AC
calculation.

By including circuits, complete Bode plots can be performed:

Dessis resist {
Electrode {{Name=anode Voltage=-3 resist=1}

{Name=cathode Voltage=0 resist=1}}

File {Grid = "resist"
Doping = "resist"}

Physics {Mobility (DopingDep)
Recombination (SRH(DopingDep) Auger)}

}

System {
resist 1d (anode=left cathode=right)

Vsource_pset drive(left right){dc = -3}
Resistor_pset to_ground (right 0){resistance=0}

}

103
15.118

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
Math {method=blocked NoAutomaticCircuitContact}

Solve {
Circuit

Plugin (Digits=2) {Poisson Electron Hole}
Coupled {poisson electron hole contact circuit}
ACCoupled (StartFrequency=1e3 EndFrequency=1e6

NumberOfPoints=4 Decade
 Iterations=0
 Node(left right)

Exclude(drive to_ground))
 {poisson electron hole contact circuit}

Quasistat (MaxStep=0.025 InitialStep=0.025
Goal{Parameter=drive.dc Value=1}) {
ACCoupled(StartFrequency=1e3 EndFrequency=1e6

NumberOfPoints=4 Decade
Node(left right)
Exclude(drive to_ground))
{electron hole poisson Circuit Contact}

}
}

3.8.4 Optical AC analysis

Optical AC analysis calculates the quantum efficiency as a function of the frequency of the optical signal. This
technique is based on the AC analysis technique, and provides real and imaginary parts of the quantum
efficiency versus the frequency.

To start optical AC analysis, add the keyword Optical in an ACCoupled statement, for example:

ACCoupled (StartFrequency=1.e4 EndFrequency=1.e9
NumberOfPoints=31 Decade Node(a c)
Optical Exclude(v1 v2))
{ poisson electron hole }

3.8.5 Continuation: An alternative ramping method

The simulation of an I(V) curve can be run by using the keyword Continuation in the Solve section. The
parameters in braces are the same type as for Transient and Quasistationary. Some control parameters must be
given in parentheses in the same way as for the Plugin statement, for example:

Continuation (<Control Parameters>) {
coupled (iterations=5) { poisson electron hole }

}

Table 15.51 on page 15.120 summarizes the control parameters of the Continuation command. To allow
general usage in a mixed-mode environment, Continuation requires the use of a system level node. Only one
node, defined in the connectivity list of a device, is allowed for this method of solution. The node can be set
or not set (with the Set or Initialize command). If the node is not set, it continues to float after the end of the
continuation.
 15.119

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
The first step of the continuation is always a voltage-controlled step. For this, the user must supply an initial
voltage step in the control parameter list using the InitialVstep statement. The continuation proceeds
automatically, until the values given by any of the MinVoltage, MaxVoltage, MinCurrent, or MaxCurrent parameters
are exceeded.

NOTE Be conservative when defining these parameters because they are also used for the scaling of the
continuation equation.

In addition, the parameters MaxStep, Increment, Decrement, Error, and Digits can be specified. Their definitions
are the same as for the Transient and Quasistationary statements, except that they measure the scaled arc
length.

If the current extends over several orders of magnitude, it can be useful to state an additional parameter
LogCurrent. If this flag is set, the curve log(I(V)) is traced instead of I(V). The resulting graph is expected to
be identical, but it can be useful for the convergence behavior.

NOTE As a general rule, use LogCurrent when the I(V) curve is to be viewed on a logarithmic graph. If
LogCurrent is used, be careful that the current does not become negative during the simulation.

Table 15.51 Parameters for continuation method

Control parameter Description

Node=<node-name> Specifies which node to ramp. Node must be set; otherwise, it is set during
the continuation and unset afterward.

InitialVstep=<float> Initial voltage step.

MinVoltage=<float> Lower voltage limit.

MaxVoltage=<float> Upper voltage limit.

MinCurrent=<float> Lower current limit.

MaxCurrent=<float> Upper current limit.

MinStep=<float> Minimum step for the internal arc length variable (default).

MaxStep=<float> Maximum step for the internal arc length variable.

Increment=<float> Factor used to augment arc length on successful solve (default 2).

Decrement=<float> Factor used to diminish arc length on failure to solve (default 2).

Error=<float> Absolute error used to control continuation (default).

Digits=<float> Relative error used to control continuation (default).

LogCurrent Treats current on a log scale. This can improve convergence when the
current changes by many orders of magnitude.

1 5–×10

5 2–×10

1 3–×10
15.120

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
3.8.5.1 Example: Solve entry for continuation

An example of a Solve entry for continuation is:

Solve{ ...
Continuation (node=node1 InitialVstep=-0.003

MaxVoltage=3 MaxCurrent=0
MinVoltage=-3 MinCurrent=-5e-3) {

Coupled (iterations=5) { poisson electron hole }
}

}

This specifies that the I(V) curve must be traced at the circuit node node1. The initial voltage-controlled step
is –0.003 V, the voltage range is –3 V to 3 V, and the current range is –5 mA to 0 A.

3.8.6 Set and Unset section

The keyword Set in the Solve section is used to set node values during a part of the simulation. The Set
command in the Solve section is position dependent. This allows a node to be set to a previously computed
value. The Set command takes a list of nodes with optional values as parameters. If a value is given, the node
is set to that value. If no value is given, the node is set to its current value. The nodes are set until the end of
the DESSIS run or the next Unset command with the specified node.

The Unset command takes a list of nodes and ‘frees’ them (that is, the nodes are floating). In practice, the Set
command is used in the Solve section to establish a complex system of steps, circuit region by circuit region.

The Set command can also be used to affect the boundary condition type of electrodes in a single device mode
(see Section 2.9.10 on page 15.73).

3.9 Math section
The keyword AutomaticCircuitContact (active by default) controls the automatic inclusion of the circuit and
contact equations in a mixed-mode simulation. If only the Poisson equation is solved, no additional equations
are added. However, if additional equations to Poisson appear in a Coupled statement, the circuit and contact
equations are also added.

Therefore:

Coupled { Poisson Electron Hole }

is equivalent to:

Coupled { Poisson Electron Hole Circuit Contact }

NOTE AutomaticCircuitContact does not add the circuit and contact equations if Poisson is restricted to
instances, for example:
Coupled { device1.Poisson device1.Electron device1.Hole

device2.Poisson device2.Electron device2.Hole }
 15.121

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
If the keyword NoAutomaticCircuitContact appears in the Math section, DESSIS does not add the circuit and
contact equations automatically (see Section 3.8.1.1 on page 15.114). The following SPICE circuit
parameters can be specified in the global Math section:

Spice_Temperature = ...
Spice_gmin = ...

The value of Spice_Temperature denotes the global SPICE circuit temperature. Its default value is 300.15 K.
The parameter Spice_gmin refers to the minimum conductance in SPICE. The default value is .

3.10 Using mixed-mode simulation
In DESSIS, mixed-mode simulations are handled as a direct extension of single device simulations.

3.10.1 From single device file to multidevice file

Figure 15.24 Three levels of device definition

The DESSIS command file accepts both single-device and multidevice problems. Although the two forms of
input look different, they fit in the same input syntax pattern. This is possible because the input file has
multiple levels of definitions and there is a built-in default mechanism for the System section. The complete
input syntax allows for three levels of device definition: global, device, and instance (see Figure 15.24). The
three levels are linked in that the global level is the default for the device level and instance level.

By default, if no Device section exists, a single device is created with the content of a global device. If no System
section exists, one is created with this single device. In this way, single devices are converted to multidevice
problems with a single device and no circuit.

NOTE The device that is created by default has the name " " (that is, an empty string).

10 12– S

File {...}
Electrode {...}

...

Device <type> {
File {...}
Electrode {...}
...
}

System {
<type> <name> {
File {...}
Electrode {...}
...
}

}

}
}

}

Global

Device

Instance
15.122

PART 15 DESSIS CHAPTER 3 MIXED-MODE DESSIS
This translation process can be performed manually by creating a Device and System section with a single entry
(see Figure 15.25).

Figure 15.25 Translating a single device syntax to mixed-mode form

The Solve section can also be converted if the flag NoAutomaticCircuitContact is used (see Figure 15.26).

Figure 15.26 Translating a default solve syntax to a NoAutomaticCircuitContact form

In this case, all occurrences of the keyword Poisson must be expanded to the three keywords Poisson Contact
Circuit.

3.10.2 File-naming convention: Mixed-mode extension

A File section can be defined at all levels of an input command file. Therefore, a default file name can be
potentially included by more than one device, for example:

Device res {
File { Save="res" ... }
...

}
System {

res r1
res r2

}

Both r1 and r2 use the save device parameters set up in the definition of res. Therefore, they have in principle
the same default for Save (that is, res). Since it is impractical to save both devices under the same name, the
names of the device instances (that is, r1 and r2) are concatenated to the file name to produce the files res.r1
and res.r2. This process of file name extension is performed for the file parameters Save, Current, Path, and
Plot, and is also performed when the file name is copied from the global default to a device type declaration.

Electrode {
{name="anode" Voltage=0}
{name="cathode" Voltage=1}

}

File {
Grid = "diode.grd"
Doping = "diode.dat"
Output = "diode"

}

File {
Output = "diode"

}
Device diode {

Electrode {
{name="anode" Voltage=0}
{name="cathode" Voltage=1}

}
File {

Grid = "diode.grd"
Doping = "diode.dat"

}
}
System {

diode diode1}
}

Solve{
Poisson
Coupled {Poisson Electron Hole}

}

Math {
NoAutomaticCircuitContact

}
Solve {

Coupled {Poisson Contact Circuit}
Coupled {Poisson Contact Circuit Electron Hole}

}

 15.123

PART 15 DESSISCHAPTER 3 MIXED-MODE DESSIS
In practice, three possibilities exist:

The file name is defined at the instance level, in which case, it is unchanged.

The file name is defined at the device type level, in which case, the instance name is concatenated to the
original file name.

The file name is defined at the global input file level, in which case, the device name and instance name
are concatenated to the original file name.

Table 15.52 summarizes these possibilities.

Table 15.52 File modification for Save, Current, Path, and Plot commands

Level File name format

Instance <given name>

Device <given name>.<instance name>

Global <given name>.<device type>.<instance name>
15.124

Part II Physics in DESSIS
This part of the DESSIS manual contains the following chapters:
CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS ON PAGE 15.127
CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE ON PAGE 15.151
CHAPTER 6 INCOMPLETE IONIZATION ON PAGE 15.161
CHAPTER 7 QUANTIZATION MODELS ON PAGE 15.165
CHAPTER 8 MOBILITY MODELS ON PAGE 15.175
CHAPTER 9 GENERATION–RECOMBINATION ON PAGE 15.201
CHAPTER 10 TRAPS ON PAGE 15.225
CHAPTER 11 DEGRADATION MODEL ON PAGE 15.235
CHAPTER 12 RADIATION MODELS ON PAGE 15.241
CHAPTER 13 OPTICAL GENERATION ON PAGE 15.243
CHAPTER 14 SINGLE EVENT UPSET (SEU) ON PAGE 15.283
CHAPTER 15 NOISE AND FLUCTUATION ANALYSIS ON PAGE 15.291
CHAPTER 16 TUNNELING ON PAGE 15.299
CHAPTER 17 HOT CARRIER INJECTION MODELS ON PAGE 15.317
CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION ON PAGE 15.321
CHAPTER 19 ENERGY-DEPENDENT PARAMETERS ON PAGE 15.333
CHAPTER 20 ANISOTROPIC PROPERTIES ON PAGE 15.339
CHAPTER 21 FERROELECTRIC MATERIALS ON PAGE 15.349
CHAPTER 22 MECHANICAL STRESS EFFECT MODELING ON PAGE 15.353
CHAPTER 23 GALVANIC TRANSPORT MODEL ON PAGE 15.363
CHAPTER 24 THERMAL PROPERTIES ON PAGE 15.365

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
DESSIS

CHAPTER 4 Introduction to physics in DESSIS

4.1 Overview
Physical phenomena in semiconductor devices are very complicated and, depending on applications, are
described by partial differential equations of different level of complexity. Coefficients and boundary
conditions of equations (such as mobility, generation–recombination rate, material-dependent parameters,
interface and contact boundary conditions) can be very complicated and can depend on microscopic physics,
the structure of the device, and the applied bias.

DESSIS allows for arbitrary combinations of transport equations and physical models, which allows for the
possibility to simulate all spectrums of semiconductor devices, from power devices to deep submicron devices
and sophisticated heterostructures. This chapter describes the formulation of physical models and equations.

4.2 Transport equations
Depending on the device under investigation and the level of modeling accuracy required, the user can select
four different simulation modes:

Drift-diffusion Isothermal simulation, described by basic semiconductor equations. Suitable for low-
power density devices with long active regions.

Thermodynamic Accounts for self-heating. Suitable for devices with low thermal exchange,
particularly, high-power density devices with long active regions.

Hydrodynamic Accounts for energy transport of the carriers. Suitable for devices with small active
regions.

Monte Carlo Allows for full band Monte Carlo device simulation in the selected window of the
device.

The equations for the drift-diffusion, thermodynamic, and hydrodynamic modes are presented in this section.

The Monte Carlo mode allows the Boltzmann transport equation to be solved in a selected window of the
device. Monte Carlo simulation is provided by the device simulator SPARTA™ (see the SPARTA manual for
more information).

The equations are formulated initially under the assumption of Boltzmann statistics for electrons and holes.
See Section 4.4 on page 15.137 for a description of the corresponding equations for Fermi–Dirac statistics.

The transport model can be selected independently for either carrier in DESSIS, or transport can be neglected
by assuming a constant quasi-Fermi level for a nonselected carrier. The same applies for the energy balance
equation. If it is solved for the temperature of one carrier only, the temperature of the other carrier is assumed
to be equal to the lattice temperature. The Solve statement (see Section 2.9 on page 15.54) specifies the set of
equations be solved.
 15.127

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
4.2.1 Basic equations for semiconductor device simulation

The three governing equations for charge transport in semiconductor devices are the Poisson equation and the
electron and hole continuity equations. The Poisson equation is:

(15.19)

where is the electrical permittivity, q is the elementary electronic charge, n and p are the electron and hole
densities, and ND+ is the number of ionized donors, and NA– is the number of ionized acceptors.

The keyword for the Poisson equation is Poisson. The keywords for the electron and hole continuity equations
are electron and hole, respectively. For example, in the Coupled command, they are written as:

 (15.20)

where R is the net electron–hole recombination rate (see Chapter 9 on page 15.201), is the electron current
density, and is the hole current density.

4.2.2 Drift-diffusion model

The drift-diffusion model is widely used for the simulation of carrier transport in semiconductors and is
defined by the basic semiconductor equations (see Section 4.2.1), where current densities for electrons and
holes are given by:

(15.21)

(15.22)

where and are the electron and hole mobilities (see Chapter 8 on page 15.175), and and are the
electron and hole quasi-Fermi potentials, respectively (see Section 4.3 on page 15.136).

4.2.3 Thermodynamic model

The thermodynamic (or nonisothermal) model [2] extends the drift-diffusion approach to account for
electrothermal effects, under the assumption that the charge carriers are in thermal equilibrium with the
lattice. Therefore, the carrier temperatures and the lattice temperature are described by a single temperature .

4.2.3.1 Model description

The thermodynamic model is defined by the basic set of partial differential equations (Eq. 15.19) and
(Eq. 15.20), and the lattice heat flow equation (Eq. 15.25). The relations (Eq. 15.21) and (Eq. 15.22) are
generalized to include the temperature gradient as a driving term:

(15.23)

ε∇ ψ∇⋅ q p n– N
D+ N

A -––+⎝
⎛

⎠
⎞–=

ε

∇ Jn⋅ qR q t∂
∂n+= ∇ Jp⋅– qR q t∂

∂p+=

Jn
Jp

Jn nqµn φn∇–=

Jp pqµp φp∇–=

µn µp φn φp

T

Jn nqµn φn∇ Pn T∇+()–=
15.128

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.24)

where and are the absolute thermoelectric powers [11] (see Section 24.5 on page 15.367). For accurate
simulation of self-heating effects, this extra driving force for the current can be included by specifying the
keyword Thermodynamic in the Physics section of the input file.

To calculate the temperature distribution in the device due to self-heating, the following equation is solved:

(15.25)

where is the thermal conductivity (see Section 24.3 on page 15.366) and c is the lattice heat capacity (see
Section 24.1 on page 15.365). and are the conduction and valence band energies, respectively, and
is the recombination rate.

4.2.3.2 Syntax and implementation

To activate a nonisothermal simulation, the keyword Temperature (synonyms are LatticeTemperature or
LTemperature) must be specified inside the Coupled command of the Solve section (see Section 2.9 on
page 15.54). To activate extra terms in the current density equations (due to the gradient of the temperature),
the keyword Thermodynamic must be specified in the Physics section of the input file. Without Thermodynamic
(and Temperature still included in the Solve section), DESSIS uses (Eq. 15.26) and (Eq. 15.27) instead of
(Eq. 15.23) and (Eq. 15.24), and uses (Eq. 15.30) instead of (Eq. 15.25) (see Section 4.2.4 on page 15.130).

DESSIS allows the total heat generation rate to be plotted and the separate components of the total heat to be
estimated and plotted. The total heat generation rate is the term on the right-hand side of (Eq. 15.25). It is
plotted using the TotalHeat keyword in the Plot section of the DESSIS input file. The total heat is calculated
only when DESSIS solves the temperature equation.

The formulas to estimate individual heating mechanisms and the appropriate keywords for use in the
Section 2.6 on page 15.52 of the DESSIS input file are shown in Table 15.53. The individual heat terms that
are used for plotting and that are written to the .log file are less accurate than those DESSIS uses to solve the
transport equations. They serve as illustrations only.

Table 15.53 Terms and keywords used in Plot section of command file

Heat name Keyword Formula

Electron Joule heat eJouleHeat

Hole Joule heat hJouleHeat

Recombination heat RecombinationHeat

Jp pqµp φp∇ Pp T∇+()–=

Pn Pp

c
t∂

∂T ∇ κ⋅ T∇– ∇ PnT φn+()Jn PpT φp+()Jp+[] EC
3
2
---kBT+⎝ ⎠

⎛ ⎞ ∇ Jn

Ev
3
2
---– kBT⎝ ⎠

⎛ ⎞ ∇ Jp qR EC EV– 3kBT+()+⋅–

⋅–⋅–=

κ
EC EV R

Jn
2

qnµn

Jp
2

qpµp

qR φp φn– T Pp Pn–()+()
 15.129

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
To plot the lattice heat flux vector , specify the keyword lHeatFlux in the Plot section (see Section 2.6 on
page 15.52).

4.2.4 Hydrodynamic model

With continued scaling into the deep submicron regime, neither internal nor external characteristics of state-
of-the-art semiconductor devices can be described properly using the conventional drift-diffusion transport
model. In particular, the drift-diffusion approach cannot reproduce velocity overshoot and often overestimates
the impact ionization generation rates. The Monte Carlo method for the solution of the Boltzmann kinetic
equation is the most general approach, but because of its high computational requirements, it cannot be used
for the routine simulation of devices in an industrial setting.

In this case, the hydrodynamic (or energy balance) model provides a very good compromise. Since the work
of Stratton [12] and Bløtekjær [13], there have been many variations of this model [15]–[29]. The full
formulation, including the so-called convective terms [16], consists of eight partial differential equations
(PDEs) [3][14][17], while the simpler form (no convective terms) includes six PDEs [18]–[20][28].

4.2.4.1 Syntax and implementation

To perform a hydrodynamic simulation, the keyword eTemperature (synonym ElectronTemperature) or
hTemperature (synonym HoleTemperature) must be specified inside the Coupled command of the Solve section
(see Section 2.9 on page 15.54).

In addition, to activate the hydrodynamic model, the keyword Hydrodynamic (or Hydro) must be specified in the
Physics section. If only one carrier temperature equation is to be solved, Hydro must be specified with the
appropriate parameter, either Hydro(eTemp) or Hydro(hTemp). If the hydrodynamic model is not activated for a
particular carrier type, DESSIS merges the temperature for this carrier with the lattice temperature. That is,
these temperatures are equal, and their heating terms (see the right-hand sides of (Eq. 15.28), (Eq. 15.29), and
(Eq. 15.30)) are added.

By default, DESSIS energy conservation equations do not include generation–recombination heat sources. To
activate them, the keyword RecGenHeat must be specified in the Physics section.

To plot the electron, hole, and lattice heat flux vectors (see (Eq. 15.31), (Eq. 15.32), and
(Eq. 15.33)), specify the corresponding keywords eHeatFlux, hHeatFlux, and lHeatFlux in the Plot section (see
Section 2.6).

Thomson plus Peltier heat [156] ThomsonHeat

Peltier heat PeltierHeat

Table 15.53 Terms and keywords used in Plot section of command file

Heat name Keyword Formula

Jn T Pn∇⋅ ⋅– Jp T Pp∇⋅ ⋅–

T
Pn∂
n∂

---------Jn ∇n
Pp∂
p∂

---------Jp ∇p⋅+⋅⎝ ⎠
⎛ ⎞–

κ T∇

Sn Sp SL, ,
15.130

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
4.2.4.2 Physical model description

The transport model implemented in DESSIS is based on the approach involving the solution of six PDEs. In
the hydrodynamic model, the carrier temperatures and are assumed to not equal the lattice temperature

. Together with basic semiconductor equations, up to three additional equations can be solved to find the
temperatures. In general, the model consists of the basic set of PDEs (the Poisson equation and continuity
equations, see Section 4.2.1 on page 15.128) and the energy conservation equations for electrons, holes, and
the lattice.

In the hydrodynamic case, current densities are defined as:

(15.26)

(15.27)

where and are the conduction and valence band energies, respectively. The first term takes into
account the contribution due to the spatial variations of electrostatic potential, electron affinity, and the band
gap. The three remaining terms in (Eq. 15.26) and (Eq. 15.27) take into account the contribution due to the
gradient of concentration, the carrier temperature gradients, and the spatial variation of the effective masses

 and .

The energy balance equations read:

(15.28)

(15.29)

(15.30)

where the energy fluxes are:

(15.31)

(15.32)

(15.33)

(15.34)

Tn Tp
TL

Jn qµn n∇EC kBTn∇n fn
tdkBn∇Tn 1.5nkBTn∇ meln–+ +⎝ ⎠

⎛ ⎞=

Jp qµp p∇EV kBTp∇p– fp
tdkBp∇Tp– 1.5pkBTp∇ mhln–⎝ ⎠

⎛ ⎞=

EC EV

me mh

∂Wn
∂t

---------- ∇ Sn⋅+ Jn ∇EC⋅
dWn
dt

coll

+=

∂Wp
∂t

---------- ∇ Sp⋅+ Jp ∇EV⋅
dWp
dt

coll

+=

∂WL
∂t

----------- ∇ SL⋅+
dWL

dt

coll
=

Sn
5rn
2

kBTn

q
------------Jn fn

hfκn̂ Tn∇+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

Sp
5rp
2

k– BTp
q

---------------Jp fp
hfκp̂ Tp∇+

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

SL κL TL∇–=

κ̂n
kB

2

q
-----nµnTn=
 15.131

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.35)

The parameters are accessible in the DESSIS parameter file. Different values of these
parameters can significantly influence the physical results, such as velocity distribution and possible spurious
velocity peaks. By changing these parameters, DESSIS can be tuned to a very wide set of hydrodynamic/
energy balance models as described in the literature, from Stratton to Bløtekjær [12][13][24][28][29]. The
DESSIS default parameter values are:

(15.36)

(15.37)

(15.38)

This model corresponds to the energy balance formulation originated by Stratton [12] and takes into account
that the microscopic relaxation time has the form where is the mean carrier energy. The default
constants were obtained for ν = –1, which means that the carrier mobility is inversely proportional to the
carrier temperature.

By changing constants and rn, the convective contribution can be changed to the flux and constant in
the Widemann–Franz law:

(15.39)

because following from (Eq. 15.31), convective contributions and diffusive contributions to the flux are equal
to:

and (15.40)

respectively.

With the DESSIS default set of transport parameters, (Eq. 15.39) has the form:

(15.41)

If the hydrodynamic model is based on the Bløtekjær approach, the parameters should be:

 , (15.42)

The collision terms are expressed by this set of equations:

(15.43)

κ̂p
kB

2

q
-----pµpTp=

rn rp fn
td fp

td fn
hf and fp

td, , , , ,

rn rp 0.6= =

f td
n f td

p 0= =

f hf
n f hf

p 1= =

τ~Eν E

f hf
n Cn

κn
5
2
--- Cn+

⎝ ⎠
⎜ ⎟
⎛ ⎞ kB

2

q
---------nµnTn=

5rn
2

kBTn

q
------------Jn–

5rn
2

--------fn
hfκn̂ Tn∇–

κn
3
2

kB
2

q
-----nµnTn⋅=

fn
td fp

td fn
hf fp

hf 1= = = = rn rp 1= =

td
dWn

coll
Hn–

Wn Wn0–
τen

-----------------------–=
15.132

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.44)

(15.45)

Here, , , and are the energy gain/loss terms due to generation–recombination processes. The
expressions used for these terms are based on approximations [20] and have the following form for the major
generation–recombination phenomena:

(15.46)

(15.47)

(15.48)

where:

 is the Shockley–Read–Hall (SRH) recombination rate (see Section 9.1 on page 15.201).

 is the radiative recombination rate (see Section 9.6 on page 15.211).

 and are Auger recombination rates (see Section 9.7 on page 15.212) related to electrons and holes.

 and are impact ionization rates (see Section 9.9 on page 15.213).

 and are the recombination rates through trap levels (see Chapter 10 on page 15.225).

Surface recombination is taken into account in a way similar to bulk SRH recombination. Usually, the
influence of , , and is small, so they are not activated by default. To take these energy sources into
account, the keyword RecGenHeat must be specified in the Physics section.

The energy densities , , and are given by:

(15.49)

(15.50)

(15.51)

and the corresponding equilibrium energy densities are:

(15.52)

td
dWp

coll
Hp–

Wp Wp0–
τep

-----------------------–=

td
dWL

coll
HL

Wn Wn0–
τen

Wp Wp0–

τep
-----------------------+ +=

Hn Hp HL

Hn 1.5kBTn RSRH Rrad+() Rn
trap+() Eg Rn

A Gn
ii–()+=

Hp 1.5kBTp RSRH Rrad+() Rp
trap+() Eg Rp

A Gp
ii–()+=

HL RSRH 0.5 Rn
trap Rp

trap+()+[] Eg 1.5kBTn 1.5kBTp+ +()=

RSRH

Rrad

Rn
A Rp

A

Gn
ii Gp

ii

Rn
trap Rp

trap

Hn Hp HL

Wn Wp WL

Wn nwn n
3kBTn

2

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

Wp pwp p
3kBTp

2

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

WL cLTL=

Wn0 nw0 n
3kBTL

2
---------------= =
 15.133

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.53)

If the hydrodynamic model is only used for one carrier, the temperature of the other carrier is set to the lattice
temperature. In this case, the hydrodynamic equations are reformulated to reflect this. For example, if the
hydrodynamic option is only applied to the electrons, the Joule heat generated by the hole current is directly
captured in the lattice temperature equation.

4.2.4.3 Physical model parameters

The default set of transport coefficients ((Eq. 15.36) to (Eq. 15.38)) can be changed in the parameter file. The
coefficients r, , and are specified in the EnergyFlux, ThermalDiffusion, and HeatFlux sections, respectively.
Energy relaxation times can be modified in the EnergyRelaxationTime section of the parameter file.

4.2.5 Conductivity of metals

The simulation of conductivity in metals or semi-metals is important for interconnection problems in ICs. The
current density in metals is given by:

(15.54)

where is the metal conductivity and is the Fermi potential in the metal. For the steady state case,
. Therefore, the equation for the Fermi potential inside of metals is:

(15.55)

The following boundary conditions are used:

At contacts connected to metal regions, the Dirichlet condition is applied for the Fermi
potential.

Interface conditions always include the displacement current in insulators and semiconductors to
ensure current conservation.

For interfaces between metal and insulator, the equations are:

(15.56)

where is the electrostatic potential (solution of the Poisson equation in insulator and semiconductor
regions), is the work function difference between the metal and an intrinsic
semiconductor selected (internally by DESSIS) as a reference material, and is the unit normal vector
to the interface. It is clear that the electrostatic potential inside metals is computed as . This is
important if, for example, there is a MOSFET with a metal gate.

Wp0 pw0 p
3kBTL

2
---------------= =

ftd fhf

jM q– σ∇ψM=

σ ψM
∇jM 0=

∇ σ∇ψM() 0=

ψM Vapplied=

jD

jM n⋅ jD n⋅=

ψ ψM Φ– MS=

ψ
ΦMS ΦM ΦS–= ΦM

ΦS n
ψ ψM Φ– MS=
15.134

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
For metal–semiconductor interfaces, by default, there is an Ohmic boundary condition that can be written as:

(15.57)

where is the equilibrium electrostatic potential (the built-in potential), are the electron and hole
equilibrium concentrations (see Section 4.5.1.1 on page 15.138), and are the electron and hole
currents at the semiconductor side of the interface.

There are several options for the Schottky interface (see equations in Section 4.5.1.3 on page 15.140) where
the potential barrier between metal and semiconductor will be computed automatically and the barrier
tunneling (see Section 16.4 on page 15.306) and barrier lowering (see Section 4.5.1.4 on page 15.141) models
can be applied. To select these models, use the following syntax in the input file:

Physics(MaterialInterface = "Metal/Silicon") { Schottky eRecVel=1e6 hRecVel=1e6 }
Physics(MaterialInterface = "Metal/Silicon") { Schottky BarrierLowering }
Physics(MaterialInterface = "Metal/Silicon") { Schottky Recombination(BarrierTunneling) }

For all other metal boundaries, the Neumann condition is applied.

NOTE By default, DESSIS computes output currents through a contact (on semiconductors) using doping
regions, but for metals such regions do not exist (see Section 2.10.1 on page 15.73). Therefore, if
the contact is located on the metal, the keyword DirectCurrentComputationAtContact should be
specified in Math section. In an opposite case, the current through this contact will be zero.

Knowing that , where is the metal resistivity, the following temperature dependence is applied for
:

(15.58)

All these resistivity parameters can be specified in the DESSIS parameter file as:

MetalResistivity {
* Resist(T) = Resist0 * (1 + TempCoef * (T - 273))

Resist0 = <value> # [Ohm*cm]
TempCoef = <value> # [1/K]

}

To specify the metal workfunction , use the Bandgap section in the parameter file, for example:

Material = "Gold" {
Bandgap{ WorkFunction = # [eV]

}

No specific keyword is required in the DESSIS input file because DESSIS recognizes all conductor regions
and applies the appropriate equations to these regions and interfaces. The metal conductivity equation
(Eq. 15.55) is a part of the Contact equation, which is added automatically by default. If the
NoAutomaticCircuitContact keyword is specified in the Math section or only the Poisson equation is solved, the
Contact equation should be added explicitly in the Coupled statement to account for conductivity in metals.

jM n⋅ jn jp jD+ +() n⋅=

ψ ψM ψ0+=

n n0=

p p0=

ψ0 n0 and p0
jn and jp

jM n⋅ 0=

σ 1 ρ⁄= ρ
ρ

ρ ρ0 1 αT T 273–()+()=

ΦM

ΦM
 15.135

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
To switch off the metal conductivity, specify the following keyword in the Math section:

Math{ -MetalConductivity }

The thermal conductivity of metals is simulated according to the thermodynamic model with the Joule heat:

(15.59)

where κ is the lumped electron–hole–lattice thermal conductivity (see Section 24.5 on page 15.367) and c is
the lattice heat capacity (see Section 24.1 on page 15.365). If it is switched off, the metal conductivity
provides zero RHS of (Eq. 15.59). However, a heat flow in metals is simulated.

4.3 Quasi-Fermi potential
Electron and hole densities can be recomputed from the electron and hole quasi-Fermi potentials, and vice
versa, using well-known formulas. If Boltzmann statistics are assumed, these formulas read:

 (15.60)

 (15.61)

where and are the effective density of states, and are the quasi-Fermi
energies for electrons and holes, and and are electron and hole quasi-Fermi potentials, respectively.

 and are conduction and valence band edges, defined as:

 (15.62)

 (15.63)

where denotes the electron affinity and the band gap.

Possible band-gap narrowing is described by ∆Εg,C/V. Electrostatic potential is computed from an arbitrarily
defined reference potential . For pure materials and, in particular, for silicon, the standard approach is to
set the reference potential equal to the Fermi potential of an intrinsic semiconductor. Then, (Eq. 15.60) and
(Eq. 15.61) can be written as:

(15.64)

(15.65)

where ni,eff is the effective intrinsic density.

c t∂
∂T ∇ κ⋅ T∇– ∇ψM jM⋅–=

n NC

EFn
EC–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

p NV

EV EFp
–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

NC NV EFn
qΦn–= EFp

qΦp–=
Φn Φp

EC EV

EC χ– ∆Eg C, q ψ ψref–()–+=

EV χ– Eg– ∆Eg V, q ψ ψref–()–+=

χ Eg

ψ
ψref

n ni eff,
q Φn ψ–()–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅=

p ni eff,
q Φp ψ–()

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅=
15.136

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
In unipolar devices, such as MOSFETs, it is sometimes possible to assume that the value of quasi-Fermi
potential for the minority carrier is constant in certain regions. In this case, the concentration of the minority
carrier can be directly computed from (Eq. 15.64) or (Eq. 15.65). This strategy is applied in DESSIS if one of
the carriers (electron or hole) is not specified inside the Coupled statement of the Solve section. DESSIS uses
an approximation scheme to determine the constant value of the quasi-Fermi potential.

NOTE In many cases if avalanche generation is important, the one carrier approximation cannot be
applied even for unipolar devices.

4.4 Fermi–Dirac statistics
For the equations presented in the previous sections, Boltzmann statistics for the electrons and holes were
assumed. In a more general consideration, the Fermi–Dirac distribution function can be used. Fermi–Dirac
statistics become important for high values of carrier densities, for example, /cm3 in the active
regions of a silicon device.

The Boltzmann kinetic equation with the function of the Fermi–Dirac equilibrium distribution shows that
(Eq. 15.60) and for (Eq. 15.61) for electron and hole concentrations must be replaced by:

 (15.66)

 (15.67)

where is the Fermi integral of order 1/2.

In place of (Eq. 15.64) and (Eq. 15.65), the following equations are valid with Fermi–Dirac statistics:

(15.68)

(15.69)

where and are the functions of and :

(15.70)

(15.71)

(15.72)

n 1 19×10>

n NCF1 2⁄

EFn
EC–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

p NVF1 2⁄

EV EFp
–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

F1 2⁄

n ni eff, γn⋅
q Φn ψ–()–

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

p ni eff, γp⋅
q Φp ψ–()

kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

γn γp ηn ηp

γn
n

NC
------- ηn–()exp=

γp
p

NV
------- ηp–()exp=

ηn

EFn
E–

C
kTn

---------------------=
 15.137

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.73)

In the case of Fermi–Dirac statistics, important changes must be made to the current density and energy flux
equations. (Eq. 15.26) and (Eq. 15.31) for the electron current density and electron energy flux density are
replaced, respectively, by:

(15.74)

(15.75)

where:

(15.76)

Similar changes are made in (Eq. 15.27) and (Eq. 15.32) for the hole current density and hole energy flux
density, respectively.

4.4.1 Syntax and implementation

To activate Fermi statistics, the keyword Fermi must be specified in the global Physics section of the input file:

Physics {
...
Fermi

}

NOTE Fermi statistics can be activated only for the whole device. Region-specific or material-specific
activation is not possible, and the keyword Fermi is ignored in any Physics section other than the
general one. For heterostructures, the keyword Fermi must appear in the general Physics section.

4.5 Boundary conditions

4.5.1 Electrical boundary conditions

4.5.1.1 Ohmic contacts

Charge neutrality and equilibrium are assumed at the electrodes for Ohmic contacts:

(15.77)

ηp

EV EFp
–

kTp
---------------------=

Jn µn qn∇EC KBTn∇n nKBTn∇ γnln()– λnfn
tdKBn∇Tn 1.5nKBTn∇ meln–+ +⎝ ⎠

⎛ ⎞=

Sn
5
2
---rnλn

kBTn
q

------------Jn fn
hfκn

ˆ Tn∇+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

λn
F1 2⁄ ηn()
F 1 2⁄– ηn()
-------------------------=

n0 p0– ND NA–=
15.138

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
(15.78)

In the case of Boltzmann statistics, this system of equations is easily solved:

(15.79)

 , (15.80)

where are the electron and hole equilibrium concentrations, and is the Fermi potential at the contact
that is equal to an applied voltage if it is not a resistive contact (see Section 4.5.1.5 on page 15.141).
If users select Fermi–Dirac statistics, DESSIS uses a Newton iteration scheme to obtain the equilibrium
solution.

By default, are applied for concentrations at the Ohmic contacts. If the electron or hole
recombination velocity is specified, DESSIS converts the conditions stated above to the following current
boundary conditions:

(15.81)

where are the electron and hole recombination velocities. In the input file, the recombination velocities
can be specified as:

Electrode { ...
{ Name="Emitter" Voltage=0 eRecVelocity = hRecVelocity = }

}

4.5.1.2 Gate contacts

For gate contacts, the electrostatic potential is taken as:

(15.82)

where is the Fermi potential at the contact that is equal to an applied voltage if it is not a resistive
contact (see Section 4.5.1.5 on page 15.141), and is the work function difference between
the metal and semiconductor relative to an intrinsic semiconductor, given by the user in the Barrier or
WorkFunction parameter (see Table 15.3 on page 15.39). In the Electrode section, the Barrier or WorkFunction
can be specified as:

Electrode { ...
{ Name="Gate" Voltage=0 Barrier = ΦMS }

}
Electrode { ...

{ Name="Gate" Voltage=0 WorkFunction = ΦM }
}

It is possible to use a material name to define the work function, for example:

Electrode { ...
{ Name="Gate" Voltage=0 Material="Gold" }

}

n0p0 ni eff,
2=

ψ φF
kT
q

------⎝ ⎠
⎛ ⎞ ND NA–

2ni eff,

⎝ ⎠
⎜ ⎟
⎛ ⎞

asinh+=

n0
ND NA–()2

4
---------------------------- ni eff,

2+
ND NA–

2
--------------------+= p0

ND NA–()2

4
---------------------------- ni eff,

2+
ND NA–

2
--------------------–=

n0 p0, φF
Vapplied

n n0 p, p0= =

Jn N⋅ qvn n n0–()= Jp N⋅ qvp p p0–()–=

vn vp,

vn vp

ψ φF ΦMS–=

φF Vapplied
ΦMS ΦM ΦS–=
 15.139

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
In the DESSIS parameter file, the value ΦM for the work function can be specified as:

Material = "Gold" {
Bandgap { WorkFunction = ΦM }

}

NOTE If Material or WorkFunction is specified for an Ohmic contact that is in contact with both the
semiconductor and insulator, the electrostatic potential will be equal to the built-in potential at
semiconductor nodes, but for insulator nodes, it will correspond to (Eq. 15.82).

If the user needs to emulate a poly-semiconductor gate, a semiconductor material and doping concentration
can be specified in the Electrode section:

Electrode { ...
{ Name="Gate" Voltage=0 Material="Silicon" (N = 5e19) }

}

where N is used to specify the doping in an n-type semiconductor material. The built-in potential is
approximated by the standard expression (kT/q)ln(N/ni). A p-type doping can be selected, similarly, by the
letter P. If the value of doping concentration is not specified (only N or P), an edge of conduction or valence
band is used to compute the built-in potential.

4.5.1.3 Schottky contacts

The physics of Schottky contacts is considered in detail in [4] and [197]. In this section, a typical model for
Schottky contacts [92] is considered. The following boundary conditions hold:

(15.83)

 (15.84)

(15.85)

where is the Fermi potential at the contact that is equal to an applied voltage if it is not a resistive
contact (see Section 4.5.1.5 on page 15.141), is the barrier height (the difference between the metal work
function and the electron affinity of the semiconductor), and are the thermionic emission velocities, and

 and are the equilibrium densities. The default values for the thermionic emission velocities and
are 2.573 x 106 cm/s and 1.93 x 106 cm/s, respectively. The recombination velocities can be set in the
Electrode section, for example:

Electrode { ...
{ Name="Gate" Voltage=0 Schottky Barrier = ΦB eRecVelocity = hRecVelocity = }

}

ψ φF ΦB– kT
q

Nc

ni eff,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln+=

Jn N⋅ qvn n n0
B–()= Jp N⋅ qvp p p0

B–()–=

n0
B Nc

qΦB–
kT

--------------⎝ ⎠
⎛ ⎞exp= p0

B Nv
Eg qΦB+–

kT
---------------------------⎝ ⎠

⎛ ⎞exp=

φF Vapplied
ΦB

vn vp
n0

B p0
B vn vp

vn vp
15.140

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
NOTE The Barrier specification can produce wrong results if the Schottky contact is connected to several
different semiconductors. In such cases, use the specification WorkFunction = ΦM instead of Barrier=
ΦB. See Section 4.5.1.2 on page 15.139 for information about gate contacts for the specification of
metal materials.

4.5.1.4 Barrier lowering at Schottky contacts

The barrier lowering model can be applied to a Schottky contact. This model is useful with different physical
mechanisms. The most important one is the image force [92], but the model can also be applied to some
tunneling and dipole effects. The following expression is used to compute the value of the barrier lowering:

(15.86)

where E is the absolute value of the electric field [V/cm], is equal to 1 V/cm, is the equilibrium electric
field used to have at the equilibrium, and a1, a2, p1, and p2 are model coefficients that can be
specified in the DESSIS parameter file.

The final value of the Schottky barrier is computed as for n-doped contacts and
for p-doped contacts, because a difference between the metal work function and the valence band must be
considered if holes are major carriers. The barrier lowering also affects the equilibrium concentration of
electrons and holes corresponding to its formula (Eq. 15.85).

To activate the barrier lowering model, create a new Physics section for each selected Schottky contact, for
example:

Physics(Electrode = "Gate") { BarrierLowering }

To specify parameters of the model, create the following section in the DESSIS parameter file:

Electrode = "Gate"{
BarrierLowering {
a1 = a1 [eV]
p1 = p1 [1]
a2 = a2 [eV]
p2 = p2 [1]
}

}

4.5.1.5 Resistive contacts

If is applied to the contact through a resistor (Resist in the Electrode section) or distributed
resistance (DistResist in the Electrode section, see units in Section 2.3.1 on page 15.39), there is an
additional equation to compute in (Eq. 15.79), (Eq. 15.82), and (Eq. 15.84).

∆ΦB E() a1
E
E0
------⎝ ⎠

⎛ ⎞
p1 Eeq

E0
--------⎝ ⎠

⎛ ⎞
p1

– a2
E
E0
------⎝ ⎠

⎛ ⎞
p2 Eeq

E0
--------⎝ ⎠

⎛ ⎞
p2

–+=

E0 Eeq
∆ΦB 0=

ΦB ∆ΦB E()– ΦB ∆ΦB E()+

n0
B p0

B

Vapplied R
Rd

φF
 15.141

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
For a distributed resistance, is different for each mesh vertex of the contact and is computed as a solution
of the following equation, which is solved for each contact vertex self-consistently with the system of all
equations:

(15.87)

For a resistor, is a constant over the contact and only one of the following equations per contact is solved
self-consistently with the system of all equations:

(15.88)

where is a contact area used in a DESSIS simulation to compute a total current through the contact.

NOTE In 2D simulations, is a line along the contact. Therefore, should be in units of *<length>
(*µm in the input file). However, in 3D, it is (see Section 2.3.1 on page 15.39).

(Eq. 15.87) and (Eq. 15.88) are written for the steady state. In the case of a transient simulation, the
displacement current is added to the equations.

From emulating a behavior of a Schottky contact [173], Schottky contact resistivity at zero bias was derived
and a doping-dependent resistivity model of such contacts was obtained. This model is applied to Ohmic
contacts and is activated by the keyword DistResist = SchottkyResist in the Electrode section. The model is
expressed as:

(15.89)

where:

 is the Schottky barrier (in this model, for electrons, this is the difference between the metal work
function and the electron affinity of the semiconductor; for holes, this is the difference between the
valence band energy of the semiconductor and the metal work function).

 is the Schottky resistance for an infinite doping concentration at the contact (or zero Schottky barrier).

 is the doping concentration equal to at the contact.

 is the semiconductor permittivity.

 is the tunneling mass.

 is the device lattice temperature defined in the Physics section (see Table 15.7 on page 15.44).

φF

N Jp φF() Jn φF()+()⋅
Vapplied φF–()

Rd
-------------------------------------=

φF

N Jp φF() Jn φF()+()⋅ sd
s
∫

Vapplied φF–()
R

-------------------------------------=

s

s R Ω
Ω Ω

Rd R∞
qΦB
E0

-----------⎝ ⎠
⎛ ⎞exp=

E0 E00
E00
kT
--------⎝ ⎠

⎛ ⎞cosh=

E00
qh
4π
------ N

εsmt
----------=

ΦB

R∞

N ND NA–

εs

mt

T

15.142

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
The parameters of the model can be specified in the Electrode section of the DESSIS parameter file. The
allowed syntax and recommended default values of these parameters [173] are:

SchottkyResistance {
Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
PhiB = 0.6 , 0.51 # [eV]
mt = 0.19 , 0.16 # [1]

}

The model is applied to each contact vertex and checks the sign of the doping concentration . If the sign is
positive, the electron parameters are used to compute for the vertex. If the sign is negative, the hole
parameters are used.

4.5.1.6 Floating metal gates

The charge on a floating contact (for example, a floating gate in an EEPROM cell) is specified in the Electrode
section:

Electrode { ...
{ name="FloatGate" charge=1e-15 }

}

In the case of a floating metal gate (that is defined only by a contact with no associated semiconductor region),
the electrostatic potential is determined by solving the Poisson equation with the following charge boundary
condition:

(15.90)

where is the normal vector on the floating contact surface S, and Q is the specified charge on the floating
contact. The electrostatic potential on the floating contact surface is assumed to be constant.

An additional floating or control gate capacitance is necessary if, for example, EEPROM cells are simulated
in a 2D approximation, to account for the additional influence on the capacitance from the real 3D layout. The
additional floating gate capacitance can be specified in the Electrode statement using the keyword FGcap.

For example, if we have ContGate and FloatGate electrodes, additional ContGate/FloatGate capacitance is
specified for the floating electrode:

Electrode {
{ name="ContGate" voltage=10 }
{ name="FloatGate" charge=0 FGcap=(value=3e-15 name="ContGate") }

}

where value is the capacitance value between FloatGate and the electrode ContGate. For the 1D case, the
capacitance units are [F/µm2]; for the 2D case, [F/µm]; and for the 3D case, [F]. The FloatGate electrodes can
have several capacitance values for different electrodes, for example:

Electrode {
{ name="source" voltage=0 }
{ name="ContGate" voltage=10 }
{ name="FloatGate" charge=0 FGcap((value=3e-15 name="ContGate") (value=2e-15 name="source") }

}

In the case of a transient simulation, DESSIS takes the charge specified in the Electrode section as an initial
condition. After each time step, the charge is updated due to tunneling and hot carrier injection currents. For

N
Rd

εn∇Ψ Sd∫ Q=

n
ΨFC ΨS=
 15.143

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
a description of tunneling and hot carrier injection, see Chapter 16 on page 15.299 and Chapter 17 on
page 15.317.

4.5.1.7 Floating semiconductor gates

DESSIS can simulate floating semiconductor gates. Within a floating semiconductor (as opposed to metal)
gate, DESSIS solves the Poisson equation with the following charge boundary condition:

(15.91)

where denotes the total charge on the floating gate. The integral is calculated over all nodes of the
floating gate region [127]. The charge is a boundary condition that must be specified in a DESSIS
Electrode statement in exactly the same way as for a floating metal gate:

Electrode {
{ name="floating_gate" Charge=1e-14 }

}

DESSIS automatically identifies a floating semiconductor gate based on information in the geometry (.grd)
file. It is not necessary for the charge contact to cover the entire boundary of the floating semiconductor gate.
A small contact is sufficient if the gate material has the same doping type throughout. However, if both n-type
and p-type volumes exist in the gate region, separate contacts are required for each.

It is assumed that no current flows within the floating gate. Therefore, the quasi-Fermi potential for electrons
and holes must be identical and constant within the floating gate:

(15.92)

Therefore, the electron and hole densities and are functions of the electrostatic potential and the quasi-
Fermi potential as discussed in Section 4.3 on page 15.136 and Section 4.4 on page 15.137. DESSIS does
not solve the electron and hole continuity equations within a floating gate. For a steady state simulation, the
charge of the floating gate must be specified as a boundary condition in the Electrode section. However, it is
also possible to use the charge as a goal in a Quasistationary command:

Quasistationary (Goal {Name="floating_gate" Charge = 1e-13})
{ Coupled {Poisson Electron} }

In the case of a transient simulation, DESSIS takes the charge specified in the Electrode section as an initial
condition. After each time step, the charge is updated due to tunneling currents. For a description of tunneling
models and how to enable them, see Chapter 16 on page 15.299 and Chapter 17 on page 15.317.

The floating gate capacitance can be specified in the Electrode statement in exactly the same way as for the
floating metal gate (see Chapter 4.5.1.6 on page 15.143).

For plotting purposes, floating semiconductor gates are handled differently than other electrodes:

The charge of the floating gate is displayed instead of the voltage.

In the plot file, the value of the quasi-Fermi potential is used instead of the voltage.

q p n– ND NA–+() Vd
FG
∫ QFG=

QFG
QFG

φn φp φ= =

n p ψ
φ

φ

15.144

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
4.5.1.8 Boundaries without contacts

All other boundaries are treated with reflective (or ideal Neumann) boundary conditions:

(15.93)

(15.94)

4.5.2 Thermal boundary conditions for thermodynamic model

For the solution of (Eq. 15.22), proper thermal boundary conditions must be applied. Wachutka [30] is
followed, but the difference in thermo-powers between the semiconductor and metal at Ohmic contacts is
neglected. For free, thermally insulating surfaces:

(15.95)

where N denotes a unit vector in the direction of the outer normal.

At thermally conducting interfaces, thermally resistive (nonhomogeneous Neumann) boundary conditions are
imposed:

(15.96)

where h = 1/Rth is the thermal surface conductance (heat transfer coefficient), which characterizes the thermal
contact between the semiconductor and adjacent material, and Rth is the external thermal resistance. For the
special case of an ideal heat sink (), Dirichlet boundary conditions are imposed:

(15.97)

Dirichlet and nonhomogeneous Neumann boundary conditions (Rth) are specified in the DESSIS input file in
the Thermode section (see Section 2.4 on page 15.42).

4.5.3 Thermal boundary conditions for hydrodynamic model

Boundary conditions for the lattice temperature in the hydrodynamic model are specified in the same way
as thermal boundary conditions for the thermodynamic model (see Section 4.5.2). For the carrier temperatures

 and , at the electrical contacts, fast relaxation to the lattice temperature (boundary condition
) is assumed.

For other boundaries, adiabatic conditions for carrier temperatures are assumed:

(15.98)

F N⋅ 0=

Jn N⋅ 0= Jp N⋅ 0=

κ N∂
∂T 0=

κ N∂
∂T h Text T–()=

h ∞→

T Text=

TL

Tn Tp
Tn Tp TL= =

κn N∂
∂Tn κp N∂

∂Tp 0= =
 15.145

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
4.5.4 Total thermal resistance

The thermal behavior of a semiconductor device is described in industry-standard nomenclature by the
thermal resistance Rja from the ‘junction’ or electrically active, heat-producing area of the device, to the
‘ambient’ or environment. The maximum device temperature at given operating conditions depends on Rja.
For self-heating simulations, Rja can be broken down into an internal component that is taken into account
through the thermal conductivity κ in (Eq. 15.22), and an external component that is defined by Rth and
provided by the user.

The determination of Rth can be crucial for accurate thermal simulations since the bulk of the thermal
resistance usually lies external to the usual electrical simulation domain. One approach is to simulate as much
as possible of the thermal environment (die, heat sink, packaging) and estimate a reasonable external thermal
resistance Rth based on results of thermal measurements [31]–[34] and thermal simulations [35]–[38] of
semiconductor devices and packages. Including as much as possible of the thermal environment in the
simulation domain has two important advantages:

As a larger fraction of the total thermal resistance Rja is accurately accounted for in the simulation domain,
a smaller fraction is left for estimation through the choice of Rth.

Nonuniform temperature distributions in the die, heat sink, and packaging are allowed. This permits the
simulation of a realistic temperature distribution in the electrically active area for more accurate
determination of self-heating effects.

The addition of large portions of the heat sink and packaging is not a problem with regard to the total number
of mesh points, despite the juxtaposition of fine mesh requirements in the electrically active area with large,
coarse mesh areas in the die, heat sink, and packaging. For a typical 2D mesh of approximately 1000 mesh
points, such an extension of the thermal simulation domain usually adds no more than 10% to the total number
of mesh points.

4.5.4.1 Estimating Rth

To estimate a value for Rth, the following must be considered:

Bulk resistance

The bulk thermal resistance can be calculated per unit area given the thermal conductivity κ and the
length l of the material through which heat flows by the relation font Rth,bulk= l/κ.

Interface resistances

Apart from the effects of bulk thermal resistance, interfaces between materials act as barriers to heat flow.
Interface thermal resistances can result from lattice mismatch, surface roughness [39], or air voids (for
example, in solder joints) [40] at crystal–crystal, crystal–metal, and metal–metal interfaces. The effect of
interface thermal resistances on Rth can be great [41].

Radiation/convection

The effects of heat radiation and convection can be taken into account using the linear cooling law
represented by (Eq. 15.96), [42]. The value of Rth is appropriately reduced when radiation or convection
has an important role in cooling [43]–[45].
15.146

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
Thermal spreading effects

Since the actual heat flow path in the physical device is in 3D, the value of the external resistance must
be estimated taking into account the 3D geometry [46] by using an approach similar to one
documented [47].

The values of Rth used in self-heating simulations are usually in the range KW–1cm2.

4.5.5 Periodic boundary conditions

Periodic boundary conditions (PBCs) can be activated in DESSIS for all supported equations (see Section 4.2
on page 15.127). For ‘left’ and ‘right’ boundaries, it provides the following conditions for a selected equation:

(15.99)

where is a solution variable of the selected equation (for example, the electrostatic potential of the

Poisson equation) and is a flux that is defined in of the equation (see Table 15.54).

The PBCs can be activated by the keyword PeriodicBC(<options>) in the Math section of the DESSIS input file
where <options> provides a selection of the equations and boundaries. Multiple specifications of <options> are
possible to select several equations: PeriodicBC((<options1>)...(<optionsN>)). Table 15.55 gives a complete
list of possible options.

Table 15.54 Solution variables and fluxes used in periodic boundary conditions

Description

Section 4.2.1 on page 15.128

Section 4.2.2 on page 15.128

Section 4.2.4 on page 15.130

Section 4.2.3 on page 15.128

Table 15.55 Options for periodic boundary conditions

Option Description

<equation> Six DESSIS equation keywords (see Section 2.9 on page 15.54) are possible: Poisson,
Electron, Hole, eTemperature, hTemperature, and Temperature. If no keyword is
specified, the PBCs will be applied for all equations.

Direction = <Ndir> <Ndir> is equal to 0 for the x-axis, 1 for the y-axis, and 2 for the z-axis.

Coordinates = (<left>
<right>)

<left> and <right> are coordinates [µm] where the PBCs will be applied. If one
coordinate specifies a range larger than the device size, DESSIS will take the device
edges.

0.1 Rth 1.0≤ ≤

νleft νright=

Φleft Φright=

ν ψ

Φ divΦ

ν
Φ

ψ ε ψ∇

n Jn

p Jp

Tn Sn

Tp Sp

T κ T∇
 15.147

PART 15 DESSISCHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
The same mesh on both sides of the device is preferable (the boundaries where the PBCs are applied), but is
not necessary. It gives an additional flexibility and, for example, users can specify PBCs for one device side
and for points inside the device (one of the specified Coordinates is inside the device).

NOTE If one side of the device differs from another (for example, oxide thickness is different), DESSIS
will apply PBCs only to a part of the side that has corresponding points on another side.

An example of specifying the periodic boundary conditions for different equations and boundaries is:

Math{
PeriodicBC(

(Direction=0 Coordinates=(-1.0 2.0))
(Poisson Direction=1 Coordinates=(-1e50 1e50))
(Electron Direction=1 Coordinates=(-1e50 1e50))

)
}

Here, the first option applies PBCs to all equations in the direction of the x-axis and for the coordinates
–1.0 µm and 2.0 µm. The next two options specify PBCs for electron and hole continuity equations in the
y-direction and for the device side coordinates.

NOTE If the mesh nodes are the same on PBC boundaries (the node coordinates are the same except for
the axis component that corresponds to Direction), DESSIS will merge vertices on the ‘left’ and
‘right’ boundaries (to have one variable) and it will naturally apply PBCs where it is obvious that
(Eq. 15.99) is true. If the mesh is different, (Eq. 15.99) will be provided by adding the same flux
equal to for each mesh box (see Section 32.2 on page 15.520) on both
boundaries. It will provide the flux conservation and the same and (accuracy depends
on the Factor and a linear interpolation for is used if the mesh is different).

4.6 Starting solution or ‘initial guess’
The starting solution or ‘initial guess’ is determined in DESSIS using a predetermined algorithm. An initial
guess of each variable (at each mesh point) in a device required by the solution method consists of the
following values:

Electrostatic potential ()

Quasi-Fermi potentials for electrons and holes (and) for the electrical case

Lattice temperature (TL) for the thermodynamic case

Electron and hole temperatures (Tn and Tp) for the hydrodynamic case

Factor = <value> The default <value> is equal to 108. Usually, Factor should not be specified in PBCs (see
the following note).

Table 15.55 Options for periodic boundary conditions

Option Description

Factor νleft νright–()
νleft νright

ν

Ψ

φn φp
15.148

PART 15 DESSIS CHAPTER 4 INTRODUCTION TO PHYSICS IN DESSIS
4.6.1 Electrostatic potential and quasi-Fermi potentials: Wells

To determine an initial guess for the electrostatic potential and quasi-Fermi potentials, the device is
subdivided into wells of n- and p-type doping, such that pn-junctions serve as dividers between wells. Every
well is uniquely associated with a contact. The quasi-Fermi potentials in that well are set to the corresponding
contact voltage, and the potentials are set to the contact voltage adjusted by the built-in voltage at the contact.

For wells that have no contacts, the following equations define the quasi-Fermi potential for the majority
carriers:

(15.100)

(15.101)

where by default is equal to 0. The value of can be changed by using the keyword FloatCoef in
the Physics section. For wells with more than one contact, the well is further subdivided, such that no well is
associated with more than one contact.

4.6.2 Thermodynamic and hydrodynamic simulations

By default, the lattice temperature is set to 300 K throughout the device, or to the value of Temperature set in
the Physics section. If the device has one or more defined thermodes, an average temperature is calculated
from the temperatures at the thermodes and is set throughout the device.

As an initial guess, electron and hole temperatures are set to the lattice temperature. The electron and hole
temperatures are set by initially making an estimation to the lattice temperature.

4.6.3 Save file overrides the initial guess

If created from a previous solution, the save file (with extension .sav) can be loaded using the keyword Load
in the File section. In this case, the values of the variables in this file overwrite the initial guess values.

Φp kFloatVmax 1 kFloat–()Vmin+=

Φn 1 kFloat–()Vmax kFloatVmin+=

kFloat kFloat
 15.149

PART 15 DESSIS CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
DESSIS

CHAPTER 5 Semiconductor band structure

5.1 Overview
The band gap and band edge density of states (or, in a different parameterization, the carrier effective masses,
see Section 5.3 on page 15.155) are crucial parameters of a semiconductor material.

They are summarized in the intrinsic density (for undoped semiconductors):

(15.102)

and the effective intrinsic density (including doping-dependent band-gap narrowing):

(15.103)

In devices that contain different materials, the electron affinity (see Section 5.2) is also important. Along
with the band gap, it determines the alignment of conduction and valence bands at material interfaces.

5.2 Band gap and electron affinity

5.2.1 Selecting a model

DESSIS supports four band gap models: BennettWilson, delAlamo, OldSlotboom and Slotboom (the same model
with different parameter sets), and TableBGN. The band gap model can be selected in the
EffectiveIntrinsicDensity statement in the Physics section of the command file, for example:

Physics {
EffectiveIntrinsicDensity(BandGapNarrowing (Slotboom))

}

activates the Slotboom model. The default model is BennettWilson.

By default, band-gap narrowing is active. Band-gap narrowing can be switched off with the keyword
NoBandGapNarrowing:

Physics {
EffectiveIntrinsicDensity(NoBandGapNarrowing)

}

NOTE To plot the band gap including the band-gap narrowing, specify EffectiveBandGap in the Plot section
of the command file. The quantity that DESSIS plots when BandGap is specified does not include
band-gap narrowing.

ni T()

ni T() NC T()NV T()e

Eg T()
2kBT
--------------–

=

ni eff, ni
∆Eg
2kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

χ

 15.151

PART 15 DESSISCHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
Table 15.56 and Table 15.57 on page 15.155 list the model parameters available for calibration (see
Section 5.2.2).

5.2.2 Band gap and electron affinity models

DESSIS models the lattice temperature–dependence of the band gap as [50]:

(15.104)

where T is the lattice temperature, is the band gap energy at , and and are material parameters
(see Table 15.56).

To allow to differ for different band gap models, it is written as:

(15.105)

 is an adjustable parameter common to all models. For the TableBGN model, . Each of the other
models offers its own adjustable parameter for (see Table 15.56).

The effective band gap results from the band gap reduced by band-gap narrowing:

(15.106)

The electron affinity is the energy separation between the conduction band and the vacuum. It is also
temperature dependent and affected by band-gap narrowing:

(15.107)

where and Bgn2Chi are adjustable parameters (see Table 15.56). Bgn2Chi defaults to and, therefore,
band-gap narrowing splits equally between conduction and valence bands.

The main difference of the band gap models is how they handle band-gap narrowing. Band-gap narrowing in
DESSIS has the form:

(15.108)

where is determined by the particular band-gap narrowing model used, and is an optional
correction to account for carrier statistics (see (Eq. 15.112)).

5.2.2.1 Band-gap narrowing for Bennett–Wilson model

Band-gap narrowing for the Bennett–Wilson [60] model (keyword BennettWilson) in DESSIS reads:

(15.109)

Eg T() Eg 0() αT2

T β+
-------------–=

Eg 0() 0 K α β

Eg 0()

Eg 0() Eg 0, δEg 0,+=

Eg, 0 δEg 0, 0=
δEg 0,

Eg,eff T() Eg T() ∆Eg–=

χ

χ T() χ0
αT2

2 T β+()
--------------------- Bgn2Chi ∆Eg⋅+ +=

χ0 0.5

∆Eg ∆Eg
0 ∆Eg

Fermi+=

∆Eg
0 ∆Eg

Fermi

Eg
0∆

Ebgn
Ni

Nref

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln
2

Ni Nref≥

0 otherwise⎩
⎪
⎨
⎪
⎧

=

15.152

PART 15 DESSIS CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
where is the total doping concentration. The model was developed from absorption and
luminescence data of heavily doped n-type materials. The material parameters and are accessible
in the Bennett parameter set in the DESSIS parameter file (see Table 15.57 on page 15.155).

5.2.2.2 Band-gap narrowing for Slotboom model

Band-gap narrowing for the Slotboom model (keyword Slotboom or OldSlotboom) (the only difference is in the
parameters) in DESSIS reads:

(15.110)

where is the total doping concentration. The models are based on measurements of in
n-p-n transistors (or in p-n-p transistors) with different base doping concentrations and a 1D model for
the collector current [51]–[54]. The material parameters and are accessible in the Slotboom and
OldSlotboom parameter sets in the DESSIS parameter file (see Table 15.57).

5.2.2.3 Band-gap narrowing for del Alamo model

Band-gap narrowing for the del Alamo model (keyword delAlamo) in DESSIS reads:

(15.111)

where is the total doping concentration. This model was proposed [55]–[59] for n-type
materials. The material parameters and are accessible in the delAlamo parameter set in the DESSIS
parameter file (see Table 15.57).

5.2.2.4 Table specification of band-gap narrowing

It is possible to specify band-gap narrowing by using a table, which can be defined in the parameter file in the
TableBGN parameter set. This table gives the value of band-gap narrowing as a function of donor or acceptor
concentration, or total concentration (the sum of acceptor and donor concentrations).

When specifying acceptor and donor concentrations, the total band-gap narrowing is the sum of the
contributions of the two dopant types. If only acceptor or only donor entries are present in the table, the band-
gap narrowing contribution for the missing dopant type vanishes. Total concentration and donor or acceptor
concentration must not be specified in the same table.

Each table entry is a line that specifies a concentration type (Donor, Acceptor, or Total) with a concentration in
, and the band-gap narrowing for this concentration in eV. The actual band-gap narrowing contribution

for each concentration type is interpolated from the table, using a scheme that is piecewise linear in the
logarithm of the concentration.

Ni NA ND+=
Ebgn Eref

Eg
0∆ Ebgn

Ni
Nref
---------⎝ ⎠

⎛ ⎞ln
Ni

Nref
---------⎝ ⎠

⎛ ⎞ln⎝ ⎠
⎛ ⎞

2
0.5++=

Ni NA ND+= µnni
2

µpni
2

Ebgn Eref

Eg
0∆

Ebgn
Ni

Nref

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln Ni Nref≥

0 otherwise⎩
⎪
⎨
⎪
⎧

=

Ni NA ND+=
Ebgn Eref

cm 3–
 15.153

PART 15 DESSISCHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
For concentrations below (or above) the range covered by table entries, the band-gap narrowing of the entry
for the smallest (or greatest) concentration is assumed, for example:

TableBGN {
Total 1e16, 0
Total 1e20, 0.02

}

means that for total doping concentrations below 1016 cm–3, the band-gap narrowing vanishes, then increases
up to 20 meV at 1020 cm–3 concentration and maintains this value for even greater concentrations. The
interpolation is such that, in this example, the band-gap narrowing at 1018 cm–3 is 10 meV.

Tabulated default parameters for band-gap narrowing are available only for GaAs. For all other materials,
users can specify the tabulated data in the parameter file.

NOTE It is not possible to specify mole fraction–dependent band-gap narrowing tables. In particular,
DESSIS does not relate the parameters for ternary compound semiconductor materials to those of
the related binary materials.

5.2.2.5 Band-gap narrowing with Fermi statistics

Parameters for band-gap narrowing are often extracted from experimental data assuming
Maxwell–Boltzmann statistics. However, in the high-doping regime for which band-gap narrowing is
important, Maxwell–Boltzmann statistics differ significantly from the more realistic Fermi statistics.

The band-gap narrowing parameters are, therefore, systematically affected by using the wrong statistics to
interpret the experiment. For use in simulations that do not use Fermi statistics, this ‘error’ in the parameters
is desirable, as it partially compensates the error by using the ‘wrong’ statistics in the simulation. However,
for simulations using Fermi statistics, this compensation does not occur.

Therefore, DESSIS can apply a correction to the band-gap narrowing to reduce the errors introduced by using
Maxwell–Boltzmann statistics for the interpretation of experiments on band-gap narrowing (see
(Eq. 15.108)):

(15.112)

where and are the acceptor and donor concentrations, and are the valence band and
conduction band densities of states at 300 K, and is the inverse of the Fermi function of order 1/2.

By default, correction (Eq. 15.112) is switched on for simulations using Fermi statistics and switched off (that
is,) for simulations using Maxwell–Boltzmann statistics. To switch off the correction in
simulations using Fermi statistics, specify EffectiveIntrinsicDensity(NoFermi) in the Physics section of the
command file. This is recommended if you use parameters for band-gap narrowing that have been extracted
assuming Fermi statistics. Sometimes for III–IV materials, the correction (Eq. 15.112) is too large, and it is
recommended to switch it off in these cases.

∆Eg
Fermi kB300K

NVNC
NAND
---------------⎝ ⎠

⎛ ⎞ F1 2⁄
1–

NA
NV
-------⎝ ⎠

⎛ ⎞ F1 2⁄
1–

ND
NC
-------⎝ ⎠

⎛ ⎞+ +log=

NA ND NV NC
F1 2⁄

1–

∆Eg
Fermi 0=
15.154

PART 15 DESSIS CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
5.2.3 Model parameters

The band gap and values of for each model are accessible in the BandGap section of the parameter
file, in addition to the electron affinity and the temperature coefficients and . As an extension to what
(Eq. 15.104) and (Eq. 15.107) suggest, the parameters and can be specified at any reference
temperature . By default, they are defined at absolute zero.

Table 15.57 summarizes the silicon default parameters for the analytic band-gap narrowing models available
in DESSIS.

5.3 Effective masses and effective density of states
DESSIS provides two options for computing carrier effective masses and densities of states. The first method,
selected by specifying Formula=1 in the parameter file, computes an effective density of states (DOS) as a
function of carrier effective mass. The effective mass may be either independent of temperature or a function
of the temperature-dependent band gap. The latter is the most appropriate model for carriers in silicon and is
the default for simulations of silicon devices.

In the second method, selected by specifying Formula=2 in the parameter file the effective carrier mass is
computed as a function of a temperature-dependent density of states. The default for simulations of GaAs
devices is Formula=2.

Table 15.56 Band gap models: Default parameters for silicon

Symbol Parameter name Default Unit Band gap at 0 K Reference

Eg0 1.1696 eV – (Eq. 15.105)

dEg0(Bennett) 0.0 eV 1.1696 (Eq. 15.105)

dEg0(Slotboom) –4.795 × 10–3 eV 1.1648

dEg0(OldSlotboom) –1.595 × 10–2 eV 1.1537

dEg0(delAlamo) –1.407 × 10–2 eV 1.1556

alpha eV/K – (Eq. 15.104), (Eq. 15.107)

beta 636 K – (Eq. 15.104), (Eq. 15.107)

Chi0 4.05 eV – (Eq. 15.107)

Bgn2Chi Bgn2Chi 0.5 1 – (Eq. 15.107)

Tpar 0 K –

Table 15.57 Band-gap narrowing models: Default parameters for silicon

Symbol Parameter Bennett Slotboom Old Slotboom del Alamo Unit

Ebgn 6.84 × 10–3 6.92 × 10–3 9.0 × 10–3 18.7 × 10–3 eV

Nref 3.162 × 1018 1.3 × 1017 1.0 × 1017 7.0 × 1017 cm–3

Eg 0, δEg 0,
χ0 α β

Eg 0, χ0
Tpar

Eg,0 δEg 0,
αTpar

2

β Tpar+
-------------------+ +

Eg 0,

δEg 0,

α 4.73 10 4–×

β

χ0

Tpar

Ebgn

Nref
 15.155

PART 15 DESSISCHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
5.3.1 Electron effective mass and DOS

5.3.1.1 Formula 1

The lattice temperature–dependence of the DOS effective mass of electrons is modeled by:

(15.113)

where the temperature-dependent effective mass component is best described in silicon by the
temperature dependence of the energy gap [48]:

(15.114)

The coefficient and the mass are defined in the parameter file with the default values provided in
Table 15.58 on page 15.157. The parameter , which defaults to zero, allows to be defined as a
temperature-independent quantity if required. The variation of electron effective mass versus lattice
temperature in silicon is illustrated in Figure 15.27.

Figure 15.27 Electron transverse effective mass versus temperature

The effective densities of states (DOS) in the conduction band follows from:

(15.115)

5.3.1.2 Formula 2

If Formula=2 is specified in the parameter file, the value for the DOS is computed from (300 K), which is
read from the parameter file:

(15.116)

me 62 3⁄ mt
2ml()

1 3⁄
mm+=

mt T()

mt T()
m0

-------------- a
Eg 0()
Eg T()
--------------×=

a m1
mm me

NC

NC me Te,() 2.540933 1019 me
m0

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2
--- Te

300

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2

cm 3–×=

Nc

NC Te() Nc300
Te

300

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2

cm 3–×=
15.156

PART 15 DESSIS CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
and the electron effective mass is simply a function of (300 K):

(15.117)

5.3.2 Electron effective mass and conduction band DOS
parameters

Table 15.58 lists the default coefficients for the electron effective mass and conduction band DOS models.
The values can be modified in the parameter file in the eDOSMass section.

NOTE The default setting for the Formula parameter depends on the materials, for example, it is equal to
1 for silicon and 2 for GaAs.

5.3.3 Hole effective mass and DOS

5.3.3.1 Formula 1

For the DOS effective mass of holes, the best fit in silicon is provided by the expression [49]:

(15.118)

where the coefficients are listed in Table 15.59 on page 15.159. The parameter mm, which defaults to zero,
allows mh to be defined as a temperature-independent quantity.

The effective DOS for holes follows from:

(15.119)

Table 15.58 Default coefficients for effective electron mass and DOS models

Option Symbol Parameter name Electrons Unit

Formula=1 a a 0.1905 1

ml ml 0.9163 1

mm mm 0 1

Formula=2 Nc300 Nc300 2.890 × 1019 cm–3

Nc

me
m0
------ Nc300

2.540 1019×

⎝ ⎠
⎜ ⎟
⎛ ⎞

2
3

=

mh T()
m0

--------------- a bT cT2 dT3 eT4+ + + +
1 fT gT2 hT3 iT4+ + + +
--

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2
3

mm+=

NV

NV mh Th,() 2.540933 1019 mh
m0

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2
--- Th

300

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2

cm 3–×=
 15.157

PART 15 DESSISCHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
The variation of the hole effective mass with lattice temperature in silicon is illustrated in Figure 15.28.

Figure 15.28 DOS hole effective mass versus temperature

5.3.3.2 Formula 2

If Formula=2 in the parameter file, the temperature-dependent DOS is computed from (300 K) as given in
the parameter file:

(15.120)

and the effective hole mass is given by:

(15.121)

5.3.4 Hole effective mass and valence band DOS parameters

The model coefficients for the hole effective mass and valence band DOS can be modified in the parameter
file in the hDOSMass section. Table 15.59 on page 15.159 lists the default parameter values.

NOTE The default setting for the Formula parameter depends on the materials, for example, it is equal to 1
for silicon and it is equal to 2 for GaAs.

NV

NV Te() Nv300
Th

300

⎝ ⎠
⎜ ⎟
⎛ ⎞

3
2

cm 3–×=

mh
m0
------ Nv300

2.540 1019×

⎝ ⎠
⎜ ⎟
⎛ ⎞

2
3
--

=

15.158

PART 15 DESSIS CHAPTER 5 SEMICONDUCTOR BAND STRUCTURE
Table 15.59 Default coefficients for hole effective mass and DOS models

Option Symbol Parameter name Electrons Unit

Formula=1 a a 4435870 1

b b 0.3609528×10−2 K–1

c c 0.1173515×10−3 K–2

d d 0.1263218×10−5 K–3

e e 0.3025581×10−8 K–4

f f 0.4683382×10−2 K–1

g g 0.2286895×10−3 K–2

h h 0.7469271×10−6 K–3

i i 0.1727481×10−8 K–4

mm mm 0 1

Formula=2 Nv300 Nv300 3.140x1019 cm–3
 15.159

PART 15 DESSIS CHAPTER 6 INCOMPLETE IONIZATION
DESSIS

CHAPTER 6 Incomplete ionization

6.1 Overview
In silicon, with the exception of indium, dopants can be considered to be fully ionized at room temperature
because the impurity levels are sufficiently shallow. However, when impurity levels are relatively deep
compared to the thermal energy at room temperature, incomplete ionization must be considered.
This is the case for indium acceptors in silicon and nitrogen donors and aluminum acceptors in silicon carbide.
In addition, for simulations at reduced temperatures, incomplete ionization must be considered for all dopants.
For these situations, DESSIS has an ionization probability model based on activation energy. The ionization
(activation) is computed separately for each species present.

DESSIS supports the most significant dopants used in silicon technologies: the donors As, P, Sb, and N, and
the acceptors B and In. For the simulation of other semiconductors such as III–V compounds, the actual
donors and acceptors used (Si, Be, and so on) are not supported. However, it is reasonable to replace the real
dopant species with an appropriate silicon donor or acceptor and adjust the physical parameters accordingly.

For example, to simulate GaAs, which is doped n-type using Si, P can be substituted as the donor. The donor
level and cross-sections of P should then be changed in the parameter file to represent the values for silicon
in GaAs. Alternatively, DESSIS supports the generic dopants ‘NDopant’ and ‘PDopant.’

The doping profiles for these generic dopants are read from the data file under the names NDopantConcentration
and PDopantConcentration.

6.2 Syntax and implementation
The incomplete ionization model is activated with the keyword IncompleteIonization in the Physics section of
the input file:

Physics{ IncompleteIonization }

The incomplete ionization model for selected species is activated with the additional keyword Dopants:

Physics{ IncompleteIonization(Dopants = "Species_name1 Species_name2 ...") }

For example, the statement Physics{ IncompleteIonization(Dopants = "BoronActiveConcentration") } activates
the incomplete ionization model only for boron.

The incomplete ionization model can be specified in region or material physics (see Section 2.5.3 on
page 15.47). In this case, the model is activated only in these regions or materials.

kBT() q⁄
 15.161

PART 15 DESSISCHAPTER 6 INCOMPLETE IONIZATION
6.3 Physical model description
The concentration of ionized impurity atoms is given by Fermi–Dirac distribution:

for (15.122)

for (15.123)

where is the substitutional (active) dopant concentration, is the degeneracy factor for the impurity
level, and is the donor/acceptor ionization (activation) energy.

In the literature [179], incomplete ionization in SiC material has been considered and another general
distribution function has been proposed, which can be expressed as:

(15.124)

(15.125)

where and are the ionization factors discussed in [180][181]. These factors can defined by a
PMI (see [179] and Section 33.27.3 on page 15.596). By comparing (Eq. 15.122) and (Eq. 15.123) with
(Eq. 15.124) and (Eq. 15.125), it can be seen that, in the case of the Fermi–Dirac distribution function, the
ionization factors can be written as:

, and , (15.126)

In DESSIS, the basic variables are potential, electron concentration, and hole concentration. Therefore, it is
more convenient to rewrite (Eq. 15.122) and (Eq. 15.123) in terms of the carrier concentration instead of the
quasi-Fermi levels:

, with for (15.127)

, with for (15.128)

ND
+ ND

1 gD

EFn
ED–

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp+

---= ND ND crit,<

NA
- NA

1 gA

EA E– Fp

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp+

--= NA NA crit,<

ND A⁄ gD A⁄
ED A⁄

ND
+ ND

1 GD T()
EFn

EC–

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp+

---=

NA
- NA

1 GA T()
EFp

EV–

kBT
---------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp+

---=

GD T() GA T()

GD T() gD
∆ED
kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅= ∆ED EC ED–= GA T() gA
∆EA
kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅= ∆EA EA EV–=

ND
+ ND

1 gD
n
n1
-----+

----------------------= n1 NC
∆ED
kBT
-----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅= ND ND crit,<

NA
- NA

1 gA
p
p1
-----+

---------------------= p1 NV
∆EA
kBT
----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅= NA NA crit,<
15.162

PART 15 DESSIS CHAPTER 6 INCOMPLETE IONIZATION
The expressions for and in these two equations are valid for Boltzmann statistics and without
quantization. If Fermi–Dirac statistics or a quantization model (see Chapter 7 on page 15.165) is used, and

 are multiplied by the coefficients and defined in (Eq. 15.70) and (Eq. 15.71) (see Section 4.4 on
page 15.137). For , the dopants are assumed to be completely ionized, in which case, every
donor and acceptor species is considered in the Poisson equation. The values of and can be
adjusted in the DESSIS parameter file.

The donor and acceptor activation energies are effectively reduced by the total doping in the semiconductor.
This effect is accounted for in the expressions:

(15.129)

(15.130)

where is the total doping concentration. In transient simulations, the terms:

(15.131)

(15.132)

are included in the continuity equations (denote the carrier thermal velocities).

6.4 Physical model parameters
The values of the dopant level , the doping-dependent shift parameter , the impurity degeneracy
factor gA/D, and the cross section are accessible in the parameter file in the Ionization section.

Table 15.60 Default coefficients for incomplete ionization model for dopants in silicon

Symbol Parameter
name

Default value for species Unit

As P Sb B In N NDopant PDopant

EA/D, 0 E_ _0 0.054 0.045 0.039 0.045 0.16 0.045 0.045 0.045 eV

αA/D alpha_ 3.1 × 10–8 eV.cm

gA/D g_ 2 2 2 4 4 2 2 4 1

σA/D Xsec_ 1.0 × 10–12 cm2/s

ND, crit NdCrit 1.0 × 1022 cm–3

NA, crit NaCrit 1.0 × 1022 cm–3

n1 p1
n1

p1 γn γp
ND A⁄ ND A⁄ crit,>

ND crit, NA crit,

∆ED ∆ED 0, αD Ni
1 3⁄⋅–=

∆EA ∆EA 0, αA Ni
1 3⁄⋅–=

Ni NA ND+=

∂ND
+

∂t
---------- σDvth

n n1
gD
------ND n

n1
gD
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

ND
+–=

∂NA
--

∂t
---------- σAvth

p p1
gA
------NA p

p1
gA
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

NA
-–=

vth
n p,

EA /D , 0 αA /D
σA/D
 15.163

PART 15 DESSISCHAPTER 6 INCOMPLETE IONIZATION
For each user-defined dopant (see Section 2.14.2 on page 15.98), the Ionization section must contain a
separate subsection where the parameters EA/D, 0, αA/D, gA/D, and σA/D are defined. For example, for the dopant
Nitrogen described in Section 2.14.2 for the material SiC, the subsection can be written as:

Material = "SiC" {
...

Ionization {
...

Species("Nitrogen") {
type = donor
E_0 = 0.1
alpha = 0
g = 2
Xsec = 1.0e-15

}
}

}

The field type can be omitted because the dopant type is specified in the datexcodes.txt file. It is used here for
informative purposes only.

6.5 Example: Incomplete ionization
The ionization of nitrogen donors and aluminum acceptors in SiC has been modeled under equilibrium
conditions at temperatures of 300 K and 800 K. The results are plotted in Figure 15.29. For n-type SiC, the
nitrogen donor level had the values meV and . The p-type SiC results were calculated
assuming the aluminum acceptor values meV and .

Figure 15.29 Incomplete ionization in n-type (N donor) and p-type (Al acceptor) SiC at 300 K and 800 K

EC ED– 100= gD 2=
EA EV– 200= gA 4=

NA
– 300 K

NA
– 800 K

Complete Ionization
15.164

PART 15 DESSIS CHAPTER 7 QUANTIZATION MODELS
DESSIS

CHAPTER 7 Quantization models

7.1 Overview
The scaling rules for modern submicron devices require a thinner oxide and higher level of channel doping.
Some features of current MOSFETs (oxide thickness, channel width) have reached quantum mechanical
length scales. Therefore, the wave nature of electrons and holes can no longer be neglected. The most basic
quantization effects in MOSFETs are the shift of the threshold voltage and reduction of the gate capacity.

To include quantization effects in a classical device simulation, a simple approach is to introduce an additional
potential-like quantity in the classical density formula, which reads:

(15.133)

where is the electron density, is the carrier temperature, is the Boltzmann constant, is the
conduction band density of states, is the conduction band energy, and is the electron Fermi energy.
(For brevity, only the formulas for electrons are given; holes are handled analogously.) When using Fermi
statistics, the exponential function in (Eq. 15.133) is replaced by a Fermi integral of order .

The most important effects related to the density modification (due to quantization) can be captured by proper
models for . Other effects (for example, single electron effects) exceed the scope of this approach.

DESSIS implements three quantization models, that is, three different models for . They differ in physical
sophistication, numeric expense, and robustness:

The van Dort quantum correction model (see Section 7.2 on page 15.166) is a numerically robust, fast,
and proven model. It is only suited to MOSFET simulations. Structures such as quantum wells and SOI
transistors with ultrathin silicon layer (below approximately 10 nm) are beyond the scope of this model.
While important terminal characteristics are well described by this model, it does not give the correct
density distribution in the channel.

The 1D Schrödinger equation (see Section 7.3 on page 15.167) is the most physically sophisticated
quantization model. It can be used for MOSFET simulation, and quantum well and ultrathin SOI
simulation. Simulations with this model tend to be slow and often lead to convergence problems, which
restrict its use to situations with small current flow. Therefore, the Schrödinger equation is used mainly
for the validation and calibration of other quantization models.

The density gradient model (see Section 7.4 on page 15.172) is numerically robust, but significantly
slower than the van Dort model. It can be applied to MOSFETs, quantum wells and SOI structures, and
gives a reasonable description of terminal characteristics and charge distribution inside a device.
Compared to the other quantization models, it can describe 2D and 3D quantization effects.

Λ

n NC

EFn
EC– Λ–

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

n T kB NC
EC EFn

1 2⁄

Λ

Λ

 15.165

PART 15 DESSISCHAPTER 7 QUANTIZATION MODELS
7.2 van Dort quantum correction model

7.2.1 Model description

To account for quantization in MOSFET channels, the van Dort quantum correction model [112] is
implemented in DESSIS.

The van Dort model computes of (Eq. 15.133) as a function of , the electric field normal to the
semiconductor–insulator interface:

(15.134)

where and are fitting parameters. The function is defined by:

(15.135)

where and is a distance from the point to the interface. The parameter effectively
defines the region near the interface where quantum correction occurs. Depending on the sign of the normal
electric field, band gap widening is applied to the conduction band or valence band. Assuming is the
electric field pointing outside the semiconductor, band gap widening is applied to the holes (valence band
correction) if , or the electrons (conduction band correction) if (that is, quantum correction is
applied to those carriers that are drawn towards the interface by the electric field; for the carriers driven away
from the interface, the correction is 0). The van Dort model recognizes all semiconductor–insulator interfaces
regardless of their orientation.

7.2.2 Syntax and implementation

To activate the model, the parameter QCvanDort must be specified in the Physics section. If the quantum
mechanical band gap widening is taken into account only for electrons (holes), the parameter eQCvanDort
(hQCvanDort) is used:

Physics { ... QCvanDort}

Table 15.61 lists the coefficients for this model. The default value of is from the literature [112]. Other
parameters were obtained by fitting the model to experimental data for electrons [112] and holes [113]. The
van Dort model parameters can be adjusted and are accessible in the vanDortQMModel section of the parameter
file.

Table 15.61 Default coefficients for van Dort quantum correction model

Symbol Electrons Holes Unit

eFit 2.4e–08 hFit 1.8e–08

eEcritQC 1e+05 eEcritQC 1e+05 (V)/(cm)

dRef 2.5e–06 dRef 2.5e–06 cm

Λ En

Λ 13
9

------ kfit F d()
εε0
4kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 3⁄

En Ecrit–() 2 3⁄⋅ ⋅ ⋅ ⋅=

kfit Ecrit F d()

F d()
2 a2 r()–()exp⋅

1 2a2 r()–()exp+
---=

a r() l r() λref⁄= l r() r λref

En

En 0> En 0<

λref

kfit eV cm⋅

Ecrit

λref
15.166

PART 15 DESSIS CHAPTER 7 QUANTIZATION MODELS
By default, is electric field normal to the semiconductor–insulator interface. If required, this interface can
be redefined by specifying EnormalInterface explicitly in the Math section (see Section 5.2.1 on page 15.151).

7.3 One-dimensional Schrödinger solver
The 1D Schrödinger solver implements the most physically sophisticated quantization model in DESSIS. To
use the Schrödinger solver:

1. Construct a special purpose ‘nonlocal’ line mesh (see Section 7.3.1).

2. Activate the Schrödinger solver on the nonlocal line mesh with appropriate parameters (see Section 7.3.2
on page 15.168).

Sometimes, especially for heteromaterials, the physical model parameters need to be adapted (see
Section 7.3.3 on page 15.169).

NOTE The 1D Schrödinger solver is time consuming and often causes converge problems. Furthermore,
small-signal analysis (see Section 3.8.3 on page 15.117) and noise and fluctuation analysis (see
Chapter 15 on page 15.291) are not possible when using this solver.

7.3.1 Defining a nonlocal line mesh

The specification of the nonlocal line mesh determines where in the device the 1D Schrödinger equation can
be solved. To generate the nonlocal line mesh, specify the NonLocal keyword in a contact-specific or an
interface-specific Math section of the DESSIS command file.

Options to NonLocal control the construction of the nonlocal line mesh. For example:

Math(RegionInterface="gateoxide/channel") {
NonLocal(

Length=10-e7
Permeation=1e-7
Direction=(0 1 0) MaxAngle=5

)
}

generates a nonlocal line mesh at the interface between region gateoxide and channel. The nonlocal mesh lines
extend 10 nm (according to Length) to one side of the interface and 1 nm (according to Permeation) to the other
side. In this example, Direction and MaxAngle restrict the nonlocal line mesh to lines that run along the y-axis,
with a tolerance of 5o. Direction defines a vector that is typically perpendicular to the interface; therefore, the
specification above is appropriate for an interface in the x-z plane.

Additional options to NonLocal can be specified for region-specific Math sections. For nonlocal meshes
constructed for the Schrödinger equation, the -Transparent option is important. For example:

Math(Region="gateoxide"){
Nonlocal(-Transparent)

}

This specification with the interfacewise specification suppresses the construction of nonlocal lines for which
the part with length Length goes through gateoxide. This means that nonlocal mesh lines extend 10 nm into the

En
 15.167

PART 15 DESSISCHAPTER 7 QUANTIZATION MODELS
channel and 1 nm into the gateoxide region, and not the other way round. Assuming gateoxide is at least 1 nm
thick, the nonlocal lines do not extend into a poly gate that may be located on top of gateoxide and, therefore,
the 1D Schrödinger equation will not be solved in the poly gate.

Typically, all NonLocal options demonstrated in these two examples are required (and sufficient) to obtain a
proper nonlocal line mesh for the 1D Schrödinger equation. For more information about constructing nonlocal
meshes, see Section 2.10.7 on page 15.83.

7.3.2 Activating and controlling the 1D Schrödinger solver

To activate the 1D Schrödinger for electrons (and holes), specify the Electron (Hole) option to the Schroedinger
keyword in the Physics section for the interface or contact for which the nonlocal line mesh was specified. For
example:

Physics(RegionInterface="gateoxide/channel"){
Schroedinger(Electron)

}

activates the Schrödinger equation for electrons on the nonlocal line mesh constructed for the interface
between the gateoxide and channel regions.

Additional options to Schroedinger determine numeric accuracy and which eigenstates will be computed.
Table 15.62 lists the optional keywords.

The options MaxSolutions, Error, and EnergyInterval have an optional argument electron or hole. For example,
the specification MaxSolutions=30 sets the value for both electrons and holes. However, the specifications
MaxSolutions(electron)=2 and MaxSolutions(hole)=3 set different values for electrons and holes.

Table 15.62 Options for Schroedinger keyword

Keyword Description

Electron Switches on Schrödinger equation for electrons.

–Electron Switches off Schrödinger equation for electrons. This is the default.

Hole | –Hole Corresponding keywords for holes.

MaxSolutions The maximum number of eigensolutions computed per non-equivalent set of band
valleys. The latter term refers to materials such as silicon, which have heavy-hole and
light-hole bands and six conduction band valleys. The default is 5.

Error The precision to which the eigenenergies are computed [eV]. The default is 1e–5.

EnergyInterval The highest energy to which eigensolutions are computed. EnergyInterval is given in
eV and measured from the lowest interior potential point on the nonlocal line on which
the Schrödinger equation is solved. When the value is the default (0), only bound
solutions are computed.

Direction = <integer> Only used in backward compatibility mode. Direction in which carriers are quantized
(1 = x-direction, 2 = y-direction, 3 = z-direction). The default is 1.

SubstOrient = <x,y,z> Only used in backward compatibility mode. x, y, and z are numbers that give the vector
in reciprocal space that corresponds to the quantization direction. This is used for
materials such as silicon that have nonisotropic band minima. The default is (1,0,0).
15.168

PART 15 DESSIS CHAPTER 7 QUANTIZATION MODELS
For backward compatibility, the Schrödinger equation can be solved without the specification of a nonlocal
line mesh. For the backward compatibility mode, activate the Schrödinger equation regionwise in parts of the
device where quantization is important. The simulator automatically extracts grid lines from those regions.
Each grid line spans as many regions as possible, that is, all adjacent regions for which the Schrödinger
equation is activated. Typically, each grid line spans at least two regions. For each region belonging to the
same grid line, all parameters set in the command file must agree.

Restrictions to the use of the Schrödinger equation in the backward compatibility mode are:

A tensor grid is required in the part of the device where the Schrödinger equation is solved, with axes
parallel to the main axes .

No region interfaces are allowed in this part except when perpendicular to the quantization direction.

7.3.3 Physical parameters

Parameters used to solve the Schrödinger equation are redefined in the SchroedingerParameters section in the
DESSIS parameter file. The formula parameter pair specifies which expressions for the masses are used in the
Schrödinger equation. For each carrier, if the formula is 0, DESSIS uses the isotropic density-of-states mass.
For electrons, if the formula is 1, DESSIS uses the anisotropic (silicon-like) masses specified in the eDOSMass
parameter set. For holes, ‘wrapped’ band structure (formula 1), or heavy-hole or light-hole masses (formula 2)
are available (see Table 15.63).

It is impossible to solve the Schrödinger equation across semiconductors with fundamentally different band
structure. DESSIS displays an error message if band structure compatibility is violated.

For materials with anisotropic band extrema, the LatticeParameters parameter set is used to determine the
crystal orientation with respect to the mesh axes (see Section 20.1.1 on page 15.339).

In addition to the mass parameters, SchroedingerParameters offers a parameter offset to model the lifting of the
degeneracy of band minima in strained materials. The parameter offset is a pair of an electron and a hole
value. If the value for electrons is positive, DESSIS adds the value to the band edge for the valley of lower
degeneracy, but leaves the band edge for the valley with higher degeneracy unaffected. If the electron value
is negative, DESSIS subtracts the value from the band edge for the valley of higher degeneracy (but leaves
the valley with lower degeneracy unaffected).

For holes, DESSIS subtracts positive values from the band edge for the heavy-hole band and adds negative
values to the band edge of the light-hole band (in both cases, DESSIS leaves the other band edge unaffected).
The signs are such that the shift always moves band edges outwards, away from midgap. The gap (defined as
the minimum separation of the band edges) remains unchanged.

Table 15.63 Coefficients for hole effective masses in Schrödinger solver

Formula Symbol Parameter name Default value Unit

1 A 4.22 1

B 0.6084 1

C 23.058 1

2 ml 0 1

mh 0 1

x y z, ,()

A

B

C

m1

mh
 15.169

PART 15 DESSISCHAPTER 7 QUANTIZATION MODELS
7.3.4 Visualizing the results

To visualize the results obtained by the Schrödinger equation, DESSIS offers special keywords for the
NonLocalPlot section (see Section 2.10.7.3 on page 15.85).

To plot the wavefunctions, specify the WaveFunction keyword in the NonLocalPlot section. DESSIS plots
wavefunctions in units of . To plot the eigenenergies, specify the EigenEnergy keyword; DESSIS plots
them in units of eV. The names of the curves in the output have two numeric indices. The first index denotes
the valley index and the second index denotes the number of zeros of the wavefunction (see and in
(Eq. 15.136)).

Without further specification, DESSIS will plot all eigenenergies and wavefunctions it has computed. The
Electron and Hole options to the WaveFunction and EigenEnergy keywords restrict the output to the wavefunctions
and eigenenergies for electrons and holes, respectively. The Electron and Hole options have a sub-option
Number=<num> to restrict the output to data for the num states of lowest energy. For example:

NonLocal(
(0 0)

){
WaveFunction(Electron(Number=3) Hole)

}

will plot all hole wavefunctions and the three lowest-energy electron wavefunctions for the nonlocal mesh
line close to the coordinate .

7.3.5 Model description

The 1D Schrödinger equation is:

(15.136)

where is the quantization direction along which the Schrödinger equation is solved (typically, the direction
perpendicular to the silicon–oxide interface in a MOSFET), is the reduced Planck constant; is
the (position-dependent) conduction band energy, labels the band valley (for example, in silicon, there are
six conduction band valleys), is the (position-dependent) effective mass component for valley in
quantization direction, is the -th normalized eigenfunction in valley , and is the -th
eigenenergy.

From the solution of this equation, the density is computed as:

(15.137)

where is the mass component perpendicular to the quantization direction for valley . Equating
(Eq. 15.137) to (Eq. 15.133) gives an expression for . For simplicity, the coordinates and in all function
arguments are omitted. For Fermi statistics, the in (Eq. 15.137) is replaced by .

µm() 1 2/–

ν j

0 0 0, ,()

∂
z∂

-----– h2

2mz ν, z()
---------------------- ∂

z∂
----- EC z()+⎝ ⎠

⎛ ⎞ Ψj ν, z() Ej ν, Ψj ν, z()=

z
h h 2π⁄= EC

ν
mz ν, ν

Ψj ν, j ν Ej ν, j

n z()
kBT z()

πh2
----------------- Ψj ν, z() 2

j ν,
∑ mxy ν, z()

EFn
z() Ej ν,–

kT z()
-------------------------------⎝ ⎠

⎛ ⎞exp=

mxy ν, ν
Λ x y
…()exp 1 …()exp+()log
15.170

PART 15 DESSIS CHAPTER 7 QUANTIZATION MODELS
The Schrödinger equation is solved over a finite domain . At the endpoints of this domain, the boundary
condition:

(15.138)

is applied, where for the upper sign, all position-dependent functions are taken at and, for the lower sign,
at .

For electrons in materials with anisotropic effective mass, the quantization mass is computed as:

(15.139)

where are the coefficients of the unit normal vector pointing in the -direction, expressed in a coordinate
system, where the main axes (labelled by) are associated to the main axes of the crystal structure, and
are the effective mass components for these main axes. If the band structure is isotropic, the respective mass
directly determines the quantization mass.

For hole masses, there is a choice between a model for ‘wrapped’ hole bands and a simpler model with two
isotropic bands. The former is the default for silicon; the latter is the default for compound semiconductors
such as GaAs, AlAs, and InGaAs.

In the case of ‘warped’ hole bands, the quantization mass is given by:

 (15.140)

where is the free electron mass. The coefficients , , and are accessible in the parameter file (see
Table 15.63 on page 15.169). The positive sign is for the light-hole band and the negative sign is for the
heavy-hole band. If isotropic hole masses are selected, the heavy-hole mass and light-hole mass
specified in the parameter file directly give .

The masses are chosen to achieve the same density-of-state mass as used in classical simulations:

(15.141)

where the per-band density-of-states mass is obtained from the total density-of-states mass and
the number of band valleys by the relation .

Strain can lift the degeneracy of conduction and valence band valleys. Therefore, in (Eq. 15.136), in addition
to the effective mass, the band edge depends on , that is, . To account for this effect, DESSIS has
the parameter offset that determines these band-edge shifts for electrons and holes. For the interpretation of
this parameter, see Section 7.3.3 on page 15.169.

z- z+[,]

Ψ′j ν,
Ψj ν,

2mz ν, Ej ν, EC–
h

--+−=

z+
z-

1
mz ν,

zi
2

mi ν,

i 1=

3

∑=

zi z
i mi ν,

mz ν,
m0

A B C z1z2()2 z2z3()2 z3z1()2+ +⎝ ⎠
⎛ ⎞⋅+±

---=

m0 A B C

mh ml
mz ν,

mxy ν,

mxy ν,
mDOS,1

3 2/

mz ν,
1 2/

------------------------=

mDOS,1 mDOS
nvalleys nvalleysmDOS,1

3 2/ mDOS
3 2/=

ν EC EC ν,→
 15.171

PART 15 DESSISCHAPTER 7 QUANTIZATION MODELS
7.3.6 Application notes
Convergence problems: Near the flat band condition, minor changes in the band structure can change the
number of bound states between zero and one. By default, DESSIS computes only bound states and,
therefore, this change switches from a purely classical solution to a solution with quantization. To avoid
the large change in density that this transition can cause, set the variable EnergyInterval to a nonzero value
(for example, 1). Then, a few unbound states are computed and a hard transition is avoided.

Always include a part of the ‘barrier’ in the nonlocal line on which the Schrödinger equation is solved.
In a MOSFET, besides the channel region, solve the Schrödinger equation in a part of the oxide adjacent
to the channel (for example, 1 nm deep). Use the Permeation option to NonLocal to achieve this (see
Section 7.3.1 on page 15.167). Failure to solve for a part of the oxide adjacent to the channel blinds the
Schrödinger solver to the barrier. It does not know the electrons are confined and the required
quantization effects are not obtained.

7.4 Density gradient model

7.4.1 Model description

For the density gradient model [150][151], in (Eq. 15.133) is given in terms of a partial differential
equation:

(15.142)

where is the reduced Planck constant, is the DOS mass, and is a fit factor.

Introducing the reciprocal thermal energy , the mass driving term (with
the conduction band edge DOS and an arbitrary normalization constant), the electrostatic potential

, the conduction band energy , and the smoothed potential , (Eq. 15.142) can be
rewritten as:

(15.143)

with the parameters and . These parameters are used to investigate alternative
formulations of the quantum potential corrections [152]. In insulators, DESSIS does not compute the Fermi
energy; therefore, in insulators, . By default, DESSIS uses (Eq. 15.143), which for Fermi statistics
deviates from (Eq. 15.142), even when and . The density-based expression (Eq. 15.142)
is available as an option (see Section 7.4.2 on page 15.173).

In (Eq. 15.143), the quantity is computed from a user-specified PMI model (see Section 33.15 on
page 15.569). By default, .

At Ohmic contacts, resistive contacts, and current contacts, the boundary condition is imposed.

Λ

Λ γh2

12m
----------– ∇2 nlog 1

2
--- ∇ nlog()2+

⎩ ⎭
⎨ ⎬
⎧ ⎫ γh2

6m
--------– ∇2 n

n
--------------= =

h h 2π⁄= m γ

β 1 kBT⁄= Φm kBT NC Nref⁄()log–=
NC Nref

ψ EC Φ EC Φm Λ+ +=

Λ h2γ
12m
---------- ∇ ξ∇βEFn

∇βΦ– η 1–()q∇βψ+()

ϑ ξ∇βEFn
∇βΦ– η 1–()q∇βψ+()2

+⋅{

}

–

ΛPMI+

=

ξ η 1= = ϑ 1 2⁄=

ξ η 0= =
ξ η 1= = ϑ 1 2⁄=

ΛPMI
ΛPMI 0=

Λ 0=
15.172

PART 15 DESSIS CHAPTER 7 QUANTIZATION MODELS
At Schottky contacts, gate contacts, interfaces to metal regions, and external boundaries, homogeneous
Neumann boundary conditions are used, , with the normal vector
on the boundary. At internal interfaces, and must be continuous.

Optionally, DESSIS offers a modified mobility to improve the modeling of tunneling through semiconductor
barriers:

(15.144)

where is the usual (classical) mobility as described in Chapter 8 on page 15.175, is a fit parameter,
and . Here, is the ‘classical’ density (see (Eq. 15.220)). In this modification, for

, the additional carriers (density) are considered as tunneling carriers that are subject to a
different mobility than the classical carriers (density).

7.4.2 Syntax and implementation

The density gradient quantum corrections are switched on in the Physics section by using the keywords
eQuantumPotential and hQuantumPotential for the corrections for electrons and holes, respectively. These
keywords can also be used in regionwise or materialwise Physics sections. The corrections can be switched
off by -eQuantumPotential and -hQuantumPotential.

Even when the correction is not activated for the entire device, is computed in all insulator and
semiconductor regions. However, in (Eq. 15.133), is taken into account only where the quantum
corrections are activated. In metal regions, the quantum potential is never computed. Semiconductor–metal
and insulator–metal interfaces are handled like external boundaries.

The option Density to eQuantumPotential and hQuantumPotential activates the density-based formula
(Eq. 15.142) instead of the potential-based formula (Eq. 15.143). If this option is used, the parameters and

 must both be 1.

A string (that is, a name enclosed in double quotation marks) as the option to eQuantumPotential and
hQuantumPotential specifies the name of a PMI model for in (Eq. 15.143) (see Chapter 33 on
page 15.535). When no PMI model is specified, .

Apart from switching on the quantum corrections in the Physics section, the equations for the quantum
corrections must be solved by using eQuantumPotential or hQuantumPotential, or both in the Solve section. For
example:

Physics {
eQuantumPotential

}
Plot {

eQuantumPotential
}
Solve {

Coupled { Poisson eQuantumPotential }
Quasistationary (

DoZero InitialStep=0.01 MaxStep=0.1 MinStep=1e-5
Goal { Name="gate" Voltage=2 }

){
Coupled { Poisson Electron eQuantumPotential }

}
}

n̂ ξ∇βEFn
∇βΦ– η 1–()q∇βψ+()⋅ 0= n̂

Φ n̂ ξ∇βEFn
∇βΦ– η 1–()q∇βψ+()⋅

µ
µcl rµtunnel+

1 r+
-------------------------------=

µcl µtunnel
r max 0 n ncl⁄ 1–,()= ncl

n ncl> n ncl–
µtunnel ncl

Λ
Λ

ξ
η

ΛPMI
ΛPMI 0=
 15.173

PART 15 DESSISCHAPTER 7 QUANTIZATION MODELS
The quantum corrections can be plotted. To this end, use eQuantumPotential or hQuantumPotential, or both in the
Plot section.

To activate the mobility modification according to (Eq. 15.144), specify the Tunneling option to the keyword
Mobility in the Physics section of the DESSIS command file. Specify for electrons and holes by the
mutunnel parameter pair in the ConstantMobility parameter set of the DESSIS parameter file.

The parameters , , , and are available in the parameter file in the parameter set
QuantumPotentialParameters. The parameters can be specified regionwise and materialwise. They cannot be
functions of the mole fraction in heterodevices. In insulators, is always assumed as zero, regardless of user
specifications.

7.4.3 Application notes
Fitting parameters: The parameters () for the density gradient model have been calibrated only for
silicon. The quantum correction affects the densities and field distribution in a device. Therefore,
parameters for mobility and recombination models that have been calibrated to classical simulations (or
simulations with the van Dort model) may require recalibration.

Tunneling: The density gradient model increases the current through the semiconducting potential
barriers. However, this effect is not a trustworthy description of tunneling through the barrier. To model
tunneling, use one of the dedicated models that DESSIS provides (see Chapter 16 on page 15.299). To
suppress unwanted tunneling or to fit tunneling currents despite these concerns, consider using the
modified mobility model according to (Eq. 15.144).

Convergence: In general and particularly for the density gradient corrections, solving additional
equations worsens convergence. Typically, it is advisable to solve the equations for the quantum
potentials whenever the Poisson equation is solved (using a Coupled statement). Usually, the best strategy
to obtain an initial solution at the beginning of the simulation is to do a coupled solve of the Poisson
equation and the quantum potentials, without the current and temperature equations.

To obtain this initial solution, it is sometimes necessary that the user sets the LineSearchDamping optional
parameter (see Section 2.9.1 on page 15.55) to a value less than 1; a good value is 0.01.

Often, using initial bias conditions that induce a current flow work well for a classical simulation, but do
not work when the density gradient model is active. In such cases, start from equilibrium bias conditions
and put an additional voltage ramping at the beginning of the simulation.

If an initial solution is still not possible, consider using Fermi statistics (see Section 4.4 on page 15.137).
Check grid refinement and pay special attention to interfaces between insulators and highly doped
semiconductor regions. For classical simulations, the refinement perpendicular to such interfaces is often
not critical, whereas for quantum mechanical simulations, quantization introduces variations at small
length scales, which must be resolved.

µtunnel

γ ϑ ξ η

ξ

γ

15.174

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
DESSIS

CHAPTER 8 Mobility models

8.1 Overview
DESSIS uses a modular approach for the description of the carrier mobilities. In the simplest case, the
mobility is a function of the lattice temperature. This so-called constant mobility model described in
Section 8.3 on page 15.176 should only be used for undoped materials. For doped materials, the carriers
scatter with the impurities. This leads to a degradation of the mobility. Section 8.4 on page 15.176 introduces
the models that describe this effect.

Models that describe the mobility degradation at interfaces, for example, the silicon–oxide interface in the
channel region of a MOSFET, are introduced in Section 8.5 on page 15.180. These models account for the
scattering with surface phonons and surface roughness.

Models that describe the effects of carrier–carrier scattering are given is Section 8.6 on page 15.186. The
Philips unified mobility model described in Section 8.7 on page 15.188 is a well-calibrated model, which
accounts for both impurity and carrier–carrier scattering. Finally, the models that describe mobility
degradation in high electric fields are discussed in Section 8.8 on page 15.193.

8.2 Syntax and implementation
The mobility models are selected in the Physics section as arguments of the Mobility keyword:

Physics{ Mobility(<arguments>) ...}

If more than one mobility model is activated, the different mobility contributions are combined according to
the following scheme – different bulk (, , ...) and surface (, , ...) mobility contributions are
combined following Mathiessen’s rule:

(15.145)

If the high field saturation model is activated, the final mobility is computed in two steps. First, the low field
mobility is determined according to (Eq. 15.145). Second, the final mobility is computed from a (model-
dependent) formula as a function of a driving force F:

(15.146)

µb1 µb2 µs1 µs2

1
µ
--- 1

µb1
-------- 1

µb2
-------- … 1

µs1
-------- 1

µs2
-------- …+ + + ++=

µlow

µ f µlow F,()=
 15.175

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
8.3 Mobility due to lattice scattering

8.3.1 Syntax and implementation

The constant mobility model is switched on by default in DESSIS. It is active unless the keyword
DopingDependence is specified as an argument of the keyword Mobility:

Physics{ Mobility(DopingDependence) ...}

8.3.2 Constant mobility model

The constant mobility model [61] assumes that carrier mobility is only affected by phonon scattering and,
therefore, dependent only on the lattice temperature:

(15.147)

where is the mobility due to bulk phonon scattering, is the lattice temperature, and . The
default values of and the exponent are listed in Table 15.64.

8.3.3 Constant mobility model parameters

The constant mobility model parameters are accessible in the parameter file in the ConstantMobility:{...}
section.

8.4 Doping-dependent mobility degradation
In doped semiconductors, scattering of the carriers by charged impurity ions leads to degradation of the carrier
mobility. DESSIS supports two models for doping-dependent mobility.

8.4.1 Syntax and implementation

The models for the mobility degradation due to impurity scattering are activated by specifying the
DopingDependence arguments for the keyword Mobility:

Physics{ Mobility(DopingDependence ...) ...}

Table 15.64 Constant mobility model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

mumax 1417 470.5 cm2/(Vs)

exponent 2.5 2.2 1

µconst µL
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

ζ–

=

µL T T0 300 K=
µL ζ

µL

ζ

15.176

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
Different models are available and are selected by an additional argument:

Physics{ Mobility(DopingDependence([Masetti | Arora | UniBo]) ...) ...}

If the keyword DopingDependence is specified without additional keywords, DESSIS uses a material-dependent
default. For example, in silicon, the default is the Masetti model; for GaAs, the default is the Arora model.
The default model (Masetti or Arora) for each material can be specified by the variable formula, which is
accessible in the DopingDependence section of the parameter file:

DopingDependence: {
formula= 1 , 1 # [1]

... }

If the variable formula is set to 1, the Masetti model is selected. To activate the Arora model, set the variable
formula to 2. The DopingDependence parameter set also determines the other parameters for the Masetti and
Arora models. The parameters for the University of Bologna model are in the UniBoDopingDependence parameter
set:

UniBoDopingDependence:{...}

8.4.2 Masetti model

The default model used by DESSIS to simulate doping-dependent mobility in silicon was proposed by Masetti
et al. [62]:

(15.148)

where denotes the total concentration of ionized impurities.

The reference mobilities , , and , the reference doping concentrations , , and , and the
exponents and are accessible in the parameter file in the section:

DopingDependence:{ ... }

The corresponding values for silicon are given in Table 15.65.

Table 15.65 Masetti model: Default coefficients

Symbol Parameter name Electrons Holes Unit

mumin1 52.2 44.9 cm2/(Vs)

mumin2 52.2 0 cm2/(Vs)

mu1 43.4 29.0 cm2/(Vs)

Pc 0 cm–3

Cr cm–3

Cs cm–3

alpha 0.680 0.719 1

beta 2.0 2.0 1

µdop µmin1
Pc
Ni
-----–⎝ ⎠

⎛ ⎞exp
µconst µmin2–

1
Ni
Cr

⎝ ⎠
⎜ ⎟
⎛ ⎞ α

+

µ1

1
Cs
Ni

⎝ ⎠
⎜ ⎟
⎛ ⎞

β

+

-----------------------–+=

Ni NA ND+=

µmin1 µmin2 µ1 Pc Cr Cs
α β

µmin1

µmin2

µ1

Pc 9.23 16×10

Cr 9.68 16×10 2.23 17×10

Cs 3.34 20×10 6.10 20×10

α

β

 15.177

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
The low-doping reference mobility is determined by the constant mobility model (see Section 8.3 on
page 15.176).

Figure 15.30 illustrates the doping-dependent mobility degradation in silicon for electrons and holes.

Figure 15.30 Doping dependence of mobility in silicon: Electrons (left) and holes (right) according to (Eq. 15.150)

8.4.3 Arora model

The Arora model [117] reads:

(15.149)

with:

 , (15.150)

and:

 , (15.151)

where denotes the total concentration of ionized impurities, T0 = 300 K, and T is the lattice
temperature. All other parameters are accessible in the parameter file in the DopingDependence section.

Table 15.66 Arora model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

Ar_mumin 88 54.3 cm2/(Vs)

Ar_alm –0.57 –0.57 1

Ar_mud 1252 407 cm2/(Vs)

Ar_ald –2.33 –2.23 1

Ar_N0 cm–3

µconst

µdop µmin
µd

1
Ni
N0

⎝ ⎠
⎜ ⎟
⎛ ⎞ A∗

+

---------------------------+=

µmin Amin
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

αm

⋅= µd Ad
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

αd

⋅=

N0 AN
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

αN

⋅= A∗ Aa
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

αa

⋅=

Ni NA ND+=

Amin

αm

Ad

αd

AN 1.25 17×10 2.35 17×10
15.178

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
8.4.4 University of Bologna bulk mobility model

The University of Bologna bulk mobility model was developed for an extended temperature range between
25°C and 400°C. It should be used together with the University of Bologna inversion layer mobility model
(see Section 8.5.3 on page 15.183). The model [144][145] is based on the Masetti approach with two major
extensions. First, attractive and repulsive scattering are separately accounted for, therefore, leading to a
function of both donor and acceptor concentrations. This automatically accounts for different mobility values
for majority and minority carriers, and ensures continuity at the junctions as long as the impurity
concentrations are continuous functions. Second, a suitable temperature dependence for most model
parameters is introduced to predict correctly the temperature dependence of carrier mobility in a wider range
of temperatures, with respect to other models. The temperature dependence of lattice mobility is reworked,
with respect to the default temperature.

The model for lattice mobility is:

(15.152)

where denotes the lattice mobility at room temperature, and gives a correction to the lattice mobility
at higher temperatures. The maximum mobility and the exponents and are accessible in the
parameter file.

The model for bulk mobility reads:

(15.153)

In turn, and are expressed as weighted averages of the corresponding limiting values for pure acceptor-
doping and pure donor-doping densities:

(15.154)

(15.155)

The reference mobilities , , , and , and the reference doping concentrations , , , and
 are accessible in the parameter file.

Ar_alN 1

Ar_a 0.88 0.88 1

Ar_ala –0.146 –0.146 1

Table 15.66 Arora model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

αN 2.4 2.4

Aa

αa

µL T() µmax
T

300 K
---------------⎝ ⎠

⎛ ⎞
γ– c T

300 K
---------------⎝ ⎠

⎛ ⎞+

=

µmax c
µmax γ c

µdop ND NA T, ,() µ0 ND NA T, ,()
µL T() µ0 ND NA T, ,()–

1
ND

Cr1 T()
-----------------⎝ ⎠

⎛ ⎞
α NA

Cr2 T()
-----------------⎝ ⎠

⎛ ⎞
β

+ +

µ1 ND NA T, ,()

1
ND

Cs1 T()

NA
Cs2 T()
-----------------+⎝ ⎠

⎛ ⎞
2–

+
---–+=

µ0 µ1

µ0 ND NA T, ,()
µ0dND µ0aNA+

ND NA+
---------------------------------------=

µ1 ND NA T, ,()
µ1dND µ1aNA+

ND NA+
---------------------------------------=

µ0d µ0a µ1d µ1a Cr1 Cr2 Cs1
Cs2
 15.179

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
Table 15.67 lists the corresponding values of silicon for arsenic, phosphorus, and boron; .

NOTE The DESSIS default parameters for electrons are those for arsenic. The bulk mobility model was
calibrated with experiments [145] in the temperature range 300–700 K. It is suitable for isothermal
simulations at large temperatures or nonisothermal simulations.

8.5 Mobility degradation at interfaces
In the channel region of a MOSFET, the high transverse electric field forces carriers to interact strongly with
the semiconductor–insulator interface. Carriers are subjected to scattering by acoustic surface phonons and
surface roughness. The models in this section describe mobility degradation caused by these effects.

Table 15.67 Parameters of University of Bologna bulk mobility model

Silicon Parameter name Electrons (As) Electrons (P) Holes (B) Unit

mumax 1441 1441 470.5 cm2/(Vs)

Exponent2 0.07 0.07 0 1

Exponent 2.45 2.45 2.16 1

mumin1 cm2/(Vs)

mumin1_exp 0.6 0.7 1.3 1

mumin2 cm2/(Vs)

mumin2_exp 1.3 1.3 0.7 1

mu1 cm2/(Vs)

mu1_exp 0.5 0.7 2.0 1

mu2 cm2/(Vs)

mu2_exp 1.25 1.25 0.8 1

Cr cm–3

Cr_exp 3.65 3.65 2.2 1

Cr2 cm–3

Cr2_exp 2.65 2.65 3.1 1

Cs cm–3

Cs_exp 0 0 6.2 1

Cs2 cm–3

alpha 0.68 0.68 0.77 1

beta 0.72 0.72 0.719 1

Tn T 300 K⁄=

µmax

c

γ

µ0d 55.0Tn
γ0d–

62.2Tn
γ0d–

90.0Tn
γ0d–

γ0d

µ0a 132.0Tn
γ0a–

132.0Tn
γ0a–

44.0Tn
γ0a–

γ0a

µ1d 42.4Tn
γ1d–

48.6Tn
γ1d–

28.2Tn
γ1d–

γ1d

µ1a 73.5Tn
γ1a–

73.5Tn
γ1a–

28.2Tn
γ1a–

γ1a

Cr1 8.9 1016× Tn
γr1 8.5 1016× Tn

γr1 1.3 1018× Tn
γr1

γr1

Cr2 1.22 1017× Tn
γr2 1.22 1017× Tn

γr2 2.45 1017× Tn
γr2

γr2

Cs1 2.9 1020Tn
γs1× 4.0 1020Tn

γs1× 1.1 1018Tn
γs1×

γs1

Cs2 7.0 1020× 7.0 1020× 6.1 1020×

α

β

15.180

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
8.5.1 Syntax and implementation

To activate mobility degradation at interfaces, select a method to compute the transverse field (see
Section 8.5.4 on page 15.185).

To select the calculation of field perpendicular to the semiconductor–insulator interface, specify the keyword
Enormal in the Mobility statement:

Physics{ Mobility(Enormal ...) ...}

Alternatively, to select calculation of perpendicular to current flow, specify:

Physics{ Mobility(ToCurrentEnormal ...) ...}

To select a mobility degradation model, specify an option to Enormal or ToCurrentEnormal. Valid options are
Lombardi, UniBo, or a PMI model provided by the user. For example,

Physics{ Mobility(Enormal(UniBo) ...) ...}

selects the University of Bologna model (see Section 8.5.3 on page 15.183). The default model is Lombardi
(see Section 8.5.2).

NOTE The mobility degradation models discussed in this section are very sensitive to mesh spacing. ISE
recommends that the vertical mesh spacing be reduced to 0.1 nm in the silicon at the oxide interface
underneath the gate. For the extensions of the Lombardi model (see (Eq. 15.159)), even smaller
spacing of 0.05 nm is appropriate. This fine spacing is only required in the two uppermost rows of
mesh and can be increased progressively moving away from the interface.

8.5.2 Enhanced Lombardi model

The surface contribution due to acoustic phonon scattering has the form:

(15.156)

and the contribution attributed to surface roughness scattering is given by:

(15.157)

These surface contributions to the mobility (and) are then combined with the bulk mobility
according to Mathiessen’s rule (see Section 8.3 on page 15.176 and Section 8.4 on page 15.176):

(15.158)

In the above formulas, refers to the total concentration of ionized impurities and .
The reference field ensures a unitless numerator in (Eq. 15.157). is the transverse electric
field normal to the semiconductor–insulator interface, see Section 8.5.4. (where is the

F⊥

F⊥

µac
B

F⊥

C Ni N0⁄()λ

F⊥
1 3⁄ T T0⁄()k

--------------------------------+=

µsr
F⊥ Fref⁄()A∗

δ

F⊥
3

η
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

1–

=

µac µsr µb

1
µ
--- 1

µb
------ D

µac
------- D

µsr
-------+ +=

Ni NA ND+= T0 300 K=
Fref 1 V cm⁄= F⊥

D x lcrit⁄–()exp= x
 15.181

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
distance from the interface and a fit parameter) is a damping that switches off the inversion layer terms
far away from the interface. All other parameters are accessible in the parameter file.

In the Lombardi model [61], the exponent in (Eq. 15.157) is equal to 2. According to another study [116],
an improved fit to measured data is achieved if is given by:

(15.159)

where and denote the electron and hole concentrations, respectively. The reference doping concentration
 cancels the unit of the term raised to the power in the denominator of (Eq. 15.159). The

Lombardi model parameters are accessible in the DESSIS parameter file in the section:

EnormalDependence:{ ... }

The respective default parameters that are appropriate for silicon are given in Table 15.68. The parameters ,
, , and were fitted at SGS Thomson and are not contained in the literature [61].

Table 15.68 Lombardi model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

B 4.75 × 107 9.925 × 106 cm/s

C 5.80 × 102 2.947 × 103 cm5/3/(V2/3s)

N0 1 1 cm–3

lambda 0.1250 0.0317 1

k 1 1 1

delta 5.82 × 1014 2.0546 × 1014 cm2/(Vs)

A 2 2 1

alpha 0 0 cm3

n1 1 1 cm–3

nu 1 1 1

eta 5.82 × 1030 2.0546 × 1030 V2/(cms)

lcrit l_crit 1 × 10−6 1 × 10−6 cm

lcrit

A*

A*

A∗ A
α⊥ n p+()Nref

ν

Ni N1+()ν
----------------------------------+=

n p
Nref 1 cm 3–= ν

B
C N0 λ

B

C

N0

λ

k

δ

A

α⊥

N1

ν

η

15.182

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
Figure 15.31 Partial mobilities and of Lombardi model as function of normal electric field for different doping
concentrations

The modifications of the Lombardi model suggested in [116] can be activated by setting to a nonzero
value. Table 15.69 lists a consistent set of parameters for the modified model.

8.5.3 University of Bologna inversion layer mobility model

The University of Bologna inversion layer mobility model was developed for an extended temperature range
between 25°C and 400°C. It should be used together with the University of Bologna bulk mobility model (see
Section 8.4.4 on page 15.179). The inversion layer mobility in MOSFETs is degraded by Coulombic
scattering at low normal fields and by surface phonons and surface roughness scattering at large normal fields.

Table 15.69 Lombardi model: Lucent coefficients for silicon

Symbol Parameter name Electrons Holes Unit

B B 3.61 × 107 1.51 × 107 cm/s

C C 1.70 × 102 4.18 × 103 cm(5/3)/(V(2/3)s)

N0 N0 1 1 cm–3

lambda 0.0233 0.0119 1

k k 1.7 0.9 1

delta 3.58 × 1018 4.10 × 1015 cm2/(Vs)

A A 2.58 2.18 1

alpha 6.85 × 10–21 7.82 × 10–21 cm3

N1 n1 1 1 cm–3

nu 0.0767 0.123 1

eta 1 × 1050 1 × 1050 V2/(cms)

lcrit l_crit 1 1 cm

µac µsr

α⊥

λ

δ

α⊥

ν

η

 15.183

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
In the University of Bologna model [144], all these effects are combined by using Mathiessen’s rule:

(15.160)

where is the contribution of Coulombic scattering, and , are those of surface phonons and
surface roughness scattering, respectively. (where is the distance from the interface and

 a fit parameter) is a damping that switches off the inversion layer terms far away from the interface.

The term is associated with substrate impurity and carrier concentration. It is decomposed in an
unscreened part (due to the impurities) and a screened part (due to local excess carrier concentration):

(15.161)

where is given by the bulk mobility model, and is a fit parameter. The screening function is given by:

(15.162)

where is the total concentration of ionized impurities and is the minority carrier
concentration.

If surface mobility is plotted against the effective normal field, mobility data converges toward a universal
curve. Deviations from this curve appear at the onset of weak inversion, and the threshold field changes with
the impurity concentration at the semiconductor surface [146]. The term models these deviations, in that,
it is the roll-off in the effective mobility characteristics. As the effective field increases, the mobilities become
independent of the channel doping and approach the universal curve.

The main scattering mechanisms are, in this case, surface phonons and surface roughness scattering, which
are expressed by:

(15.163)

(15.164)

All model parameters are accessible in the parameter file. is the electric field normal to
semiconductor–insulator interface, see Section 8.5.4 on page 15.185. Table 15.70 lists the respective silicon
default parameters.

Table 15.70 Parameters of University of Bologna inversion layer mobility model ()

Symbol Parameter name Electrons Holes Unit

N1 2.34 x 1016 2.02 x 1016 cm–3

N2 4.0 x 1015 7.8 x 1015 cm–3

N3 1.0 x 1017 2.0 x 1015 cm–3

N3 2.4 x 1018 6.6 x 1017 cm–3

1
µ
--- 1

µbsc
--------- D

µac
------- D

µsr
-------+ +=

1 µbsc⁄ 1 µac⁄ 1 µsr⁄
D x lcrit⁄–()exp= x

lcrit

µbsc

µbsc µb D 1 fsc
τ+()

1 τ⁄
1 D–()+[]=

µb τ

fsc
N1
Ni
------⎝ ⎠

⎛ ⎞
ηNmin

Ni
-----------=

Ni NA ND+= Nmin

µbsc

µac C T()
Ni
N2
------⎝ ⎠

⎛ ⎞
a 1
F⊥

δ
---------=

µsr B T()
Ni N3+

N4
------------------⎝ ⎠

⎛ ⎞
b 1
F⊥

λ
---------=

F⊥

Tn T 300 K⁄=

N1

N2

N3

N4
15.184

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
NOTE The reported parameters are detailed in the literature [147]. The model was calibrated with
experiments [146][147] in the temperature range 300–700 K.

The parameters for the model are accessible in the parameter file section:

UniBoEnormalDependence:{...}

8.5.4 Transverse field computation

DESSIS supports two different methods for computing the normal electric field .

8.5.4.1 Normal to the interface

Assume that mobility degradation occurs at an interface . In this method, is determined for a given
point in the device by locating the nearest point at the interface , then determining the direction
normal to the interface point , and then computing the component of the electric field in this direction at the
point :

(15.165)

To activate the Lombardi model with this method of computing , specify the argument Enormal in the
Mobility statement. The keyword ToInterfaceEnormal is synonymous with Enormal.

By default, the interface is a semiconductor–insulator interface. Sometimes, it is important to change this
default interface definition, for example, when the insulator (oxide) is considered a wide band gap

B 5.8 x 101 7.82 x 1015 cm2/(Vs)

B_exp 0 1.4 1

C cm2/(Vs)

C_exp 1.6 1.3 1

tau 1 3 1

eta 0.3 0.5 1

ac_exp 0.026 –0.02 1

sr_exp 0.11 0.08 1

l_crit cm

delta 0.29 0.3 1

lambda 2.64 2.24 1

Table 15.70 Parameters of University of Bologna inversion layer mobility model ()

Symbol Parameter name Electrons Holes Unit

Tn T 300 K⁄=

B Tn
γB Tn

γB

γB

C 1.86 4×10 Tn
γC– 5.726 3×10 Tn

γC–

γC

τ

η

a

b

lcrit 1 6–×10 1 6–×10

δ

λ

F⊥

Γ F⊥ r()
r ri Γ e⊥

ri
r

F⊥ r() F r() e⊥•=

F⊥

Γ

 15.185

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
semiconductor. In this case, DESSIS allows this interface to be specified explicitly in the Math section (see
Section 5.2.1 on page 15.151).

In the following example, DESSIS takes as the union of interfaces between materials, OxideAsSemiconductor
and Silicon, and regions, regionK1 and regionL1:

Math {
...

EnormalInterface(regioninterface=["regionK1/regionL1"],
materialinterface=["OxideAsSemiconductor/Silicon"])

...
}

8.5.4.2 Normal to the current flow

Using this method, is defined as the component of the electric field normal to the electron (c=e) and
hole (c=h) currents :

(15.166)

where is used for the evaluation of electron mobility and is used for the evaluation of hole mobility.

NOTE For very low current levels, the computation of the electric field component normal to the currents
may be numerically problematic and lead to convergence problems. It is recommended to use the
option Enormal. Besides possible numeric problems, both approaches give the same or very similar
results.

8.6 Carrier–carrier scattering
DESSIS supports two models for the description of carrier–carrier scattering. One model is based on
Choo [64] and Fletcher [65] and uses the Conwell–Weisskopf screening theory. As an alternative to the
Conwell–Weisskopf model, DESSIS supports the Brooks–Herring model. The carrier–carrier contribution to
the overall mobility degradation is captured in the mobility term . This is combined with the mobility
contributions from other degradation models () according to Mathiessen’s rule:

(15.167)

8.6.1 Syntax and implementation

The carrier–carrier scattering models are activated by specifying the CarrierCarrierScattering argument for
the Mobility keyword. Either of the two different models are selected by an additional argument:

Physics{ Mobility(
CarrierCarrierScattering([ConwellWeisskopf | BrooksHerring])
...)...}

Γ

F⊥ r()
jc r()

Fc ⊥, r() F r() 1
F r() jc r()•

F r() jc r()⋅

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–

2

=

Fe ⊥, Fh ⊥,

µeh
µother

1
µ
--- 1

µother
-------------- 1

µeh
--------+=
15.186

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
The Conwell–Weisskopf model is the default in DESSIS for carrier–carrier scattering and is activated when
the keyword CarrierCarrierScattering is specified without any arguments.

8.6.2 Conwell–Weisskopf model

(15.168)

where n and p are the electron and hole densities respectively, T denotes the lattice temperature, and
T0 =300 K. The parameters D and F are accessible in the parameter file. The default values appropriate for
silicon are given in Table 15.71.

8.6.3 Brooks–Herring model

(15.169)

with and (15.170)

where T denotes the lattice temperature, T0 = 300 K, n and p are the electron and hole densities, respectively,
and F–1/2(y) is the derivative of the Fermi integral. Table 15.72 lists the silicon default values for c1 and c2.

8.6.4 Physical model parameters

Parameters for the carrier–carrier scattering models are accessible in the parameter file in the section:

CarrierCarrierScattering:{ ... }

Table 15.71 Conwell–Weisskopf model: Default parameters

Symbol Parameter name Value Unit

D D 1/(cmVs)

F F cm–2

Table 15.72 Brooks-Herring model: Default parameters

Symbol Parameter name Value Unit

c1 c1 1/(cmVs)

c2 c2 cm–3

µeh

D T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

3 2⁄

np
------------------------ 1 F T

T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

pn() 1 3⁄–+
⎝ ⎠
⎜ ⎟
⎛ ⎞

ln

1–

=

µeh

c1
T
T0
-----⎝ ⎠

⎛ ⎞ 3 2⁄

np
------------------------- 1

φ η0()
--------------=

φ η0() 1 η0+()ln
η0

1 η0+
---------------–= η0 T()

c2

NcF 1– 2⁄
n

Nc

⎝ ⎠
⎜ ⎟
⎛ ⎞

NvF 1 2⁄–
p

Nv

⎝ ⎠
⎜ ⎟
⎛ ⎞

+

-- T
T0
-----⎝ ⎠

⎛ ⎞ 2
=

1.04 21×10

7.452 13×10

1.56 21×10

7.63 19×10
 15.187

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
Figure 15.32 shows a comparison between the Conwell–Weisskopf and Brooks–Herring mobilities for the
special case of n = p.

Figure 15.32 Comparison of e-h-mobility models for n = p

8.7 Philips unified mobility model
The Philips unified mobility model, proposed by Klaassen [66], unifies the description of majority and
minority carrier bulk mobilities. In addition to describing the temperature dependence of the mobility, the
model takes into account electron–hole scattering, screening of ionized impurities by charge carriers, and
clustering of impurities. Two parameter sets apply for electron mobility, which are optimized for situations
where the dominant donor species is either arsenic or phosphorus. For holes, only a single parameter set
appropriate for predominantly boron-doped silicon is assumed.

The Philips unified mobility model is well calibrated. Though it was initially used primarily for bipolar
devices, it is widely used for MOS devices.

8.7.1 Syntax and implementation

The Philips unified mobility model is activated by specifying the PhuMob argument for the Mobility keyword:

Physics{ Mobility(PhuMob ...) ...}

The model can also be activated with one or two additional arguments:

Physics{ Mobility(PhuMob([Arsenic | Phosphorus]
 [Klaassen | Meyer]) ...) ...}

The argument Arsenic or Phosphorus specifies which of the two electron parameter sets (see Table 15.74 on
page 15.192) is used. These parameters reflect the different electron mobility degradation that is observed in
the presence of these donor species.

The argument Klaassen or Meyer specifies which parameter sets (see Table 15.73 on page 15.191) are used for
the evaluation of G(Pi). DESSIS defaults to the Klaassen set.

NOTE The Philips unified mobility model describes mobility degradation due to both impurity scattering
and carrier–carrier scattering mechanisms. Therefore, the keyword PhuMob must not be combined
with the keywords DopingDependence or CarrierCarrierScattering. If a combination of these
keywords is specified, DESSIS uses only the Philips unified mobility model.
15.188

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
8.7.2 Physical model description

According to the Philips unified mobility model, there are two contributions to carrier mobilities. The first,
, represents phonon (lattice) scattering and the second, , accounts for all other bulk scattering

mechanisms (due to free carriers, and ionized donors and acceptors). These partial mobilities are combined
to give the bulk mobility for each carrier according to Mathiessen’s rule:

(15.171)

In (Eq. 15.171) and all of the following model equations, the index i takes the value e for electrons and h for
holes. The first contribution due to lattice scattering takes the form:

(15.172)

where denotes the lattice temperature and .

The second contribution has the form:

(15.173)

with:

(15.174)

(15.175)

for the electrons:

 (15.176)

(15.177)

and for holes:

(15.178)

(15.179)

The electron and hole concentrations are denoted by n and p, respectively.

µi L, µi DAeh,

µi b,

1
µi b,
--------- 1

µi L,
--------- 1

µi DAeh,
-------------------+=

µi L, µi max,
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

θi–

=

T T0 300 K=

µi DAeh, µi N,

Ni sc,
Ni sc eff, ,

⎝ ⎠
⎜ ⎟
⎛ ⎞ Ni ref,

Ni sc,

⎝ ⎠
⎜ ⎟
⎛ ⎞

αi

µi c,
n p+

Ni sc eff, ,

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

µi N,
µi max,

2

µi max, µi min,–
----------------------------------- T

T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

3αi 1.5–

=

µi c,
µi max, µi min,

µi max, µi min,–
----------------------------------- T

T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

0.5

=

Ni sc, Ne sc, ND
* NA

* p+ += =

Ni sc eff, , Ne sc eff, , ND
* G Pe()NA

* p
F Pe()
--------------+ += =

Ni sc, Nh sc, NA
* N+ D

*
n+= =

Ni sc eff, , Nh sc eff, , NA
* G Ph()ND

* n
F Ph()
---------------+ += =
 15.189

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
The effects of clustering of donors () and acceptors () at ultrahigh concentrations are described by
‘clustering’ functions ZD and ZA, which are defined as:

(15.180)

(15.181)

The analytic functions G(Pi) and F(Pi) in (Eq. 15.177) and (Eq. 15.179) describe minority impurity and
electron–hole scattering.

They are given by:

(15.182)

and:

(15.183)

where m0 is the free carrier mass and denotes a fit parameter (which is related to the effective carrier
mass). m*j denotes the corresponding fit parameter for holes if i = e and for electrons if i = h.

8.7.3 Screening parameter

The screening parameter is given by a weighted harmonic mean of the Brooks–Herring approach and
Conwell–Weisskopf approach:

(15.184)

If the Klaassen parameter set is selected, the evaluation of G(Pi) depends on the value of the screening
parameter Pi. For values of Pi< Pi,min, G(Pi,min) is used instead of G(Pi), where Pi,min is the value at which G(Pi)
reaches its minimum.

ND
* NA

*

ND
* NDZD ND 1 1

cD
ND ref,

ND

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

+

------------------------------------+= =

NA
* NAZA NA

1 1

cA
NA ref,

NA

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

+

-----------------------------------+= =

F Pi()

0.7643Pi
0.6478 2.2999 6.5502

m∗i

m∗j

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ +

Pi
0.6478 2.3670 0.8552

m∗i

m∗j

⎝ ⎠
⎜ ⎟
⎛ ⎞

–+

---=

G Pi() 1
ag

bg Pi
m0
m∗i
--------- T

T0

⎝ ⎠
⎜ ⎟
⎛ ⎞ αg

+

βg
--–

cg

Pi
m0
m∗i
--------- T

T0

⎝ ⎠
⎜ ⎟
⎛ ⎞ α'g

γg
---+=

m∗i

Pi

Pi
fCW

3.97 1013× Ni sc,
2 3⁄–

--
fBH

1.36 1020×
n p+

m∗i
m0

⎝ ⎠
⎜ ⎟
⎛ ⎞

--+

1–

T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

=

15.190

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
Figure 15.33 shows the behavior of the above analytic functions F and G for m*e = m0 and m*h = 1.258 m0.

Figure 15.33 G and F as functions of screening parameter Pe for electrons

If the Meyer parameter set is selected, (Eq. 15.183) is used independently of the value of Pi.

8.7.4 Physical model parameters

DESSIS supports two sets of fixed values for the parameters ag, bg, cg, , , and in (Eq. 15.183).
Either set is selected by specifying either the keyword Klaassen or Meyer (see Section 8.7.1 on page 15.188).
The corresponding values are given in Table 15.73. DESSIS defaults to the Klaassen set.

Other parameters for the Philips unified mobility model are accessible in the parameter file section:

PhuMob:{ ... }

Table 15.74 and Table 15.75 on page 15.192 list the silicon defaults for all the other parameters. DESSIS
supports two sets of parameters for electron mobility, which are optimized for situations where the dominant
donor species in the silicon is either arsenic or phosphorus. The parameter set corresponding to arsenic doping
is the default. For holes, only a single parameter set appropriate for predominantly boron-doped silicon is
assumed.

Table 15.73 Philips unified mobility model parameters: Klaassen versus Meyer

Symbol Klaassen Meyer Unit

ag 0.89233 4.41804 1

bg 0.41372 39.9014 1

cg 0.005978 0.52896 1

0.28227 0.0001 1

0.72169 1.595787 1

0.19778 0.38297 1

1.80618 0.25948 1

αg α'g βg γg

αg

α'g

βg

γg
 15.191

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
The Philips unified mobility model uses four fit parameters: the weight factors fCW and fBH, and the ‘effective
masses’ m*

e and m*
h. The optimal parameter set, determined by accurate fitting to experimental data [66] is

shown in Table 15.76.

Figure 15.34 shows the majority mobility curves calculated with the model for both electrons and holes as a
function of acceptor and donor concentrations.

Figure 15.34 Doping dependence of majority carrier mobility in silicon using Philips unified mobility model

Table 15.74 Philips unified mobility model parameters (silicon), set 1

 Symbol Parameter name Electrons
(arsenic)

Electrons
(phosphorus)

Holes (boron) Unit

mumax_* 1417 1414 470.5 cm2/Vs

mumin_* 52.2 68.5 44.9 cm2/Vs

theta_* 2.285 2.285 2.247 1

N{e/h},ref n_ref_* 9.68 x 1016 9.2 x 1016 2.23 x 1017 cm–3

alpha_* 0.68 0.711 0.719 1

Table 15.75 Philips unified mobility model parameters (silicon), set 2

Symbol Parameter name Donor (*=D) Acceptor (*=A) Unit

N{D/A},ref nref_* 4 x 1020 7.2 x 1020 cm–3

c cref_* 0.21 0.5 1

Table 15.76 Philips unified mobility model parameters (silicon), set 3

Symbol Parameter name Value Unit

me_over_m0 1 1

mh_over_m0 1.258 1

f_CW 2.459 1

f_BH 3.828 1

µmax

µmin

θ

α

m∗e m0⁄

m∗h m0⁄

fCW

fBH
15.192

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
Figure 15.35 compares the majority and minority mobilities of electrons and holes. The minority carrier
mobility is higher, in accordance with a variety of experimental data.

Figure 15.35 Comparison between carrier majority and minority mobilities in silicon using Philips unified mobility model

8.8 High field saturation
In high electric fields, the carrier drift velocity is no longer proportional to the electric field strength, instead,
the velocity saturates to a finite speed vsat. DESSIS supports different models for the description of this effect:

The Canali model is available in different versions (one for drift-diffusion and thermodynamic, and one
for hydrodynamic simulations).

The transferred electron model is available for simulation of GaAs and related materials. It also supports
a drift-diffusion/thermodynamic and a hydrodynamic version.

The basic model and the Meinerzhagen–Engl model both require hydrodynamic simulations.

8.8.1 Syntax

The high field saturation models are activated by specifying the HighFieldSaturation argument for the Mobility
keyword:

Physics{ Mobility(HighFieldSaturation (<arguments> ...) ...}

The models can be selected for the electrons and holes independently:

Physics{ Mobility([eHighFieldSaturation (<electron arguments>)]
 [hHighFieldSaturation (<hole arguments>)] ...}

8.8.2 Canali model

The Canali model [67] originates from the Caughey–Thomas formula [63], but has temperature-dependent
parameters, which were fitted up to 430 K by Canali et al. [67]:

(15.185)µ F()
µlow

1
µlowF

vsat

⎝ ⎠
⎜ ⎟
⎛ ⎞ β

+
1 β⁄

--=
 15.193

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
where µlow denotes the low field mobility. Its definition depends on which of the previously described mobility
models have been activated (see Section 8.3 on page 15.176 to Section 8.7 on page 15.188). The exponent
is temperature dependent according to:

 (15.186)

where T denotes the lattice temperature and T0 = 300 K. Details about the saturation velocity vsat and driving
field F are discussed in Section 8.8.4 on page 15.195 and Section 8.8.5 on page 15.196. All other parameters
are accessible in the parameter file section:

HighFieldDependence:{ ...

The silicon default values are listed in Table 15.77 and the computed, velocity field curves at various
temperatures are plotted in Figure 15.36.

Figure 15.36 Temperature dependence of electron drift velocity according to model after Canali et al. [67]

8.8.3 Transferred electron model

For materials such as GaAs and other materials with a similar band structure, a negative differential mobility
can be observed for high driving fields. This effect is caused by a transfer of electrons, heated in the high
electric field, into a energetically higher side valley with a much larger effective mass. DESSIS includes a
transferred electron model for the description of this effect, as given by:

(15.187)

Table 15.77 Canali model parameters (default values for silicon)

Symbol Parameter name Electrons Holes Unit

β0 beta0 1.109 1.213 1

βexp betaexp 0.66 0.17 1

β

β β0
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

βexp

=

µ

µlow
vsat
F

⎝ ⎠
⎜ ⎟
⎛ ⎞ F

E0

⎝ ⎠
⎜ ⎟
⎛ ⎞

4

+

1 F
E0

⎝ ⎠
⎜ ⎟
⎛ ⎞

4

+

--=
15.194

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
Details of the saturation velocity vsat and the driving field are discussed in Section 8.8.4 and Section 8.8.5
on page 15.196 The reference field strength can be set in the parameter file section:

HighFieldDependence:{ ... }

The HighFieldDependence section of the parameter file also includes a variable Ksmooth, which is equal to 1 by
default. If Ksmooth> 1, a smoothing algorithm is applied to the formula for mobility in the driving force interval

, where Fvmax is the field strength at which the velocity is at its maximum,
.

In this interval, (Eq. 15.187) is replaced by a polynomial that produces the same values and derivatives at the
points Fvmax and Ksmooth Fvmax. It is sometimes numerically advantageous to set Ksmooth ~ 20.

8.8.4 Velocity saturation models

DESSIS supports two velocity saturation models. Model 1 is part of the Canali model and is given by:

(15.188)

where denotes the lattice temperature and = 300 K. This model is recommended for silicon. Table 15.79
lists the silicon default values.

Model 2 is recommended for GaAs, and using Model 2, vsat is given by:

 for (15.189)

Otherwise, vsat = vsat,min. The parameters of Model 1 and Model 2 are accessible in the HighFieldDependence
section of the parameter file.

Selecting models

The variable Vsat_formula in the DESSIS parameter file controls the selection of the velocity saturation
models. If Vsat_formula is set to 1, Model 1 is selected. If Vsat_formula is set to 2, Model 2 is selected. The default
value of Vsat_formula depends on the semiconductor material, for example, for silicon the default is 1; for
GaAs, it is 2.

Table 15.78 Transferred electron model: Default parameters

Symbol Parameter name Electrons Holes Unit

E0 E0_TrEf 1

Ksmooth Ksmooth_TrEf 1 1 1

Table 15.79 Default velocity saturation (Model 1) parameters (for silicon)

Symbol Parameter Electrons Holes Unit

vsat,0 vsat0 cm/s

vsat,exp vsatexp 0.87 0.52 1

F
E0

Fvmax F KsmoothFvmax< <
vmax µFvmax=

4.0 3×10 4.0 3×10

vsat vsat,0
T0
T

⎝ ⎠
⎜ ⎟
⎛ ⎞

vsat.exp

=

T T0

1.07 7×10 8.37 6×10

vsat Avsat Bvsat
T
T0

⎝ ⎠
⎜ ⎟
⎛ ⎞

–= vsat vsat,min>
 15.195

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
8.8.5 Driving force models

DESSIS supports two different models for the driving force F. Model 1 sets F to be the component of the electric
field parallel to the carrier current:

(15.190)

where denotes the electric field vector, and denotes the electron (c=e) or hole (c=h) current vector.
According to Model 2, the driving field F is given by the gradient of the Fermi potential :

(15.191)

NOTE Usually, both models give the same or very similar results. However, numerically, one model may
prove to be more stable. For example, in regions with very low current levels, the evaluation of the
parallel electric field can be numerically problematic.

8.8.6 Syntax and implementation for drift-diffusion and
thermodynamic simulations

For drift-diffusion and thermodynamic simulations, the high field saturation models are activated by
specifying the HighFieldSaturation argument for the Mobility keyword:

Physics{Mobility(HighFieldSaturation ...) ...}

The two driving force models are selected by the additional argument:

Physics{ Mobility(HighFieldSaturation([GradQuasiFermi | Eparallel]) ...) ...}

By default, DESSIS uses GradQuasiFermi and the Canali model. The transferred electron model is activated by
the additional argument:

Physics{ Mobility(HighFieldSaturation([GradQuasiFermi | Eparallel]
TransferredElectronEffect) ...) ...}

Table 15.80 Default velocity saturation (Model 2) parameters

Symbol Parameter Electrons Holes Unit

Avsat A_vsat cm/s

Bvsat B_vsat cm/s

vsat,min vsat_min cm/s

1.07 7×10 8.37 6×10

3.6 6×10 3.6 6×10

5.0 5×10 5.0 5×10

Fc E
jc
jc

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

•=

E j
ϕc

F ϕc∇=
15.196

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
8.8.7 Hydrodynamic Canali model

DESSIS supports a generalized version of the Canali model (see Section 8.8.2 on page 15.193), which can be
used for hydrodynamic simulations. In this model, the driving force F is expressed is terms of the carrier
thermal energy wc (see (Eq. 15.55) and (Eq. 15.56)).

In a homogeneous and stationary situation, the hydrodynamic equations (Eq. 15.28), (Eq. 15.29), (Eq. 15.43),
and (Eq. 15.44) have the simple solution:

(15.192)

where wc = 3kBTc/2 is the average carrier thermal energy, w0 = 3kBTL/2 gives the equilibrium thermal energy,
τe,c is the energy relaxation time, Tc denotes the carrier temperature, and TL denotes the lattice temperature.
The index c is e for electrons and h for holes. Substituting Fc into the Canali model (see (Eq. 15.185)) and
solving for µ yields the hydrodynamic Canali model:

 (15.193)

where the parameter α is given by:

(15.194)

The saturation velocity vsat and the exponent β are determined in the same way as for the standard Canali
model discussed in Section 8.8.2. For average carrier energies wc less than the thermal energy wo, the mobility
is set to the low field value µ = µlow .

In its given form, the hydrodynamic Canali model has a discontinuous derivative at wc=w0, which can lead to
numeric problems. DESSIS, therefore, applies a smoothing algorithm to the kink. In the carrier temperature
region TL < Tc < (1 + KdT)TL, this algorithm creates a smooth transition between the low field mobility µlow
and the mobility given in (Eq. 15.193). TL denotes the lattice temperature and Tc denotes the carrier
temperature. The parameter KdT defaults to 0.2 and can be accessed in the parameter file section:

HighFieldDependence:{ ... }

8.8.8 Hydrodynamic transferred electron model

Similar to the hydrodynamic Canali model, the hydrodynamic version of the transferred electron model
follows from the standard model, by replacing the driving force F according to (Eq. 15.192) and solving the
resulting equation for µ.

Fc
wc w0–
τe c, qµ
------------------=

µ
µlow

1 α2 wc w0–()β+ α wc w0–()β 2⁄+
2 β⁄

---=

α 1
2

µlow

qτe c, vsat
2

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

β 2⁄

=

 15.197

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
8.8.9 A basic model

According to this very simple model, the mobility decays inversely with the carrier temperature:

(15.195)

where is the low field mobility, is the carrier temperature, and .

8.8.10 Meinerzhagen–Engl model

According to the Meinerzhagen–Engl model [68], the high field mobility degradation is given by:

(15.196)

where is the energy relaxation time. The coefficients of the saturation velocity (see (Eq. 15.188)) and
the exponent (see (Eq. 15.186)) are accessible the parameter file in the following section:

HydroHighFieldDependence:{ ... }

The silicon default values are given in Table 15.81.

8.8.11 Syntax and implementation for hydrodynamic
simulations

For hydrodynamic simulations, the high field saturation models are activated by specifying one of the
following arguments for the keyword HighFieldSaturation:

Physics { Mobility(
HighFieldSaturation ([CarrierTempDrive | CarrierTempDriveBasic | CarrierTempDriveME])...)
...

}

CarrierTempDrive activates the hydrodynamic Canali model, CarrierTempDriveBasic activates the basic model
and CarrierTempDriveME activates the Meinerzhagen–Engl model.

Table 15.81 Meinerzhagen–Engl model: Default parameters

Silicon Electrons Holes Unit

vsat,0 cm/s

vsat,exp 0.87 0.52 1

β0 0.6 0.6 1

βexp 0.01 0.01 1

µ µlow
T0
Tc

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

µlow Tc T0 300 K=

µ
µlow

1 µlow
wc w0–()

qτe c, vsat
2

⎝ ⎠
⎜ ⎟
⎛ ⎞ β

+
1 β⁄

--=

τe,c vsat
β

1.07 7×10 8.37 6×10
15.198

PART 15 DESSIS CHAPTER 8 MOBILITY MODELS
The hydrodynamic transferred electron model is activated by the arguments:

Physics { Mobility(
HighFieldSaturation (CarrierTempDrive TransferredElectronEffect)...)
...

}

8.9 Monte Carlo–computed mobility for strained
silicon

Based on Monte Carlo simulations [174], a DESSIS parameter file StrainedSilicon.par is created in the library
of materials (see Section 2.13.5 on page 15.92). This file contains in-plane transport parameters at 300 K for
silicon under biaxial tensile strain that is present when a thin silicon film is grown on top of a relaxed
SiliconGermanium substrate. (In-plane refers to charge transport that is parallel to the interface to
SiliconGermanium, as is the case in MOSFETs.)

In the Physics section of the DESSIS command file, the germanium content (XFraction) of the SiliconGermanium
substrate at the interface to the StrainedSilicon channel must be specified (this value determines the strain in
the top silicon film) according to:

MoleFraction (RegionName=["TopLayer"] XFraction = 0.2 Grading = 0.0)

where the material of TopLayer is StrainedSilicon.

Band offsets and bulk mobility data are obtained from the model-solid theory of Van de Walle and descriptions
of Monte Carlo simulations [174].

At present, a parameterization of the surface mobility model as a function of strain is not yet possible. The
present values for the parameters B and C of the surface mobility were extracted in a 1 µm bulk MOSFET at a
high effective field (where the Si control measurements of the references [175][176] were in good agreement
with the universal mobility curve of Si and where the neglected effect of the SiGe substrate is minimal) of
approximately 0.7 MV/cm to reproduce reported experimental data [175][176], for the typical germanium
content in the SiliconGermanium substrate of 30%. The values for other germanium contents are given as
comments.

8.10 Incomplete ionization–dependent mobility models
DESSIS supports incomplete ionization–dependent mobility models. This dependence is activated by
specifying the keyword IncompleteIonization in Mobility sections. The incomplete ionization model (see
Chapter 6 on page 15.161) must be activated also. The Physics sections for this case can be as follows:

Physics {
IncompleteIonization
Mobility(Enormal IncompleteIonization)

}

In this case, for all equations that contain , DESSIS will use .NA ND N, , i NA ND+= NA
- ND

+, N, i NA
- ND

++=
 15.199

PART 15 DESSISCHAPTER 8 MOBILITY MODELS
The following mobility models depend on incomplete ionization:

Masetti model, see (Eq. 15.148)

Arora model, see (Eq. 15.149)

University of Bologna bulk model, see (Eq. 15.153)–(Eq. 15.155)

Lombardi model, see (Eq. 15.156) and (Eq. 15.159)

University of Bologna inversion layer model, see (Eq. 15.162)–(Eq. 15.164)

Philips unified model, see (Eq. 15.180), (Eq. 15.181)
15.200

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
DESSIS

CHAPTER 9 Generation–recombination

9.1 Shockley–Read–Hall recombination
Recombination through deep levels in the gap is usually labeled Shockley–Read–Hall (SRH) recombination.
In DESSIS, the following form is implemented:

(15.197)

with:

(15.198)

and:

(15.199)

where Etrap is the difference between the defect level and intrinsic level. The variable Etrap is accessible in the
parameter file. The silicon default value is Etrap = 0. The minority lifetimes τn and τp are modeled as a product
of a doping-dependent (see Section 9.1.2 on page 15.202), field-dependent (see Section 9.2 on page 15.204
and Section 9.3 on page 15.207), and temperature-dependent (see Section 9.1.4 on page 15.203) factor:

(15.200)

where or for holes. For an additional density dependency of the lifetimes, see Section 9.8 on
page 15.213.

For simulations that use Fermi statistics (see Section 4.4 on page 15.137) or quantization (see Chapter 7 on
page 15.165), (Eq. 15.197) needs to be generalized. The modified equation reads:

(15.201)

where and are given by (Eq. 15.70) and (Eq. 15.71).

9.1.1 Syntax and implementation

The generation–recombination models are selected in the Physics section as an argument to the Recombination
keyword:

Physics{ Recombination(<arguments>) ...}

Rnet
SRH np ni eff,

2–
τp n n1+() τn p p1+()+
---=

n1 ni eff, e

Etrap
kT

=

p1 ni eff, e

E– trap
kT

=

τc τdop
f T()

1 gc F()+
-----------------------= c, n p,=

c n= c p=

Rnet
SRH np γnγpni eff,

2–
τp n γnn1+() τn p γpp1+()+
---=

γn γp
 15.201

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
The SRH model is activated by specifying the SRH argument:

Physics{ Recombination(SRH ...) ...}

The keyword for plotting the SRH recombination rate is:

Plot{ ...
SRHRecombination}

9.1.2 Doping dependence

The doping dependence of the SRH lifetimes is modeled in DESSIS with the Scharfetter relation:

(15.202)

Such a dependence arises from experimental data [69] and the theoretical conclusion that the solubility of a
fundamental, acceptor-type defect (probably a divacancy (E5) or a vacancy complex) is strongly correlated to
the doping density [70]–[72]. Default values are listed in Table 15.82 on page 15.204. The Scharfetter relation
is used when the argument DopingDependence is specified for the SRH recombination. Otherwise, τ = τmax is
used.

The evaluation of the SRH lifetimes according to the Scharfetter model is activated by specifying the
additional argument DopingDependence for the SRH keyword in the Recombination statement:

Physics{ Recombination(SRH(DopingDependence ...) ...) ...}

A plot of electron and hole lifetimes as functions of the doping concentration is presented in Figure 15.37 on
page 15.203.

9.1.3 Lifetime profiles from MDRAW

Lifetime profiles can be defined with the doping profiles and the grid, by using the device editor MDRAW
(see MDRAW, Section 3.2 on page 11.25). These profiles are loaded into DESSIS by using the keyword
LifeTime in the File section to specify the MDRAW output file containing the lifetime profiles, for example:

File{
Grid = "MyDev_mdr.grd"
Doping = "MyDev_mdr.dat"
LifeTime = "MyDev_mdr.dat"
...

}

For each grid point, the values defined by the lifetime profile are used as τmax in (Eq. 15.202).

The lifetime data can be in a separate .dat file from the doping, but must correspond to the same grid.

NOTE Recombination lifetimes depend strongly on processing conditions and may vary within a given
device. Therefore, SRH lifetimes can be regarded as fitting parameters.

τdop Ni() τmin
τmax τmin–

1
Ni

Nref

⎝ ⎠
⎜ ⎟
⎛ ⎞ γ

+

---------------------------+=
15.202

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
Figure 15.37 Doping dependence of SRH lifetimes according to Scharfetter relation (Eq. 15.202)

9.1.4 Temperature dependence

To date, there is no consensus on the temperature dependence of the SRH lifetimes. This appears to originate
from a different understanding of lifetime. From measurements of the recombination lifetime [74]–[76]:

(15.203)

in power devices (δn is the excess carrier density under neutral conditions, δn = δp), it was concluded that the
lifetime increases with rising temperature. Such a dependence was modeled either by a power law [74][75]:

(15.204)

or an exponential expression of the form [76]:

(15.205)

A calculation using the low-temperature approximation of multiphonon theory [73] gives:

 with (15.206)

with Tα= –3/2, which is the expected decrease of minority carrier lifetimes with rising temperature. Since the
temperature behavior strongly depends on the nature of the recombination centers, there is no universal law
τSRH(T).

In DESSIS, the power law model, (Eq. 15.204), can be activated with the keyword TempDependence in the SRH
statement:

Physics{ Recombination(SRH(TempDependence ...) ...}

13 14 15 16 17 18 19 20 21
Log (Doping Concentration [cm-3])

- 11

- 10

- 9

- 8

- 7

- 6

- 5

- 4

Lo
g(

t S
R

H
 [s

])

electrons

holes

τ δn R⁄=

τ T() τ0
T

300

⎝ ⎠
⎜ ⎟
⎛ ⎞

α

=

τ T() τ0e
C T

300
--------- 1–⎝ ⎠

⎛ ⎞

=

τSRH T() τSRH 300K() f T()⋅= f T() T
300

⎝ ⎠
⎜ ⎟
⎛ ⎞

Tα

=

 15.203

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
Additionally, DESSIS supports an exponential model for f(T):

 (15.207)

This model is activated with the keyword ExpTempDependence:

Physics{ Recombination(SRH(ExpTempDependence ...) ...}

9.1.5 SRH model parameters

All the parameters of the doping- and temperature-dependent SRH recombination models are accessible in
the parameter file section:

Scharfetter{ ...}

9.2 Trap-assisted tunneling/SRH
Trap-assisted tunneling (also known as defect-assisted tunneling or field-enhanced recombination) results in
a reduction of SRH recombination lifetimes in regions of strong electric fields. It must not be neglected if the
electric field exceeds a value of approximately V/cm in certain regions of the device. For example, the
I–V characteristics of reverse biased pn-junctions are extremely sensitive to defect-assisted tunneling, which
causes electron–hole pair generation before band-to-band tunneling or avalanche generation sets in.
Therefore, it is recommended that this model is included in the simulation of drain reverse leakage and
substrate currents in MOS transistors.

9.2.1 Syntax and implementation

The local field–dependence of the SRH lifetimes is activated by the keyword Tunneling:

Physics{ Recombination(SRH (Tunneling ...) ...) ...}

Table 15.82 Default parameters for doping- and temperature-dependent SRH lifetime

Symbol Parameter name Electrons Holes Unit

τmin taumin 0 0 s

τmax taumax 1x10–5 3x10–6 s

Nref Nref 1x1016 1x1016 cm–3

gamma 1 1 1

Tα Talpha –1.5 –1.5 1

C Tcoeff 2.55 2.55 1

Etrap 0 0 eV

f T() e
C T

300
--------- 1–⎝ ⎠

⎛ ⎞

=

γ

Etrap

3 5×10
15.204

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
NOTE In some situations, the inclusion of defect-assisted tunneling may lead to convergence problems.
In such cases, it is recommended that the keyword NoSRHperPotential is specified in the Math section:
Math{ NoSRHperPotential ...}

This causes DESSIS to exclude derivatives of g(F) with respect to the potential from the Jacobian
matrix.

9.2.2 Model description

The field dependence of the recombination rate is taken into account by the field enhancement factors:

(15.208)

of the SRH lifetimes [73] where F denotes the field strength (see (Eq. 15.200)). Furthermore, the density
in (Eq. 15.197) is replaced by:

(15.209)

with and according to (Eq. 15.211) and (Eq. 15.212). is replaced by an analogous expression. In the
case of electrons, g(F) has the form:

(15.210)

where E0 denotes the energy of an optimum horizontal transition path, which depends on field strength and
temperature in the following way:

(15.211)

In this expression, is the lattice relaxation energy, S is the Huang–Rhys factor, is the
effective phonon energy, Et is the energy level of the recombination center (thermal depth), and

 is the electro-optical frequency. The mass is the electron tunneling mass in the
field direction and is given in the parameter file. The expression for holes follows from (Eq. 15.210) by
replacing with and with .

1 g F()+[] 1–

n

ñ n
EFn

∇ Et E0–()

kBTF
--------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

E0 Et p

gn F() 1
hΘ()

3 2⁄ Et E0–

E0hω0
--+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
2
---–

hΘ()
3 4⁄ Et E0–()

1 4⁄

2 EtE0
--- hΘ

kBT
-------⎝ ⎠

⎛ ⎞
3
2

e

Et E0–

hω0
-------------–

hω0 kBT–

2hω0

Et kBT() 2⁄+
hω0

------------------------ ln Et εR⁄()
E0

hω0
------- ln E0 εR⁄()–+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

e

Et E0–

kBT
-------------⎝ ⎠

⎛ ⎞

e

4
3
-

Et E0–

hΘ
-------------⎝ ⎠

⎛ ⎞
3
2

–⎝ ⎠
⎛ ⎞

×

×

=

E0 2 εF εF Et εR+ + εF–[] εR–= εF,
2εRkBT()2

hΘ()
3

--------------------------=

εR S hω0= hω0

Θ e2F2 2hmΘ e,⁄()
1 3⁄

= mΘ e,

mΘ e, mΘ h, Et Eg E– t
 15.205

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
For electrons, Et is related to the defect level Etrap of (Eq. 15.198) and (Eq. 15.199) by:

(15.212)

where mv and mc are taken from (Eq. 15.111) and (Eq. 15.116), respectively, and the effective Rydberg
constant is:

(15.213)

where is the Rydberg energy (13.606 eV), is the relative dielectric constant, and is a fit parameter.
For holes, Et is given by:

(15.214)

Note that Etrap is measured from the intrinsic level and not from mid gap. The zero-field lifetime τSRH is
defined by (Eq. 15.202).

Figure 15.38 shows that the lifetime reduction starts at approximately V/cm.

Figure 15.38 Field enhancement factor for SRH lifetime calculated with default parameters and T = 300 K

The solid curve represents (Eq. 15.210), which is based on the low-temperature approximation of
multiphonon theory. For comparison, the dots show the exact results.

9.2.3 Model parameters

The parameters for the trap-assisted SRH lifetimes are accessible in the parameter file in the section:

TrapAssistedTunneling : { ... }

The default parameters implemented in DESSIS are related to the gold acceptor level: Etrap = 0 eV, S = 3.5,
and = 0.068 eV.

Et
1
2
---Eg,eff

3
4
---kBT

mc
mv

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln Etrap– 32RCh3Θ3()1 4/–+=

RC

RC mc
Z2

ε2
-----⎝ ⎠

⎛ ⎞ Ry=

Ry ε Z

Et
1
2
---Eg,eff

3
4
---kBT

mc
mv

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln– Etrap 32RVh3Θ3()1 4/–+=

3 105×

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Electric Field [MV/cm]

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Lo
g(

 g
(E

))

implemented low-temp. appr.
full multiphonon theory

gn

hω0
15.206

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
9.3 Hurkx trap-assisted tunneling model
The commonly used Hurkx trap-assisted tunneling model is implemented in DESSIS and is used to:

Reduce SRH lifetimes in regions of high electric field.

Increase the cross section of traps in the trap equations.

9.3.1 Syntax and implementation

To activate the Hurkx tunneling model for SRH recombination, specify the following keywords in Physics
section of the input file:

Physics{ ...
Recombination(SRH(tunneling(Hurkx)))

...}

Alternatively, to apply the model to trap equations, the same keywords must be included in the trap definition
for a trap distribution:

Physics{ ...
Traps((...) (... Tunneling(Hurkx)) (...))

...}

There is another possibility to switch on the model for trap equations (see Chapter 10 on page 15.225) if the
user needs to apply the model for all the trap distributions of a specified region. This is achieved by changing
XsecFormula for the cross section calculation in the Traps section of the parameter file:

Traps{
* XsecFormula=1: Xsec(F) = Xsec
* XsecFormula=2: Xsec(F) = Xsec*(1+a1*(F/F0)^p1+a2*(F/F0)^p2)^p0
* XsecFormula=3: Xsec(F) = Xsec*(1+Gt)
XsecFormula = 3, 3

}

9.3.2 Model description

The following equations apply to electrons and holes. The lifetimes and capture cross sections become
functions of the trap-assisted tunneling factor :

, (15.215)

where is given by:

(15.216)

Γtat

τ τ0 1 Γtat+()⁄= σ σ0 1 Γtat+()⋅=

Γtat

Γtat u 2
3
--- u3

Ẽ
---------–exp ud

0

En
˜

∫=
 15.207

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
with the approximate solutions:

(15.217)

where and are respectively defined as:

, where (15.218)

(15.219)

where is the carrier tunneling mass and is an energy of trap level that is taken from SRH
recombination if the model is applied to the lifetimes () or from trap equations if it is applied to cross
sections ().

When quantization is active (see Chapter 7 on page 15.165), the classical density:

(15.220)

rather than the true density enters (Eq. 15.219).

9.3.3 Model parameters

The model has only one parameter, , the carrier tunneling mass, which can be specified in the DESSIS
parameter file for electrons and holes as follows:

HurkxTrapAssistedTunneling{
mt = <value>, <value>

}

9.4 Surface SRH recombination
The surface SRH recombination model can be activated at the interface between two different materials or
two different regions (see Section 2.5.5 on page 15.49).

Γtat

πẼ 1
3
---Ẽ

2
2 erfc 1

2

En
˜

Ẽ
------ Ẽ–

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

Ẽ En
˜≤,⋅exp⋅

πẼ En
˜

1
4

⋅ En
˜ Ẽ En

˜ 1
3
---Ẽ En

˜ 3
+ +– erfc En

˜
1
4

Ẽ En
˜

3
4

Ẽ⁄– Ẽ En
˜>,exp

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

≈

Ẽ En
˜

Ẽ E
E0
------= E0

8m0mt kBT()3

qh
-------------------------------------=

En
˜ En

kBT

0 kBT n
ni
----ln 0.5Eg>,

0.5Eg
kBT

-------------- n
ni
---- Etrap kBT n

ni
----ln 0.5Eg≤ ≤,ln–

0.5Eg
kBT

-------------- Etrap Etrap kBT n
ni
----ln>,–

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

= =

mt Etrap
τ

σ

ncl n Λ
kBT
---------⎝ ⎠

⎛ ⎞exp=

n

mt
15.208

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
At interfaces, an additional formula is used that is structurally equivalent to the bulk expression of the SRH
generation–recombination:

(15.221)

with:

 and (15.222)

For Fermi statistics and quantization, the equations are modified in the same manner as for bulk SRH
recombination (see (Eq. 15.201)).

The recombination velocities of otherwise identically prepared surfaces depend, in general, on the
concentration of dopants at the surface [77]–[79]. Particularly, in cases where the doping concentration varies
along an interface, it is desirable to include such a doping dependence. DESSIS models doping dependence
of surface recombination velocities according to:

(15.223)

The results of Cuevas [79] indicate that for phosphorus-diffused silicon, γ = 1; while the results of King [78]
seem to imply that no significant doping dependence exists for the recombination velocities of boron-diffused
silicon surfaces. To activate the model, specify the option surfaceSRH to the Recombination keyword in the
Physics section for the respective interface. To plot the surface recombination, specify SurfaceRecombination in
the Plot section. The parameters Etrap, sref, Nref, and γ are accessible in the parameter file section:

SurfaceRecombination * surface SRH recombination: {...}

The corresponding values for silicon are given in Table 15.83.

The doping dependence of the recombination velocity can be suppressed by setting Sref to zero.

9.5 Coupled defect level (CDL) recombination
The steady state recombination rate for two coupled defect levels generalizes the familiar single-level SRH
formula. An important feature of the model is a possibly increased field effect that may lead to large excess
currents. The model is discussed in the literature [80].

Table 15.83 Surface SRH parameters

Symbol Parameter name Electrons Holes Unit

S0 S0 cm/s

Sref Sref 1

Nref Nref cm–3

gamma 1 1

ETrap Etrap 0 eV

Rsurf net,
SRH np ni eff,

2–
n n1+() sp⁄ p p1+() sn⁄+

---=

n1 ni eff, e

Etrap
kT

= p1 ni eff, e

E– trap
kT

=

s s0 1 sref
Ni

Nref
---------⎝ ⎠

⎛ ⎞
γ

+=

1 3×10 1 3×10

1 3×10

1 16×10

γ

 15.209

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
9.5.1 Syntax and implementation

The CDL recombination can be switched on using the keyword CDL in the Physics section of the input file:

Physics{ Recombination(CDL ...) ...}

The contributions and in (Eq. 15.226) can be plotted by using the keywords CDL1 and CDL2 in the Plot
section. For the net rate and coupling term, , the keywords CDL and CDL3 must be specified.

9.5.2 Model description

The notation of the model parameters is illustrated in Figure 15.39.

Figure 15.39 Notation for CDL recombination including all capture and emission processes

The CDL recombination rate is given by:

(15.224)

with:

(15.225)

, (15.226)

(15.227)

(15.228)

(15.229)

where the terms , , , , and denote the electron density, hole density, effective intrinsic density,
electron lifetime of defect level i, and hole lifetime of level i, respectively. The coupling parameter between
the defect levels is called (keyword TrapTrapRate in the parameter file). The carrier lifetimes are calculated
analogously to the carrier lifetimes in the SRH model (see Section 9.1 on page 15.201). The number of
parameters is doubled compared to the SRH model, and they are changeable in the parameter file section:

CDL : { ... }

R1 R2
R R1 R2––

R R1 R2 R12
2 S12– R12–⎝ ⎠

⎛ ⎞+ +
τn1τp2 n n2+() p p1+() τn2τp1 n n1+() p p2+()–

r1r2
---×=

rj τnj p pj+() τpj n nj+()+=

Rj
np ni eff,

2–
rj

-----------------------= j 1 2,=

R12
r1r2

2r12τn1τn2τp1τp2 1 ε–()

τn1 p p1+() τp2 n n2+()+
2τn1τp2 1 ε–()

--
ε τn2 p p2+() τp1 n n1+()+[]

2τn2τp1 1 ε–()
--+ +=

S12
1

τn1τp2 1 ε–()
---------------------------- 1

τn1τp2

τn2τp1
---------------ε–⎝ ⎠

⎛ ⎞ np ni eff,
2–()=

ε exp
Et2 Et1–

kBT
-----------------------–⎝ ⎠

⎛ ⎞=

n p ni eff, τni τpi

r12
15.210

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
The quantities and are the corresponding quantities of and for the second defect level. They are
defined analogously to (Eq. 15.198) and (Eq. 15.199).

For Fermi statistics and quantization, the equations are modified in the same manner as for SRH
recombination (see (Eq. 15.201)).

9.6 Radiative recombination model

9.6.1 Syntax and implementation

The radiative recombination model is activated in the Physics section of the DESSIS input file by the keyword
Radiative:

Physics {
Recombination (Radiative)

}

It can also be switched on or off by using the notation +Radiative or -Radiative:

Physics (Region = "gate") {
Recombination (+Radiative)

}

Physics (Material = "AlGaAs") {
Recombination (-Radiative)

}

The value of the radiative recombination rate is plotted as follows:

Plot {
RadiativeRecombination

}

The value of the parameter C can be changed in a section of the DESSIS parameter file:

RadiativeRecombination {
C = 2.5e-10

}

9.6.2 Model description

The radiative (direct) recombination model expresses the recombination rate as a function of the carrier
concentrations n and p, and the effective intrinsic density :

(15.230)

By default, DESSIS selects C = cm3/s for GaAs and C = 0 cm3/s for other materials. For Fermi
statistics and quantization, the equations are modified in the same manner than for SRH recombination (see
(Eq. 15.201)).

n2 p2 n1 p1

ni eff,

R C np ni eff,
2–()⋅=

2 10 10–⋅
 15.211

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
9.7 Auger recombination
The rate of band-to-band Auger recombination is given by:

(15.231)

with temperature-dependent Auger coefficients [81]–[83]:

(15.232)

(15.233)

where . There is experimental evidence for a decrease of the Auger coefficients at high injection
levels [83]. This effect is explained as resulting from exciton decay: at lower carrier densities, excitons, which
are loosely bound electron–hole pairs, increase the probability for Auger recombination. Excitons decay at
high carrier densities, resulting in a decrease of recombination. This effect is modeled by the terms (1+H
exp(–n/No)) in (Eq. 15.232) and (Eq. 15.233).

Auger recombination is typically important at high carrier densities. Therefore, this injection dependence will
only be seen in devices where extrinsic recombination effects are extremely low, such as high-efficiency
silicon solar cells. The injection dependence of the Auger coefficient can be deactivated by setting H to zero
in the parameter file.

For Fermi statistics and quantization, the equations are modified in the same manner as for SRH
recombination (see (Eq. 15.201)). Default values for silicon are listed in Table 15.84.

Auger recombination is activated with the argument Auger in the Recombination statement:

Physics{ Recombination(Auger ...) ...}

By default, DESSIS uses (Eq. 15.231) only if is positive and replaces the value by zero if is negative.
To use (Eq. 15.231) for negative values (that is, to allow for Auger generation of electron-hole pairs), use the
WithGeneration option to the Auger keyword:

Physics { Recombination(Auger(WithGeneration) ...) ...}

The Auger parameters are accessible in the parameter file in the section:

Auger : { ... }

Table 15.84 Default coefficients of Auger recombination model

Symbol [cm6/s] [cm6/s] [cm6/s] H (1) N0 [cm–3]

Parameter name H N0

Electrons 0.67 x 10–31 2.45 x 10–31 –2.2 x 10–32 3.46667 1x1018

Holes 0.72 x 10–31 4.50 x 10–33 2.63 x 10–32 8.25688 1x1018

RA

RA Cnn Cpp+
⎝ ⎠
⎛ ⎞ np ni eff,

2–
⎝ ⎠
⎛ ⎞=

Cn T() AA n, BA n,
T
T0
-----⎝ ⎠

⎛ ⎞ CA n,
T
T0
-----⎝ ⎠

⎛ ⎞ 2
+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 Hne
n

N0 n,
----------–

+
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅=

Cp T() AA p, BA p,
T
T0
-----⎝ ⎠

⎛ ⎞ CA p,
T
T0
-----⎝ ⎠

⎛ ⎞ 2
+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 Hpe
p

N0 p,
----------–

+
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅=

T0 300 K=

AA BA CA

A B C

RA RA
15.212

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
9.8 Trap-assisted Auger recombination
Trap-assisted Auger recombination (TAA) is not an independent generation–recombination model, but a
modification to the SRH recombination (see Section 9.1 on page 15.201) and coupled defect level (see
Section 9.5 on page 15.209) models. When TAA is active, DESSIS uses the lifetimes [72]:

(15.234)

(15.235)

in place of the lifetimes and in (Eq. 15.197) and (Eq. 15.225).

The TAA lifetimes in (Eq. 15.234) depend on the carrier densities:

(15.236)

(15.237)

A reasonable order of magnitude for the TAA coefficients is ~ (–) cm3s–1; default
values are = = cm3s–1.

TAA recombination is activated by using the keyword TrapAssistedAuger in the Recombination statement in the
Physics section of the input file (see Section 2.5.2.3 on page 15.47):

Physics{
Recombination(TrapAssistedAuger ...)
...

}

The trap-assisted Auger parameters and are accessible in the parameter file in the section:

TrapAssistedAuger: { ... }

9.9 Avalanche generation
Electron–hole pair production due to avalanche generation (impact ionization) requires a certain threshold
field strength and the possibility of acceleration, that is, wide space charge regions. If the width of a space
charge region is greater than the mean free path between two ionizing impacts, charge multiplication occurs,
which can cause electrical breakdown. The reciprocal of the mean free path is called the ionization coefficient
α. With these coefficients for electrons and holes, the generation rate can be expressed as:

(15.238)

where denotes the drift velocity. DESSIS implements three models of the threshold behavior of the
ionization coefficients: van Overstraeten – de Man, Okuto–Crowell, and Lackner.

τp

1 τp τp
TAA⁄+

τn

1 τn τn
TAA⁄+

τp τn

1
τn

TAA
----------- Nt Cn

TAA,en Cn
TAA,hp+⎝ ⎠

⎛ ⎞ cp
TAA n p+()≈=

1
τp

TAA
----------- Nt Cp

TAA,en Cp
TAA,hp+⎝ ⎠

⎛ ⎞ cn
TAA n p+()≈=

Cv
TAA 1 12–×10 1 11–×10

Cn
TAA Cp

TAA 1 12–×10

Cn
TAA Cp

TAA

G|| αnnvn αppvp+=

vn p,
 15.213

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
DESSIS allows users to select the appropriate driving force for the simulation, that is, the method used to
compute the accelerating field.

9.9.1 Syntax and implementation

Avalanche generation is switched on by using the keyword Avalanche in the Recombination statement in the
Physics section of the input file. The models are selected by using the keywords vanOverstraeten, Lackner, and
UniBo. The default model is vanOverstraeten. For example:

Physics{
Recombination(eAvalanche(CarrierTempDrive) hAvalanche(Okuto)...

}

selects a driving force derived from electron temperature for electron impact ionization process and the
default driving force based on GradQuasiFermi with the Okuto–Crowell model for holes.

9.9.2 van Overstraeten – de Man model

This model is based on the Chynoweth law [84]:

(15.239)

with:

(15.240)

The factor γ with the optical phonon energy expresses the temperature dependence of the phonon gas
against which carriers are accelerated. The coefficients a, b, and , as measured by van Overstraeten and
de Man [85], are applicable over the range of fields 1.75x105 – 6x105 and are listed in Table 15.85 on
page 15.215.

NOTE Two sets of coefficients a and b are used for high and low ranges of electric field. The values a(low),
b(low) apply in the low field range 1.75 x 105 – E0 eV and the values a(high), b(high) apply in the
high field range E0 – 6 x 105 eV. For electrons, the impact ionization coefficients are by default the
same in both field ranges.

The user can adjust the coefficient values in the dessis.par file in the section:

vanOverstraetendeMan * Impact Ionization:

α F() γae
γb
F
-----–

=

γ

hωop
2kT0

⎝ ⎠
⎜ ⎟
⎛ ⎞

tanh

hωop
2kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

tanh

-----------------------------=

hωop
hωop
15.214

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
9.9.3 Okuto–Crowell model

Okuto and Crowell [86] suggested the empirical model:

(15.241)

where T0=300 K and the user-adjustable coefficients are listed in Table 15.86 with their default values for
silicon. These values are applicable to the range of electric field 105–106 V/cm. The user can adjust these
values in the following section of the DESSIS parameter file:

OkutoCrowell * Impact Ionization

Table 15.85 Coefficients for van Overstraeten – de Man model, (Eq. 15.239)

Symbol Parameter name Electrons Holes Valid range of
electric field

Unit

a a(low) 7.03 x 105 1.582 x 106 1.75 x 105 – E0 cm–1

a(high) 7.03 x 105 6.71 x 105 E0 – 6 x 105

b b(low) 1.231 x 106 2.036 x 106 1.75 x 105 – E0 V/cm

b(high) 1.231 x 106 1.693 x 106 E0 – 6 x 105

E0 E0 4 x 105 4 x 105 V/cm

hbarOmega 0.063 0.063 eV

Table 15.86 Coefficients for Okuto–Crowell model, (Eq. 15.241)

Symbol Parameter name Electrons Holes Unit

a a 0.426 0.243 V–1

b b 4.81 x 105 6.53 x 105 V/cm

c c 3.05 x 10–4 5.35 x 10–4 K–1

d d 6.86 x 10–4 5.67 x 10–4 K–1

γ gamma 1 1 1

δ delta 2 2 1

hωop

α F() a 1 c T T0–()+⎝ ⎠
⎛ ⎞ Fγ e

b 1 d T T0–()+[]
F

⎝ ⎠
⎜ ⎟
⎛ ⎞

δ

–

⋅ ⋅ ⋅=
 15.215

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
Figure 15.40 Temperature dependence of e-impact ionization rate after Okuto–Crowell model (left)
and Lackner model (right)

9.9.4 Lackner model

Lackner [87] derived a pseudo-local ionization rate in the form of a modification to the Chynoweth law,
assuming stationary conditions. The temperature-dependent factor γ was introduced to the original model:

 where (15.242)

with:

(15.243)

and:

(15.244)

The default values of the coefficients a, b, and are applicable in silicon for the range of electric field
105–106 V/cm. The user can adjust these values in the parameter file in the section:

Lackner * Impact Ionization

Table 15.87 Coefficients for Lackner model, (Eq. 15.242)

Symbol Parameter name Electrons Holes Unit

a a 1.316 x 106 1.818 x 106 cm–1

b b 1.474 x 106 2.036 x 106 V/cm

hbarOmega 0.063 0.063 eV

αν F()
γaν
Z

--------e

γbν

F
--------–

= ν n p,=

Z 1
γbn
F

--------e

γbn
F

--------– γbp
F

--------e

γbp
F

--------–
+ +=

γ

hωop
2kT0

⎝ ⎠
⎜ ⎟
⎛ ⎞

tanh

hωop
2kT

⎝ ⎠
⎜ ⎟
⎛ ⎞

tanh

-----------------------------=

hωop

hωop
15.216

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
9.9.5 University of Bologna impact ionization model

The University of Bologna impact ionization model was developed for an extended temperature range
between 25°C and 400°C. It is based on impact ionization data generated by the Boltzmann solver HARM
[149]. It covers a wide range of electric fields (50–600 kV/cm) and temperatures (300–700 K). It is calibrated
against impact ionization measurements [145][148] in the whole temperature range. The model reads:

(15.245)

The temperature dependence of the model parameters, determined by fitting experimental data, reads (for
electrons):

 (15.246)

and for holes:

 (15.247)

Table 15.88 lists the model parameters.

The model parameters are accessible in the parameter file section:

UniBo :{...}

Table 15.88 Coefficients for University of Bologna impact ionization model

Silicon Parameter name Electrons Holes Unit

a0 ha0 4.338 2.376 V

a1 ha1 –2.42 x 10–12 1.033 x 10–2 V/(K)a2, V/K

a2 ha2 4.123 0 1

b0 hb0 0.235 0.177 V

b1 hb1 0 –2.178 x 10–3 1/K

c0 hc0 1.68 x 104 9.47 x 10–3 V/cm, V/(K)c1

c1 hc1 4.379 2.492 V/(cm K), 1

c2 hc2 0.13 0 V/(cm K2), 1

d0 hd0 1.234 x 106 1.404 x 106 V/cm

d1 hd1 1.204 x 103 2.974 x 103 V/(cm K)

d2 hd2 0.567 1.483 V/(cm K2)

αn p, F T,() F

a T() b T() d T()
F c T()+
---------------------exp+

--=

a T() a0 a1T
a2+= b T() b0= c T() c0 c1T c2T+ 2+= d T() d0 d1T d2T+ 2+=

a T() a0 a1T+= b T() b0 b1T[]exp= c T() c0T
c1= d T() d0 d1T d2T+ 2+=
 15.217

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
9.9.6 Driving force

In DESSIS, the driving force F for impact ionization can be computed as the magnitude of the electrostatic
field vector (keyword ElectricField), the component of the electrostatic field in the direction of the current
(Eparallel), or the value of the gradient of the quasi-Fermi level (GradQuasiFermi) (see Table 15.10 on
page 15.46). The default value is GradQuasiFermi.

The option ElectricField is used to perform breakdown simulations using the ‘ionization integral’ method (see
Section 9.10 on page 15.220).

9.9.7 Avalanche generation with hydrodynamic transport

If the hydrodynamic transport model is used, it is also possible (and usually recommended) to select a local
carrier temperature–dependent impact ionization model. This is achieved by using the construct
Avalanche(CarrierTempDrive) as an option to Recombination(Avalanche) in the Physics section of the DESSIS
input file:

Physics{ Hydro
Recombination(Avalanche(CarrierTempDrive)...}

Otherwise, the default electric field computation is still based on the GradQuasiFermi method.

The usual conversion of local carrier temperatures to effective fields is described by the algebraic
equations:

(15.248)

(15.249)

which are obtained from the energy conservation equation under time-independent, homogeneous conditions.
(Eq. 15.248) and (Eq. 15.249) have been simplified in DESSIS by using the assumption and

, where and are the carrier saturation velocities. This assumption is true for high
values of the electric field. However, for low field, the impact ionization rate is negligibly small.

The parameters λn and λp are fitting coefficients (default value 1) and their values can be changed in the
parameter file, where they are represented as n_l_f and p_l_f, respectively, in the section:

AvalancheFactors { ... }

Table 15.89 Driving force models for avalanche breakdown

Transport model Keyword Driving force model

Drift-diffusion Electric Field
Eparallel
GradQuasiFermi (default)

Hydrodynamic CarrierTempDrive See Section 9.9.7.

F F=

F F||
n p, F jn p, jn p,⁄()•= =

F ∇ϕn p,=

Eeff

nµn En
eff

⎝ ⎠
⎛ ⎞

2
n

3kB
2q

Tn TL–
λnτen

------------------=

pµp Ep
eff

⎝ ⎠
⎛ ⎞

2
p

3kB
2q

Tp TL–
λpτep

------------------=

µnEn
eff vsat n,=

µpEp
eff vsat p,= vsat n, vsat p,
15.218

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
The conventional conversion formulas (Eq. 15.248) and (Eq. 15.249) can be activated by specifying
parameters , in the same AvalancheFactors section.

The simplified conversion formulas discussed above predict a linear dependence of effective electric field on
temperature for high values of carrier temperature. For silicon, however, Monte Carlo simulations do not
confirm this behavior. To obtain a better agreement with Monte Carlo data, additional heat sinks must be taken
into account by the inclusion of an additional term in the equations for . Such heat sinks arise from
nonelastic processes, such as the impact ionization itself. DESSIS supports the following model to account
for these heat sinks:

(15.250)

A similar equation is used to determine . To activate this model, set the parameters and to 1.
This is the default for silicon, where the generalized conversion formula (Eq. 15.250) gives good agreement
with Monte Carlo data for . For all other materials, the default of the parameters and
is 0.

The effective fields and are then used as a driving force in the Lackner, Okuto, or vanOverstraeten
formula (depending on the user option) for the impact ionization generation rate:

(15.251)

(15.252)

NOTE This procedure ensures that the same results are obtained as with the conventional local
field–dependent models in the bulk case. Conversely, the temperature-dependent impact ionization
model usually gives much more accurate predictions for the substrate current in short-channel
MOS transistors.

Table 15.90 Hydrodynamic avalanche model: Default parameters

Symbol Parameter name Default value

λn n_l_f 1

λp p_l_f 1

n_gamma 1

p_gamma 1

n_delta 1.5

p_delta 1.5

ϒn 0= ϒp 0=

Eeff

nVsat n, En
eff n

3kB
2q

Tn TL–
λnτen

ϒn
q

------ Eg δnkBTn+()αnnvsat n,+=

Ep
eff Ep

eff ϒn ϒp

δn δp 3 2⁄= = ϒn ϒp

ϒn

ϒp

δn 3 2⁄=

δn 3 2⁄=

En
eff Ep

eff

αn αn F() αn En
eff

⎝ ⎠
⎛ ⎞= =

αp αp F() αp Ep
eff

⎝ ⎠
⎛ ⎞= =
 15.219

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
9.10 Approximate breakdown analysis: Poisson
equation approach

Junction breakdown due to avalanche generation is simulated by inspecting the ionization integrals:

(15.253)

(15.254)

where , are the ionization coefficients for electrons and holes, respectively, and W is the width of the
depletion zone. The integrations are performed along field lines through the depletion zone. Avalanche
breakdown occurs if an ionization integral equals one. (Eq. 15.253) describes electron injection (electron
primary current) and (Eq. 15.254) describes hole injection. Since these breakdown criteria do not depend on
current densities, a breakdown analysis can be performed by computing only the Poisson equation and
ionization integrals under the assumption of constant quasi-Fermi levels in the depletion region.

9.10.1 Syntax and implementation

If only the Poisson equation is solved, it is important to use the parallel electric field (Eparallel) as the driving
force in the avalanche generation rate because the parallel electric field and the gradients of the quasi-Fermi
levels are not computed correctly:

Physics{ ...
Avalanche(Eparallel)
ComputeIonizationIntegrals ... }

ComputeIonizationIntegrals switches on the computation of the ionization integrals for ionization paths
crossing the local field maxima in the semiconductor. By default, DESSIS reports only the path with the
largest Imean. With the addition of the keyword WriteAll, information about the ionization integrals for all
computed paths is written to the log file.

The Math keyword BreakAtIonIntegral is used to terminate the quasistationary simulation when the largest
ionization integral is greater than one.

The complete syntax of this keyword is BreakAtIonIntegral(<number> <value>) where a quasistationary
simulation finishes if the number ionization integral is greater than value, and the ionization integrals are
ordered with respect to decreasing value:

Math { BreakAtIonIntegral }

Three optional keywords in the Plot section specify the values of the corresponding ionization integrals that
are stored along the breakdown paths:

Plot { eIonIntegral | hIonIntegral | MeanIonIntegral }

In αn x() e
αn x'() αp x'()–() dx'

x

W

∫–

 dx
0

W

∫=

Ip αp x() e

 αp x'() αn x'()–() dx'

0

x

∫–

 dx
0

W

∫=

αn αp
15.220

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
These ion integrals can be visualized by using Tecplot-ISE. A typical DESSIS command file is:

Electrode {
{ name="anode" Voltage=0 }
 { name="cathode" Voltage=600 }
}
File {
 grid = "@grid@"
 doping = "@doping@"
 current = "@plot@"
 output = "@log@"
 plot = "@data@"
}
Physics {
 Mobility (DopingDep HighFieldSaturation)
 Recombination(SRH Auger Avalanche(Eparallel))
 ComputeIonizationIntegrals(WriteAll)
}
Solve {
 Quasistationary(
 InitialStep=0.02 MaxStep=0.01 MinStep=0.01
 Goal {name=cathode voltage=1000}
)
 { poisson }
}
Math {
 Iterations=100
 BreakAtIonIntegral
}
Plot {
 eIonIntegral hIonIntegral MeanIonIntegral
 eDensity hDensity
 ElectricField/Vector
 eAlphaAvalanche hAlphaAvalanche
}

9.11 Band-to-band tunneling models

9.11.1 Schenk model

Phonon-assisted band-to-band tunneling cannot be neglected in steep pn-junctions (with a doping level of
cm–3 or more on both sides) or in high normal electric fields of MOS structures. It must be switched

on if the field, in some regions of the device, exceeds (approximately) V/cm. In this case, defect-
assisted tunneling (see Section 2.5.2.3 on page 15.47 and Section 9.2 on page 15.204) must also be switched
on.

Band-to-band tunneling is modeled using the expression [88]:

(15.255)

1 19×10
8 5×10

Rnet
bb AF7 2⁄ ñp̃ ni eff,

2–
ñ ni,eff+() p̃ ni,eff+()

--
Fc

+
⎝ ⎠
⎛ ⎞

3
2
---–
e

Fc
+

F
-------–

e

hω
kBT

1–

Fc

+
⎝ ⎠
⎛ ⎞

3
2
---–

e

Fc
+

F
-------–

1 e

hω
kBT
--------–

–

--------------------------------+×=
 15.221

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
with the modified electron density:

(15.256)

and a similar relation for , and with critical field strengths:

(15.257)

The upper sign in (Eq. 15.255) refers to tunneling generation () and the lower sign refers to
recombination (). The quantity denotes the energy of the transverse acoustic phonon. For Fermi
statistics and quantization, (Eq. 15.255) is modified in the same way as for SRH recombination (see
(Eq. 15.201)).

Syntax and implementation

Band-to-band tunneling is switched on by using the keyword Band2Band in the Recombination statement in the
Physics section (see Table 15.11 on page 15.47):

Physics { ...
Recombination (Band2Band)

}

Figure 15.41 Band-to-band tunneling rate for different temperatures

Default parameters [88] are given in Table 15.91 and can be accessed in the parameter file section:

Band2BandTunneling { ...}

These parameters were obtained assuming the field direction to be <111>, as in the case of defect-assisted
tunneling.

Table 15.91 Coefficients for band-to-band tunneling (Schenk model)

Symbol Parameter name Default value Unit

A A (cm s)–1 V–2

B B (eV)–3/2 Vcm–1

hω hbarOmega 18.6 meV

ñ n
ni,eff
NC

----------⎝ ⎠
⎛ ⎞

∇EFn
F

=

p̃

Fc
+

B Eg,eff hω±()3 2⁄=

np ni,eff
2<

np ni,eff
2> hω

8.977 20×10

2.14667 7×10
15.222

PART 15 DESSIS CHAPTER 9 GENERATION–RECOMBINATION
9.11.2 Commonly used models

In addition to the Schenk band-to-band tunneling model, a set of simple and commonly used models is
available. The difference between these commonly used models and the Schenk model is in the electric field
dependence, which defines any physical effects in the tunneling (for example, direct or phonon-assisted
tunneling). A general expression for the models can be written for generation term [114] as:

(15.258)

where F is the magnitude of the local electric field. The values of that are available are , ,
and .

Syntax and implementation

These band-to-band tunneling models are switched on by using the key parameters E1, E1_5, or E2, respectively.
For example:

Physics { ...
Recombination(Band2Band(E2)) }

switches on the simple model with . Table 15.92 lists the coefficients of models and their defaults. The
coefficients (A and B) can be changed in the parameter file in the section:

Band2BandTunneling { ... }

9.11.3 Hurkx model

The Hurkx band-to-band tunneling model [126] is implemented to provide a complete range of commonly
used band-to-band tunneling models in DESSIS.

Similar to the other band-to-band tunneling models, the tunneling carriers are modeled by an additional
generation–recombination contribution. In the Hurkx model, this contribution is expressed as:

(15.259)

where is the electric field, , and:

(15.260)

Table 15.92 Coefficients for band-to-band tunneling (commonly used models)

Keyword A B

Band2Band(E1) 1.1e27 21.3e6 V/cm

Band2Band(E1_5) 1.9e24 21.9e6 V/cm

Band2Band(E2) 3.4e21 22.6e6 V/cm

Rb2b AFα B
F
---–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

α α 1= α 1.5=
α 2=

α 2=

α

α 1= 1 cm2 s V⋅ ⋅()⁄

α 1.5= 1 cm1.5 s V1.5⋅ ⋅()⁄

α 2= 1 cm s V2⋅ ⋅()⁄

Gbb A– D F
F0

⎝ ⎠
⎜ ⎟
⎛ ⎞

P B Eg T()⋅

Eg 300K()3 2⁄ F
-------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp⋅ ⋅ ⋅=

F F0 1V/m=

D
np ni,eff

2–
n ni,eff+() p ni,eff+()

-- 1 α–() α+=
 15.223

PART 15 DESSISCHAPTER 9 GENERATION–RECOMBINATION
Here, specifying equal to 0 gives the original Hurkx model, whereas equal to –1 gives only generation
(D = –1), and equal to +1 gives only recombination (D = 1). Therefore, if D < 0, it is a net carrier generation
model. If D > 0, it is a recombination model. For Fermi statistics and quantization, (Eq. 15.260) is modified
in the same way as for SRH recombination (see (Eq. 15.201)).

Syntax and implementation

The model is activated by the following keywords in the Physics section of the input file:

Physics { ...
Recombination(Band2Band(Hurkx))

}

Coefficients A [1/(cm3s)], B [V/cm], and P are parameters of the model and can be specified in the following
section of the DESSIS parameter file:

Band2BandTunneling {
Agen = <value> [1/(cm3s)]
Bgen = <value> [V/cm]
Pgen = <value> [1]
Arec = <value> [1/(cm3s)]
Brec = <value> [V/cm]
Prec = <value> [1]
alpha = <value> [1]

}

In this parameter section, it is possible to specify different coefficients for the generation (Agen, Bgen, Pgen) and
recombination (Arec, Brec, Prec) of carriers.

9.11.4 Tunneling near interfaces and equilibrium regions

Physically, band-to-band tunneling occurs over a certain tunneling distance. If the material properties or the
electric field change significantly over this distance, (Eq. 15.255), (Eq. 15.258), and (Eq. 15.259) become
inaccurate. In particular, near insulator interfaces, band-to-band tunneling vanishes, as no states to tunnel to
are available in the insulator.

In some parts of the device (near equilibrium regions), it is possible that the electric field is large but changes
rapidly, so that the actual tunneling distance (the distance over which the electrostatic potential change
amounts to the band gap) is bigger and, therefore, tunneling is much smaller than expected from the local field
alone.

To account for these effects, two additional control parameters are introduced in the Band2BandTunneling section
of the DESSIS parameter file:

dDist = <value> # [cm]
dPot = <value> # [V]

By default, both these parameters equal zero. DESSIS disables band-to-band tunneling within a distance dDist
from insulator interfaces. If dPot is nonzero (reasonable values for dPot are of the order of the band gap),
DESSIS disables band-to-band tunneling at each point where the change of the electrostatic potential in field
direction within a distance of (is the local electric field) is smaller than .

α α
α

dPot F⁄ F dPot 2⁄
15.224

PART 15 DESSIS CHAPTER 10 TRAPS
DESSIS

CHAPTER 10 Traps

DESSIS allows four types of traps (donor, acceptor, neutral electron, and neutral hole) and four types of DOS
distributions (level, constant, exponential, and Gaussian). All trap models are available for both bulk
semiconductors and interfaces. Trap distributions and characteristics are defined using either the Traps or
Amorphous statements.

10.1 Trap energy and space distributions
The following expressions for trap concentration versus an energy (E) define different types of DOS:

(15.261)

Figure 15.42 illustrates these distributions.

Figure 15.42 Trap energy distributions

For space-distributed traps, the user can specify any field stored in the doping file or PMI user fields (DF–ISE
format), which DESSIS uses as input in the File section. For example, using MDRAW, the field DeepLevels
can be written into the doping file. If Sfactor = "DeepLevels" is included in a Traps statement, DESSIS uses this
field as the shape of the trap space distribution (the field is scaled by its maximum and multiplied by N0).

N0 at E E0=() Level

N0 for E0 ES– E E0 ES+< <() Constant

N0e

E E0–
ES

---------------–

 Exponential

N0e
0.5

E E0–
ES

---------------⎝ ⎠
⎛ ⎞

2
–

 Gaussian

N0

EV ECE0

2ES
 15.225

PART 15 DESSISCHAPTER 10 TRAPS
10.2 Trap occupation dynamics
Trapped electron and hole concentrations on one energy level are related to occupation probabilities for
electrons () and holes () as follows:

(15.262)

where is the donor trap concentration, is the acceptor trap concentration, is the neutral electron
trap concentration, is the neutral hole trap concentration, is the electron concentration of the donor
trap level, is the hole concentration of the acceptor trap level, is the electron concentration of the
neutral electron trap level, and is the hole concentration of the neutral hole trap level. Since ,
only electron traps are considered to illustrate the general expressions for recombination processes.

In the case of energy-distributed traps, the band gap of the semiconductor is divided by an adaptive grid, and
the trap concentration for each energy level is calculated as an integral between these nodes. Each energy
distribution defined in the input file has its own grid of energy levels. The default number of levels is 15, but
the user can define this value in the Math statement TrapDLN=<integer> and can specify any number of energy
levels and energy-distributed traps.

In the presence of traps, the Poisson equation is modified:

(15.263)

where is a sum for all trap energy levels.

Users can plot total positive () and negative () trapped charges using

the plotting keywords eTrappedCharge and hTrappedCharge, respectively.

10.2.1 Balance equation

The balance of the carrier flow to and from a trap level gives the following expression for the electron
concentration of the trap level:

(15.264)

where and are the electron and hole degeneracy factors, respectively, and:

, (15.265)

where is a trap energy measured from the middle of the band gap, and are the free electron and hole
concentrations, and are the electron and hole thermal velocities, and are the electron and hole
capture cross sections, and is the lattice temperature. The expressions for and above are valid for
Boltzmann statistics and without quantization.

fn fp

nDt NDtfn= nt NEtfn=

pAt NAtfp= pt NHtfp=

NDt NAt NEt
NHt nDt

pAt nt
pt fp 1 fn–=

Et

∇ ε∇φ⋅ q p n N+– D NA– NDt nDt–()
Et

∑ NAt pAt–()
Et

∑– pt
Et

∑ nt
Et

∑–+ +
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅–=

.
Et

∑
·

NDt nDt–() pt
Et

∑+
Et

∑ NAt pAt–() nt
Et

∑+
Et

∑

dnt
dt
------- vth

n σnNEt
n1
gn
-----fn n 1 fn–()–

⎝ ⎠
⎜ ⎟
⎛ ⎞

vth
p σpNEt

p1
gp
----- 1 fn–() pfn–

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

gn gp

n1 ni,eff Et kBT⁄()exp= p1 ni,eff Et– kBT⁄()exp=

Et n p
vth

n vth
p σn σp

T n1 p1
15.226

PART 15 DESSIS CHAPTER 10 TRAPS
If Fermi–Dirac statistics or a quantization model (see Chapter 7 on page 15.165) is used, and are
multiplied by the coefficients and defined in (Eq. 15.70) and (Eq. 15.71) (see Section 4.4 on
page 15.137). In the balance equation (Eq. 15.264), generally, two terms are related to electron and hole
flows. Correspondingly, each term has two components of carriers going to the trap level and returning to the
band. For example, the term reflects electron flow into the trap level and is proportional to a carrier
concentration in the band and a concentration of empty trap levels.

Another term gives the thermionic emission flow of electrons from the trap level to the conduction band.

These terms can be expressed differently for some special applications and models. For example, the radiation
model (see Section 12.4 on page 15.242) modifies the carrier flow into the trap level.

10.2.2 Models for balance coefficients

All models of the balance coefficients of (Eq. 15.264) are mostly empirical or experimental, and are used for
calibration purposes. The electron and hole thermal velocities have two formula options, which are provided
through the DESSIS parameter file:

 (15.266)

(15.267)

with =300 K. The 300 K reference thermal velocities for the electrons and holes, and are
cm/s and cm/s, respectively. and are the electron and hole DOS effective

masses calculated by DESSIS at 300 K.

The electric field dependence of the cross sections is selected by the XsecFormula parameter pair in the
Traps parameter set in the DESSIS parameter file. The default value of 1 selects a field-independent cross
section. A value of 2 selects the field-dependence for the J-model (see (Eq. 15.282)). A value of 3 selects the
expression for the Hurkx trap-assisted tunneling model (see (Eq. 15.215)). A value of 4 selects a
Poole–Frenkel model [153]:

(15.268)

The Poole–Frenkel model is frequently used for the interpretation of transport effects in dielectrics and
amorphous films. The Poole–Frenkel theory predicts the enhanced emission probability for Coulomb trap
centers where the potential barrier is reduced because of the high external electric field. Remembering that it
occurs only at Coulomb centers, this model works differently for donor and acceptor centers.

For Donor and hNeutral traps, the electron and hole cross sections are computed as follows:
and . Likewise for Acceptor and eNeutral types, the enhanced emission probability applies only to the
hole cross section: and .

n1 p1
γn γp

n 1 fn–()

n1
gn
-----fn

VthFormula=1 vth
n p, v0

n p, T
T0
-----=

VthFormula=1 vth
n p, 3 k T⋅

m300
n p,

⎝ ⎠
⎜ ⎟
⎛ ⎞ 0.5

=

T0 v0
n v0

p

2.042 7×10 1.562 7×10 m300
n m300

p

σn p,

σn p, σn p,
0 1 Γpf+()=

Γpf
1

α2
------ 1 α 1–() α()exp+[] 1

2
---–=

α 1
kT
------ q3E

πεpf
----------=

Γpf

σn σn
0 1 Γpf+()=

σp σp
0=

σp σp
0 1 Γpf+()= σn σn

0=
 15.227

PART 15 DESSISCHAPTER 10 TRAPS
The Poole–Frenkel model has only one parameter , which can be specified in the following section of the
DESSIS parameter file:

PooleFrenkel
{ * TrapXsection = Xsec0*(1+Gpf)

* Gpf = (1+(a-1)*exp(a))/a^2-0.5
* where
* a = (1/kT)*(q^3*F/pi/e0/epsPF)^0.5,
* F is the electric field.

 epsPF = 11.7 ,11.7 # [1]
}

All other coefficients of the above models can be specified in the Traps section of the DESSIS parameter file
as follows:

Traps:
{

* G is degeneracy factor
G = 1 , 1 # [1]
Xsec = 1.0000e-15 , 1.0000e-15 # [cm^2]

* VthFormula=1: Vth(T) = Vth*(T/300)^1/2
* VthFormula=2: Vth(T) = (3*k*T/m_300)^1/2

VthFormula = 1 , 1 # [1]
Vth = 2.0420e+07 , 1.5626e+07 # [cm/s]

* XsecFormula=1: Xsec(F) = Xsec
* XsecFormula=2: Xsec(F) = Xsec*(1+a1*(F/F0)^p1+a2*(F/F0)^p2)^p0
* XsecFormula=3: Xsec(F) = Xsec*(1+Gt), Gt is Hurkx TATunneling factor
* XsecFormula=4: Xsec(F) = Xsec*(1+Gpf), Gpf is Poole-Frenkel factor

XsecFormula = 1, 1

Values from the parameter file are used as defaults for trap definition in the Physics section of the input file.
For example, if the user does not specify cross sections in the input file, the values are taken from the
parameter file.

VthFormula and XsecFormula can be different for electrons and holes. It is also possible to specify these models
for each trap distribution separately in the input file and to have any combination of the electric field
dependence models, see Table 15.93 on page 15.230.

10.3 Steady state analysis
In the steady state, . Therefore, for one level and (to simplify expressions):

(15.269)

The recombination process through one level is the same for electrons and holes, and the recombination term
can be written as:

(15.270)

εpf

dnt dt⁄ 0= gn gp 1= =

fn
vth

n σnn vth
p σpp1+

vth
n σn n n1+() vth

p σp p p1+()+
--=

REt NEt
vth

n σnvth
p σp np ni,eff

2–()

vth
n σn n n1+() vth

p σp p p1+()+
--=
15.228

PART 15 DESSIS CHAPTER 10 TRAPS
If the lifetimes for electrons and holes are defined as and respectively, the
recombination term can be rewritten in standard SRH form:

 (15.271)

Each level adds a term. Therefore, in the presence of traps, the trap total recombination term in the continuity
equations is the sum for all levels:

(15.272)

Users can plot using plotting keywords for electrons (eGapStatesRecombination) or holes
(hGapStatesRecombination), which will give the same data in the steady-state simulation cases.

10.4 Transient analysis
In the transient case, the differential equations for the electron-related occupation probability at each energy
level are:

(15.273)

These equations are solved self-consistently with the transport and Poisson equations. In the transient case,
the recombination processes for electrons and holes are different, and the SRH form cannot be applied.

For one level, this becomes:

(15.274)

The total recombination terms for the electron and hole continuity equations are also equal to the sum for all
levels as in the steady state case. Users can plot the total recombination rates for electrons and holes using the
plotting keywords eGapStatesRecombination and hGapStatesRecombination, respectively.

10.5 Syntax for traps
To specify bulk traps, the Traps statement must be defined in the Physics section of the DESSIS input file. The
complete list of keywords and parameters of the Traps section is given in Table 15.93 on page 15.230. The
most commonly used ones are:

Physics{ Traps(
Donor | Acceptor | eNeutral | hNeutral
Level | Uniform | Exponential | Gaussian
fromCondBand | fromValBand | fromMidBandGap
Conc = No
EnergyMid = Eo
EnergySig = Es
eXsection =

τp 1 vth
p σpNEt⁄= τn 1 vth

n σnNEt⁄=

REt np ni,eff
2–() τp n n1+() τn p p1+()+()⁄=

RTrap RDt
Et

∑ RAt
Et

∑ RHt
Et

∑ REt
Et

∑+ + +=

RTrap

dfn
dt
------- vth

n σn n
n1
gn
-----+⎝ ⎠

⎛ ⎞ vth
p σp p

p1
gp
-----+⎝ ⎠

⎛ ⎞+ fn+ vth
n σnn vth

p σp
p1
gp
-----+=

REt
n vth

n σnNEt n 1 fn–()
n1
gn
-----fn–=

REt
p vth

p σpNEt pfn
p1
gp
-----– 1 fn–()=

σn
 15.229

PART 15 DESSISCHAPTER 10 TRAPS
hXsection =
eGfactor =
hGfactor =
)

}

Interface traps are defined in the same way in the MaterialInterface or RegionInterface Physics section:

Physics(MaterialInterface="<material1>/<material2>")
{ Traps(...) ... }

or:

Physics(RegionInterface="<region1>/<region2>")
{ Traps(...) ... }

NOTE For interface traps, the unit of the parameter Conc is cm–2.

If many trap levels are required, each level must be defined separately inside the Traps statement in
parentheses, for example, Traps ((...) (...)).

The following example of a trap statement illustrates one donor trap level in the middle of the band gap with
a concentration of and capture cross sections of :

Traps(Donor Level EnergyMid=0 fromMidBandGap
Conc=1e15 eXsection=1e-14 hXsection=1e-14)

This example illustrates the DOS definition in a polysilicon TFT with four exponential distributions:

Traps((eNeutral Exponential fromCondBand Conc=1e21 EnergyMid=0
EnergySig=0.035 eXsection=1e-10 hXsection=1e-12)
(eNeutral Exponential fromCondBand Conc=5e18 EnergyMid=0
EnergySig=0.1 eXsection=1e-10 hXsection=1e-12)
(hNeutral Exponential fromValBand Conc=1e21 EnergyMid=0
EnergySig=0.035 eXsection=1e-12 hXsection=1e-10)
(hNeutral Exponential fromValBand Conc=5e18 EnergyMid=0
EnergySig=0.2 eXsection=1e-12 hXsection=1e-10))

Table 15.93 Keyword options for Traps command

Keyword Description

Donor
Acceptor
eNeutral
hNeutral
FixedCharge

Defines the donor type of the traps.
Defines the acceptor type of the traps.
Defines the neutral electron type of the traps.
Defines the neutral hole type of the traps.
Defines the fixed charge.

Level
Uniform
Exponential
Gaussian

Defines a one-energy trap level.
Defines a uniform DOS.
Defines an exponential DOS.
Defines a Gaussian DOS.

fromCondBand
fromValBand
fromMidBandGap

Defines zero energy (CondBand) and ValBand energy direction.
Defines zero energy (ValBand) and CondBand energy direction.
Defines zero energy (MidBandGap) and CondBand energy direction.

Conc = <float> Defines the energy level concentration (cm–3 for bulk and cm–2 for interfaces), or the
peak of the DOS ([cm–3 eV–1] for bulk and [cm–2 eV–1] for interfaces).

σp
gn
gp

1 15×10 cm 3– 1 14–×10 cm2
15.230

PART 15 DESSIS CHAPTER 10 TRAPS
10.6 Syntax for amorphous statement
For polysilicon devices, four exponential distributions are often sufficient to describe the DOS. In this case,
traps can be defined equivalently by using the simplified Amorphous statement. Table 15.94 lists all of the
parameters of the amorphous option. For the previous example of a DOS definition in a polysilicon TFT, the
equivalent Amorphous statement can be:

Amorphous(DonPeakTail = 1e21 DonEnergyTail = 0.035
DonPeakDeep = 5e18 DonEnergyDeep = 0.1
eDonSigma = 1e-10 hDonSigma = 1e-12
AccPeakTail = 1e21 AccEnergyTail = 0.035
AccPeakDeep = 5e18 AccEnergyDeep = 0.2
eAccSigma = 1e-12 hAccSigma = 1e-10)

EnergyMid = <float> Defines the DOS medium energy or level energy E0 [eV] .
At an interface between two semiconductors with different band gap energies,
interface trap energy levels are referenced to the smaller band gap.

EnergySig = <float> Defines the DOS energy sigma ES [eV].

eXsection = <float>
hXsection = <float>

Defines the electron capture cross section [cm2].
Defines the hole capture cross section [cm2].

ElectricField
Tunneling(Hurkx)

PooleFrenkel

Activates XsecFormula = 2 for the capture cross section.
Activates XsecFormula = 3 for the capture cross section (Hurkx trap-assisted
tunneling model).
Activates XsecFormula = 4 for the capture cross section (Poole–Frenkel model).

eGfactor = <float>
hGfactor = <float>

Defines the electron degeneracy factor .
Defines the hole degeneracy factor .

eJfactor = <float>
hJfactor = <float>

Defines the electron J-model factor (radiation model).
Defines the hole J-model factor (radiation model).

Sfactor = <string> Defines a shape of trap space distribution by any internal DESSIS field. For example,
it can be DeepLevels, PMIUserField, xMoleFraction.

Sfactor = <PMI model name> The shape of the trap space distribution is computed by a PMI model. The name of
this model must be different from the name of all internal DESSIS fields. The PMI is
described in Section 33.25 on page 15.591.

Add2TotalDoping Adds the energy level concentration to the total doping, donor, and acceptor
concentrations used for a computation of the mobility, lifetimes, and so on (see
Section 2.14 on page 15.95 where the total doping is defined).

Table 15.94 Keyword options for Amorphous command

Keyword Description

AccPeakTail = <float> Defines the peak of the exponential for acceptor tail states DOS [cm–3 eV–1].

AccEnergyTail = <float> Defines the characteristic energy of the exponential for acceptor tail states DOS [eV].

AccPeakDeep = <float> Defines the peak of the exponential for acceptor deep states DOS [cm–3 eV–1].

AccEnergyDeep = <float> Defines the characteristic energy of the exponential for acceptor deep states DOS [eV].

Table 15.93 Keyword options for Traps command

Keyword Description

σn
σp

gn
gp
 15.231

PART 15 DESSISCHAPTER 10 TRAPS
10.7 Setting and unsetting an initial trap occupation
For the investigation of, for example, time-delay effects, it may be advantageous to start a transient simulation
from an initial state with either totally empty or totally filled trap states. However, depending on the position
of the equilibrium Fermi level it may be impossible to reach such an initial state from steady state/
quasistationary simulations (for example, it may be a metastable state with a very long lifetime). For this
reason, new statements Set and Unset for the trap filling have been introduced into the Solve section. This
statement is specified before any appropriate Solve statement, such as Transient, Quasistationary, or Coupled.
The syntax of the statements is given in the Table 15.95.

DonPeakTail = <float> Defines the peak of the exponential for donor tail states DOS [cm–3 eV–1].

DonEnergyTail = <float> Defines the characteristic energy of the exponential for donor tail states DOS [eV].

DonEnergyDeep = <float> Defines the characteristic energy of the exponential for donor deep states DOS [eV].

eAccSigma = <float> Defines the electron capture cross section for acceptor states [cm2].

hAccSigma = <float> Defines the hole capture cross section for acceptor states [cm2].

eDonSigma = <float> Defines the electron capture cross section for donor states [cm2].

hDonSigma = <float> Defines the hole capture cross section for donor states [cm2].

Table 15.95 Keyword options for Set and Unset of trap occupation

Keyword Description

Set(TrapFilling = n) Defines a steady state trap occupation, which corresponds to the case when
the Fermi level is much higher than the conduction band level (for example,
it corresponds to the case of high electron concentration).

Set(TrapFilling = p) Defines a steady state trap occupation, which corresponds to the case when
the Fermi level is much lower than the valence band level (for example, it
corresponds to the case of high hole concentration).

Set(TrapFilling = Full) Provides maximum trap charge. (For eNeutral and hNeutral traps, it means
that the trapped carrier concentration is equal to the total trap concentration,
but for Donor and Acceptor, it means no carriers are trapped. As a result, it
provides the maximum trap charge.)

Set(TrapFilling = Empty) Provides zero trap charge. (For eNeutral and hNeutral traps, it means no
carriers are trapped, but for Donor and Acceptor, it gives maximum possible
carrier concentration. As a result, it provides the zero trap charge.)

Set(TrapFilling = 0) Provides an occupation that corresponds to zero electron and hole
concentrations.

Set(TrapFilling = Frozen) Provides an unchanged trap occupation for a device characterization, for
example, to compute the threshold voltage.

Set(TrapFilling = -Degradation) Removes a modification in trap concentration due to the degradation model,
and returns it to initial values (see Section 11.4 on page 15.238).

UnSet(TrapFilling) Uses the standard trap equations.

Table 15.94 Keyword options for Amorphous command

Keyword Description
15.232

PART 15 DESSIS CHAPTER 10 TRAPS
Therefore, the Solve statement for such requirements can be:

Solve{
Set(TrapFilling=n)
Quasistationary{...}
Unset(TrapFilling)
Transient{...}

}

10.8 Numeric parameters
When used with Fermi statistics, the trap model sometimes leads to convergence problems, especially at the
beginning of a simulation when DESSIS tries to find an initial solution. This problem can often be solved by
changing the numeric damping of the trap charge in the nonlinear Poisson equation. To this end, set the Damping
option to the Traps keyword in the global Math section to a nonnegative number, for example:

Math {
Traps(Damping=100)

}

Larger values of Damping increase damping of the trap charge; a value of 0 disables damping. The default value
is 10.

Depending on the particular example, increasing damping can improve or degrade the convergence behavior.
Currently, ISE has no guidelines regarding the optimal value of this parameter.
 15.233

PART 15 DESSIS CHAPTER 11 DEGRADATION MODEL
DESSIS

CHAPTER 11 Degradation model

11.1 Overview
A necessary part of CMOS reliability prediction is the simulation of the time dependence of interface trap
generation. To cover as wide a range as possible, this simulation should accurately reflect the physics of the
interface trap formation process. Disorder-induced variations among the Si-H activation energies at the
passivated Si-SiO2 interface have been shown [166] to be a plausible source of the sublinear time dependence
of this trap generation process. Previously, diffusion of hydrogen from the passivated interface was used to
explain some time dependencies [167]. However, it is considered here that this could be due to a Si-H
density–dependent activation energy, which may be due to the effects of Si-H breaking on electrical and
chemical potential of hydrogens at the interface. In addition, the field dependence of the activation energy
(Poole–Frenkel effect) is included, so that all these factors lead to an enhanced trap formation kinetics.

11.2 Trap formation kinetics
The main assumption about trap formation is that initially dangling Si bonds at the Si–SiO2 interface were
passivated by H or D [168], and degradation is a depassivation process where hot carrier interactions with
Si-H/D bonds or other mechanisms are responsible for this. The equations of the model are solved self-
consistently with all transport equations.

11.2.1 Power law and kinetic equation

The experimental data for the kinetics of interface trap formation [170] shows that the time dependence of
trap generation can be described by a simple power law: , where is the
concentration of interface traps, and and are the initial concentrations of Si-H bonds and interface
traps, respectively. Assuming total Si bonds at the interface, the remaining number of Si-H
bonds at the interface after stress is and follows the power law:

(15.275)

Based on experimental observations, the power is stress dependent and varies between 0 and 1.

From first-order kinetics [166], it is expected that the Si-H concentration during stress obeys:

(15.276)

where is a reaction constant that can be described by in the Arrhenius approximation,
 is the Si-H activation energy, and T is the Si-H temperature. The exponential kinetics given by this

equation () do not fully describe the experimental data because a constant activation energy
will behave like the power law in the first equation, but with power .

Nit Nit
0– n0 1 kt() α–+()⁄= Nit

n0 Nit
0

N n0 Nit
0+=

n N Nit–=

n
n0

1 kt()α+
----------------------=

α

dn
dt
------ k n⋅–=

k k k0 εA kBT⁄–()exp=
εA

n n0 kt–()exp=
α 1≈
 15.235

PART 15 DESSISCHAPTER 11 DEGRADATION MODEL
11.2.2 Si-H density–dependent activation energy

This section describes an activation energy parameterization to capture the sublinear power law for the time
dependence of interface trap generation. There is evidence that the hydrogen atoms, when removed from the
silicon, remain negatively charged [169]. If this correct, the hydrogen can be expected to remain in the vicinity
of the interface and will affect the breaking of additional silicon-hydrogen bonds by changing the electrical
potential.

The concentration of released hydrogen is equal to , so the activation energy dependence (assuming the
activation energy changes exponentially with the breaking of Si-H) can be expressed as:

(15.277)

where the last term represents the Si-H density–dependent change with a prefactor . Note that
 is the fraction of traps generated to the total initial traps, and this gives the form of the

chemical potential of Si-H bonds with prefactor .

The numeric solution of the kinetic equation with the varying activation energy above clearly shows that such
a Si-H density–dependent activation energy gives a power law, and the power is a function of the prefactor

. From the available experimental data of interface trap generation, it was noted that for negative gate biases
, but for positive ones . It is interesting that the solution of the above kinetic equation gives
 in the equilibrium case where a unity prefactor is used. In nonequilibrium, a polarity-dependent

modification of the prefactor (field stretched and pressed Si-H bonds) is possible.

11.3 Syntax and parameterized equations
The degradation model based on the mentioned equations can be activated for any trap level or distribution
(see Section 10.5 on page 15.229), and its keywords described in Table 15.96 on page 15.237 can be used
with any other trap options listed in Table 15.93 on page 15.230.

The parameterized system of equations for the reaction constant based on the trap formation model (see
Section 11.2 on page 15.235) and [171] can be expressed as:

(15.278)

where the left column of expressions is related to interface traps and the right (simplified), to bulk traps.
is the reaction (depassivation) constant at the passivation equilibrium (for the passivation temperature and
for no changes in the activation energy). are perpendicular and parallel components of the
electric field to the interface where traps are located. are the local densities of hot carrier and

N n–

εA εA
0 β kBT N n–

N n0–
---------------⎝ ⎠

⎛ ⎞ln⋅+=

β
N n–() N n0–()⁄

β

α
β
α 0.5> α 0.5<
α 0.5≈

k

k k0
εA∆

εT
---------⎝ ⎠

⎛ ⎞ εA
kBT0

εA
εT
-----–⎝ ⎠

⎛ ⎞ kFNkHCexpexp=

εT kBT δ// F//
ρ//+=

kHC 1 δHC IHC
ρHC+=

kFN 1 δTun ITun
ρTun+=

εA∆ δ⊥ F⊥
ρ⊥ 1 β+()εT

N n–
N n0–
---------------ln+=

β β0 β⊥F⊥ β//F//+ +=

k k0
εA∆

kBT
---------⎝ ⎠

⎛ ⎞ εA
kBT0

εA
kBT
---------–⎝ ⎠

⎛ ⎞expexp=

εA∆ δ F ρ=

k0
T0

εA∆ 0= F⊥ F//,
F IHC ITun,
15.236

PART 15 DESSIS CHAPTER 11 DEGRADATION MODEL
tunneling (Fowler–Nordheim and direct) currents at the interface where traps are located. These currents
represent hot carrier (see Chapter 17 on page 15.317) and tunneling stresses (see Chapter 16 on page 15.299)
and should be activated in the GateCurrent model.

 is the energy of hydrogen on Si-H bonds and is equal to plus some possible gain from hot carriers
represented as the additional term that is dependent on the parallel component of the electric field .

 is a decrease of the activation energy because of stretched Si-H bonds [172] by the electric field (first
term) and due to a change of the chemical potential (second term) [171]. Effectively, the influence of the
chemical potential also can be different in the presence of the electric field, and the coefficient represents
this. Coefficients , , and are field and current enhancement
parameters of the model. Table 15.96 lists the options available for the degradation model.

Table 15.96 Keyword options for degradation model

Keyword Description

Degradation
Degradation(PowerLaw)

The first keyword switches on the model based on the kinetic equation
and the second activates the model based on the power law.

DePasCoef = [1/s] Defines the depassivation coefficient at the passivation conditions (the
equilibrium at the passivation temperature).

PasCoef = [1/s] By default (no specification), this passivation coefficient is computed
automatically to provide the equilibrium:

(). The user can specify it directly.

PasTemp = [K]
PasVolume = [cm2] or [cm3]

Defines the passivation temperature (at the equilibrium that appears in
passivation process, by default =300) and the passivation volume
(see below, by default =0).

ActEnergy = [eV] Defines the activation energy of hydrogen on Si-H bonds.

BondConc = [cm–2] or [cm–3]
CritConc = [cm–2] or [cm–3]

Defines the total Si dangling bond concentration (maximum trap
concentration that can be reached due to degradation) and the critical
trap concentration that will be used for device lifetime estimations (by
default = /10). For trap levels, this is a straightforward
definition, but for energy distributed traps , it controls the

following integral .

FieldEnhan()

 [1]

 [1]

Controls the parameters of the electric field–dependent terms of the Si-H
bond energy and the activation energy, by default:
FieldEnhan(0 1 0 1).

CurrentEnhan ()

 [1]

 [1]

Controls the parameters of the tunneling and hot carrier–dependent
terms of the depassivation constant, by default:
CurrentEnhan(0 1 0 1).

εT kBT
δ// F//

ρ//

εA∆

β
δ⊥ ρ⊥ δ// ρ//, , , δHC ρHC δTun ρTun, , , β0 β⊥ β//, ,

k0
T0

γ0

γ0
n0

N n0–
---------------k0=

T0
ν T0

ν

εA

N
Ncrit

Ncrit N
N ε()

N ε() εd
EV

EC

∫

δ//ρ//δ⊥ρ⊥

eV V
cm
-------⎝ ⎠

⎛ ⎞
ρ– //

eV V
cm
-------⎝ ⎠

⎛ ⎞
ρ– ⊥

δTunρTunδHCρHC

A
cm2
---------⎝ ⎠

⎛ ⎞
ρTun–

A
cm2
---------⎝ ⎠

⎛ ⎞
ρHC–
 15.237

PART 15 DESSISCHAPTER 11 DEGRADATION MODEL
The following general kinetic equations (LHS, activated by the keyword Degradation) with an added
passivation term and power law (right, activated by the keyword Degradation(PowerLaw)) are:

(15.279)

where is the passivation constant, which is computed automatically by default, to provide the equilibrium,
but the user can specify it directly in the input file. is the passivation volume (by default, it is equal to zero),
and it reflects the effect that depassivated hydrogen can be trapped by Si dangling bonds again. These
depassivated hydrogens increase the average hydrogen concentration near traps.

11.4 Device lifetime and simulation
Based on Section 11.3 on page 15.236, the Physics section of a DESSIS input file that describes the parameters
of the degradation model can be:

Physics(MaterialInterface="Silicon/Oxide"){
Traps(Conc=1e8 EnergyMid=0 Acceptor #FixedCharge

Degradation #(PowerLaw)
ActEnergy=2 BondConc=1e12

DePasCoeff=8e-10
FieldEnhan=(0 1 1.95e-3 0.33)
CurrentEnhan=(0 1 6e+5 1)
PowerEnhan=(0 0 -1e-7)

)
GateCurrent(GateName="gate" Lucky(CarrierTemperatureDrive) Fowler)

}

For this input, the initially specified trap concentration is 108 cm–2 and, in the process of degradation, it can
be increased up to 1012 cm–2. The activation energy of hydrogen on Si-H bonds is 2 eV and the depassivation
constant at the equilibrium is equal to 8 x 10–10 s–1. The degradation simulation can be separated into two parts:

Simulation of extremely stressed devices with existing experimental data and fitting to the data by
modification of the field and current-dependent parameters.

Simulation of normal-operating devices to predict device reliability (lifetime).

For the first part of the degradation simulation, the typical Solve section can be:

Solve {
NewCurrentPrefix="tmp"
coupled (iterations=100) { Poisson }
coupled { poisson electron hole }
Quasistationary(InitialStep=0.1 MaxStep=0.2 MinStep=0.0001

PowerEnhan() [1] Controls the parameters in the chemical potential for kinetic equation
degradation and the power for degradation by power law, by default:
PowerEnhan(0 0 0).

Table 15.96 Keyword options for degradation model

Keyword Description

β0β⊥β//

V
cm
-------⎝ ⎠

⎛ ⎞ 1– V
cm
-------⎝ ⎠

⎛ ⎞ 1–

dn
dt
------ k n γ N n–()+⋅–=

γ0
n0

N n0–
---------------k0=

γ γ0 1 ν n0 n–()+[]=

n
n0

1 kt()α+
----------------------=

α 0.5 β+=

γ0
ν

15.238

PART 15 DESSIS CHAPTER 11 DEGRADATION MODEL
increment=1.5 Goal{name="gate" voltage=-10})
{ coupled { poisson electron hole } }

NewCurrentPrefix=""
coupled { poisson electron hole }
transient(InitialTime=0 Finaltime = 100000

increment=2 InitialStep=0.1 MaxStep=100000){
coupled{ poisson electron hole }

}
}

The first Quasistationary ramps the device to stress conditions (in this particular case, to high negative gate
voltage), the second transient simulates the degradation kinetics (up to 105 s, which is a typical time for stress
experimental data).

NOTE The hot carrier currents are postprocessed values and, therefore, InitialStep should not be large.

To monitor the trap formation kinetics in transient, the user can use Plot and CurrentPlot statements to output
TotalInterfaceTrapConcentration, TotalTrapConcentration, and OneOverDegradationTime, for example:

CurrentPlot{
eDensity(359) Potential(359)
eInterfaceTrappedCharge(359) hInterfaceTrappedCharge(359)
OneOverDegradationTime(359) TotalInterfaceTrapConcentration(359)

}

where a vertex number is specified to have a plot of the fields at some location on the interface. As a result,
the behavior of these values versus time can be seen in the DESSIS plot file.

The prediction of the device lifetime can be performed in two different ways:

Direct simulation of a normal-operating device in transient for a long time (for example, 30 years).

Extrapolation of the degradation of a stressed device by computation of the ratio between depassivation
constants for stressed and unstressed conditions.

The important value here is the critical trap concentration , which defines an edge between a properly
working and improperly working device. Using , the device lifetime is defined as follows (according
to the two different prediction ways):

1. In transient, direct computation of time t= gives the trap concentration equal to .

2. In Quasistationary, if the previously finished transient statement computes the device lifetime and
the depassivation constant at stress conditions, then .

So, the plotted value of OneOverDegradationTime is equal to for one trap level and the sum if
several trap levels are defined for the degradation. It is computed for each vertex where the degradation model
is applied and can be considered as the lifetime of local device area.

For the second approach to device lifetime computation, the following solve statement can be used:

Solve {
NewCurrentPrefix="tmp"
coupled (iterations=100) { Poisson }
coupled { poisson electron hole }

Quasistationary(InitialStep=0.1 MaxStep=0.2 Minstep=0.0001
increment=1.5 Goal{name="gate" voltage=-10})

Ncrit
Ncrit τD

τD Ncrit

τD
stress

kstress τD kstress k⁄()τD
stress

=

1 τD⁄ 1∑ τD
i⁄
 15.239

PART 15 DESSISCHAPTER 11 DEGRADATION MODEL
{ coupled { poisson electron hole } }

NewCurrentPrefix=""
coupled { poisson electron hole }
transient(InitialTime=0 Finaltime = 100000

increment=2 InitialStep=0.1 MaxStep=100000){
coupled{ poisson electron hole }

}

set(Trapfilling=-Degradation)

coupled { poisson electron hole }
Quasistationary(InitialStep=0.1 MaxStep=0.2 Minstep=0.0001 increment=1.5

Goal{name="gate" voltage=1.5})
{ coupled { poisson electron hole } }

Quasistationary(InitialStep=0.1 MaxStep=0.2 Minstep=0.0001 increment=1.5
Goal{name="drain" voltage=3})
{ coupled { poisson electron hole } }

}

The statement set(Trapfilling=-Degradation) returns the trap concentrations to their unstressed values (it is not
necessary to include, but it may be interesting to check the influence). The first Quasistationary statement after
the set command returns the normal-operating voltage on the gate and, in the second, the user can plot the
dependence of on applied drain voltage. The last dependence could be useful to predict an upper limit
of operating voltages where the device will work for a specified time.

1 τD⁄
15.240

PART 15 DESSIS CHAPTER 12 RADIATION MODELS
DESSIS

CHAPTER 12 Radiation models

12.1 Overview
DESSIS allows for the simulation of degradation of semiconductor devices due to received radiation. For
now, this degradation is modeled as a change of trapped charge, which may cause a shift in device
characteristics. Usually, degradation is important in insulators (for example, oxide) and users should define
these insulators as wide band gap semiconductors so that the appropriate transient trap equations can be
solved inside these regions.

12.2 Syntax and implementation
The radiation model is activated by specifying the keyword Radiation(...) (with optional parameters) in the
Physics section of the input file:

Radiation{
Dose = <value> | DoseRate = <value>
DoseTime = (<value>,<value>)
DoseSigma = <value>

}

where DoseRate [rad/s] represents D in (Eq. 15.280). The optional DoseTime [s] allows the user to specify the
time period during which exposure to the constant DoseRate occurs. DoseTSigma [s] can be combined with
DoseTime to specify the standard deviation of a Gaussian rise and fall of the radiation exposure.

As an alternative to DoseRate, Dose [rad] can be specified to represent the total radiation exposure over the
DoseTime interval. In this case, DoseTime must be specified.

12.3 Yield function
Generation of electron–hole pairs due to radiation is an electric field–dependent process [123] and is modeled
as follows:

(15.280)

where E is the electric field, D is the dose rate, is the generation rate of electron–hole pairs, and , ,
and m are constants. All these constants can be specified in DESSIS parameter file as follows:

Radiation {
g = 7.6000e+12 # [1/(rad*cm^3)]
E0 = 0.1 # [V/cm]
E1 = 1.3500e+06 # [V/cm]
m = 0.9 # [1]

}

Gr g0D Y E()⋅=

Y E()
E E0+
E E1+

⎝ ⎠
⎜ ⎟
⎛ ⎞ m

=

g0 E0 E1
 15.241

PART 15 DESSISCHAPTER 12 RADIATION MODELS
12.4 J-model trap equations
There is a description of different trap equations applied to radiation problems [123]. Two models formulated
there are the V-model and J-model. The V-model is absolutely equivalent to the conventional trap equations
that are implemented in DESSIS and described in Section 10.2 on page 15.226.

The J-model depends on the values of carrier currents (compared to the V-model where only local carrier
concentrations are used). The trap equations in Section 10.2 can be rewritten for the J-model as follows:

(15.281)

(15.282)

If the J-model factors (,) are both equal to 1, these equations will give a pure J-model as described in
the literature [123]. This implementation attempts a model that provides a continuous transition between the
pure V-model and pure J-model. The equations also include formulas of the electric field–dependent cross
section, which follow from measurements.

All parameters can be changed in the Traps section of the DESSIS parameter file:

Traps:
{ * XsecFormula=1: Xsec(F) = Xsec

* XsecFormula=2: Xsec(F) = Xsec*(1+a1*(F/1)^p1+a2*(F/1)^p2)^p0
XsecFormula = 1 , 1 # [1]
Xsec = 1.0000e-15 , 1.0000e-15 # [cm^2]
a1 = 0.0000e+00 , 0.0000e+00 # [1]
p1 = 1 , 1 # [1]
a2 = 0.0000e+00 , 0.0000e+00 # [1]
p2 = 1 , 1 # [1]
p0 = 1 , 1 # [1]
Jcoef = 0.0000e+00 , 0.0000e+00 # [1]

}

J-model factors can also be specified separately for each trap distribution in the input command file:

eJfactor = <value>, hJfactor = <value>

dnt
dt
-------– vth

n σnNEt
n1
gn
-----fn ñ 1 fn–()– vth

p σpNEt
p1
gp
----- 1 fn–() p̃fn––=

ñ 1 gn
J–⎝ ⎠

⎛ ⎞ n⋅ gn
J Jn

qvth
n

---------+=

p̃ 1 gp
J–⎝ ⎠

⎛ ⎞ p⋅ gp
J Jp

qvth
p

---------+=

σn p, σn p,
0 1 a1

E
E0

p1
a2

E
E0

p2
+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞ p0

E0, 1 V
m
----= =

gn
J gp

J

15.242

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
DESSIS

CHAPTER 13 Optical generation

13.1 Photon beam generation
DESSIS supports the simulation of photo generation using multiple vertical photon beams. Figure 15.43
illustrates the distribution of incident beam intensity in a 3D device.

Figure 15.43 Three-dimensional distribution of incident beam intensity

J0 denotes the incident beam intensity (number of photons that cross an area of 1 cm2 per 1 s) at the center of
the semiconductor window. (xmin,ymin) and (xmax,ymax) are the coordinates of opposite corners of the
semiconductor window. is the standard deviation of the spacial Gaussian distribution that describes the
decay of the incident beam intensity outside of the defined semiconductor window. is the velocity of the
semiconductor window. Therefore, the space shape of the incident beam intensity, defined by the
semiconductor window size, Gaussian decay at the edges, and velocity, can be described as a function ,
which is equal to 1 inside the semiconductor window and decreases to zero according to a Gaussian
distribution outside the window. The following are useful relations for the photo generation problem:

(15.283)

where P0 is the incident wave power per square [W/cm2], is the wavelength [cm], h is the Planck constant
[J s], c is the speed of light in vacuum [cm/s], and Eph is the photon energy that is approximately equal to

 in eV. The optical generation rate along a line parallel to the z-axis for a nonuniform absorption
coefficient can be written as:

(15.284)

Photo Device

V

Semiconductor Window

z y

x

(xmax, ymax)

(xmin, ymin)

J

σxy

σxy
V

Fxyv

Eph
hc
λ
------=

J0
P0
Eph
--------=

λ

1.24
λ µm[]

α λ x y z, , ,()

Gopt z t,() J0Ft t()Fxyv α λ z',() α λ z',() z'd
z0

z

∫–⎝ ⎠
⎛ ⎞exp⋅ ⋅=
 15.243

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
where is the time, is the beam time behavior function that is equal to 1 for t in [tmin,tmax] and shows a
Gaussian distribution decay outside the interval with the standard deviation , is the coordinate of the
semiconductor surface, and is the absorption coefficient along the line.

Photo generation is activated by using the OptBeam statement in the Physics section. The user can specify any
number of beams, for example, several beams with different wavelengths. In addition, if the OptBeam statement
is specified in the region or material Physics section, the optical generation is specified to this region or
material.

Physics{ ...
OptBeam((.beam1.) (.beam2.) ... (.beamN.))

}

Table 15.97 lists the options for each beam in the OptBeam statement.

Table 15.97 Keyword options for OptBeam command

Keyword Description

WaveInt = J0 [1/cm2/s]
or
WavePower = P0 [W/cm2]

Specifies the incident beam intensity or incident wave power. (In this
case, either the wavelength or photon energy must be specified.)

WaveLength = [cm]
or
WaveEnergy = Eph [eV]

Specifies the wavelength or photon energy.

SemAbs = [cm–1]
or
SemAbs(value =)

Both statements specify a constant value for the absorption
coefficient. This definition does not require the wave properties of the
beam (wavelength or photon energy).

SemAbs(model=Parameter) The absorption coefficient is computed according to the DESSIS
parameter file. This is the default.

SemAbs(model = RSS) Use the silicon absorption model [155].

SemAbs(model = ODB)
or
SemAbs(material = "MaterialName")
or
SemAbs("MaterialName")

In this case, DESSIS takes the absorption coefficient from the table-
based optical database TableODB, in the DESSIS parameter file.
If a material is specified, only the data corresponding to this material is
used to compute the absorption coefficient for all regions where the
beam is defined.

SemAbs(model = "<PMI Model Name>") Use the mentioned PMI absorption coefficient model.

SemSurf = [cm] Specifies a coordinate of the semiconductor surface. If is located
inside the device, the maximum of the photo generation rate
() is at this coordinate, and two beams with opposite
directions are applied starting from this coordinate.

SemWindow = (xmin,xmax) [cm]
or
SemWindow = ((xmin,ymin) (xmax,ymax))

Specifies the semiconductor window for 2D or 3D cases.

WaveXYsigma = [cm] Standard deviation of the spatial Gaussian distribution that describes
the decay of the incident beam intensity outside the defined
semiconductor window SemWind.

WaveTime = (tmin,tmax) [s] Specifies a time interval when the incident beam intensity is constant.

t Ft t()
σt z0

α λ z,()

λ

α

α

α

z0 z0

J0α λ z0,()

σxy
15.244

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
If the beam intensity changes rapidly in space, the accuracy of the beam intensity computations is low for
coarse meshes unless special precautions are taken. Such problems can be eliminated by increasing the
accuracy of the beam distribution integration over the control volume associated with each mesh vertex. Such
integrations are performed by inserting small rectangular boxes inside the control volume and by executing
analytic integration inside the small boxes.

To activate this additional procedure, the keyword RecBoxIntegr is specified with three additional parameters
to control the accuracy of the procedure:

RecBoxIntegr(<Epsilon> <MaxNumberOfLevels> <MaxNumberOfBoxes>)

A specification without any parameters defaults to RecBoxIntegr(1e-3 10 1000). Figure 15.44 illustrates these
rectangular boxes. For each nonrectangular control volume, DESSIS provides the steps showing how to:

1. Fill with rectangles.

2. Subdivide the rectangles until the desired accuracy or maximum refinement levels a0 re reached.

The procedure of inserting small rectangular boxes inside the control volume is also used to compute
integrals:

(15.285)

which are used in the photo generation rate. Therefore, if the user requires such integration, the keyword
RecBoxIntegr must also be specified.

Figure 15.44 Example of rectangular boxes without parameter defaults

WaveTsigma = [s] Standard deviation of the temporal of the Gaussian distribution that
describes the decay of the incident beam intensity outside the time
interval WaveTime.

SemVelocity = (Vx, Vy) [cm/s] Allows a specified window to be moved perpendicular to the direction
of the incident beam, therefore, simulating a scanned beam. Vx and Vy
are the components of the velocity of the window. For 2D simulations,
it is sufficient to define Vx only.

Table 15.97 Keyword options for OptBeam command

Keyword Description

σt

α λ z',() z'd
z0

z

∫

Mesh Node

Control Volume

RecBox, Level 0

RecBox, Level 1

RecBox, Level 2
 15.245

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
NOTE For many cases, the absorption coefficient is constant over all active regions of the device, and the
photo generation rate can be computed by the simpler expression . In this
case, it is not necessary to specify the keyword. DESSIS uses local values of the absorption
coefficient.

13.2 Absorption models
There are several options to define the absorption coefficient for the photon beam generation:

A constant value is in the DESSIS input file.

A dependence on the photon energy, mole fraction, and so on is in the DESSIS parameter file.

A table-based optical property that depends on photon energy can be entered in the DESSIS parameter
file.

An absorption coefficient model for indirect band gap material [155].

A new expression is created for the absorption coefficient using the PMI.

NOTE The temperature dependence of the DESSIS parameter file based absorption coefficient models,
both the default model and the absorption coefficient model [155], is dependent on the global
device temperature due to convergence reasons. Local temperature–dependent models can be
created by using the PMI.

13.2.1 Default absorption model from DESSIS parameter file

The absorption coefficient has two available models that can be selected in the DESSIS parameter file. The
simpler one is:

(15.286)

where Eph is the photon energy, and [cm–1], E1, E2 [eV] and p are the model parameters that can be
specified in the parameter file:

Absorption
{ Formula = 1
A1 = <value>
A2 = <value>
E1 = <value>
E2 = <value>
p = <value>

}

J0 α α z z0––()exp⋅ ⋅

α Eph()
α1 Eph E1–() E2⁄() Eph E1<,exp

α1 α2 Eph E1–() E2⁄()p Eph E1≥,+⎩
⎨
⎧

=

α1 α2,
15.246

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Another model [139] for mole-dependent Hg1-xCdxTe is generalized as:

(15.287)

where [cm–1], E0 [eV], T0 [K], and [K/eV] are model parameters that can be specified in the
parameter file:

Absorption
{ Formula = 2
AT = <value>
A0 = <value>
E0 = <value>
T0 = <value>
S = <value>

}

All parameters of both models can have a mole dependence for mole-dependent materials using the standard
DESSIS technique with linear interpolation on specified mole intervals.

However, for the material Hg1-xCdxTe, [139] provides the following mole dependencies:

(15.288)

where x denotes the CdTe mole fraction. The parameter has an exponential dependence that cannot be
described by the linear interpolation used for mole-dependent parameters in DESSIS. To activate the above
expressions, the following must be present in the parameter file:

Absorption { Formula = 2 HgCdTe }

13.2.2 Table-based optical properties of materials in DESSIS
parameter file

Table entry of real refractive index, n, and extinction coefficient, k, versus wavelength. Absorption coefficient
is computed from k by .

DESSIS has the tabled values of these optical properties for silicon, silicon dioxide, aluminum, gold, silver,
platinum, silicon nitride, tungsten, and air (gas). For other materials, the TableODB section can be inserted in
the DESSIS parameter file, and the user can create a table for a material or a region.

The first element in a row is the wavelength, followed by n and k. The row is terminated by a semicolon. There
can be any number of rows greater than 3, but not less, for a cubic spline to be formed from the table entries.

ET E0
T T0+

σ

αT
α0
------ln+=

α Eph T,()

α0
σ Eph E0–()

T T0+
-----------------------------⎝ ⎠

⎛ ⎞ Eph ET<,exp

αT
2σ

T T0+
--------------- Eph E0

T T0+
σ

αT
α0
------ 0.5–ln⎝ ⎠

⎛ ⎞––⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞

0.5
Eph ET≥,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

αT α0, σ

α0 18.88– 53.61x+()exp=

αT 100 5000x+=

σ 3.267 4×10 1 x+()=
E0 0.3424– 1.838x+=

T0 81=

α0

α λ() 2ω
c
----k=
 15.247

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
TableODB
{ *Table format of the Optik DataBase
*WAVELENGTH n k

0.051 0.804 0.322;
0.053 0.811 0.366;
0.055 0.822 0.408;
0.056 0.829 0.43;
0.058 0.843 0.47;

}

13.2.3 Absorption coefficient model

An absorption model [155] is implemented in DESSIS for silicon and materials with similar band gap
structure. The model provides an absorption coefficient model and fits absorption data of silicon supplied by
NASA, by varying temperature and photon energy. The model is switched on by inserting the statement
SemAbsorption in the appropriate Physics section.

NOTE The placement of this statement above is outside either RayTrace or OptBeam where it has traditionally
resided.

The resulting equation with absorption coefficient is:

(15.289)

where and T is the temperature [K]. Table 15.98 lists the default parameter
values for silicon used in DESSIS as published [155].

Table 15.98 Default parameter values of silicon

Quantity Value Comment

Eg1(0) 1.1557 [eV] Indirect gap

Eg2(0) 2.5 [eV] Indirect gap

Egd(0) 3.2 [eV] Direct allowed gap

Ep1 1.827e-2 [eV] TA, Theta = 212 K

Ep2 5.773e-2 [eV] T0, Theta = 670 K

C1 5.5 –

C2 4.0 –

A1 3.231e2 [cm–1/eV2] –

A2 7.237e3 [cm–1/eV2] –

Ad 1.052e6 [cm–1/eV2] –

Beta 7.021e-4 [eV/K] –

Gamma 1108 [K] –

α

α T() CiAj
hf Egj T()– Epi+{ }2

e

Epi–
kT

1–

--
hf Egj T()– Epi–{ }2

1 e

Epi–
kT

–

--+ Ad hf Egd T()–[]
1
2

+
j 1=

2

∑
i 1=

2

∑=

Eg T() Eg 0() βT2 T γ+()⁄[]–=
15.248

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Further, these parameter values can be changed for some materials with band gap structures similar to silicon
or for silicon itself, by using the following (appropriate for DESSIS parameter files) and replacing the
parameters with desired values:

RSSAbsorption
{ * K. Rajkanan, R. Singh, and J. Shewchun,

* Absorption Coefficient of Silicon for Solar Cell Calculations
* Solid-State Electronics 1979 Vol 22. pp793-795

Egone0 = 1.1557 # [eV]
Egtwo0 = 2.5 # [eV]
Egd0 = 3.2 # [eV]
Ep1 = 0.01827 # [eV]
Ep2 = 0.05773 # [eV]
C1 = 5.5 # [1]
C2 = 4 # [1]
A1 = 3.2310e+02 # [cm^-1 eV-2]
A2 = 7.2370e+03 # [cm^-1 eV-2]
Ad = 1.0520e+06 # [cm^-1 eV-2]
RssBeta = 7.237e-4 # [eV/K]
RssGamma = 1108 # [K]

}

If the RSSAbsorption model is toggled in Physics and if the above RSSAbsorption model parameters are not
specified in the DESSIS parameter file, then the parameter values of silicon are used.

The mole fraction dependence of the RSSAbsorption model is identical to that of the default DESSIS parameter-
based absorption model (see Section 13.2.1 on page 15.246).

The absorption model specification in the Physics section overwrites that in the OptBeam or RayTrace section.

13.3 Optical generation by raytracing
A plane wave can be partitioned and each partition is represented into a one-dimensional ray of light.
Raytracing can approximate the behavior of a plane wave on a device by following such rays.

NOTE If the partition is too sparse compared to the element size of the device being simulated, the
resulting approximation will be unsatisfactory.

13.3.1 Overview

DESSIS supports simulation of photo generation by raytracing, which allows for the simulation of photo
generation on devices of more complicated geometries than the photon beam generation described previously.

The optical generation along a ray, when the propagation is thought to be in the z-axis for a nonuniform
absorption coefficient , can be written as for photon beam generation:

(15.290)

α λ x y z, , ,()

Gopt z t,() J x y zo, ,()α λ z,() α λ z,() zd
z0

z

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp=
 15.249

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
where is the beam spatial variation of intensity over a window where rays enter the device, and
is the position along the ray where absorption begins.

Photo generation by raytracing, which will be referred to as raytracing from this point, is activated by the
RayTrace statement in the Physics section. A RayTrace statement defines a set of beams that will be represented
by rays and several beams with different properties (such as different intensities, wavelengths, and
absorptions) can be defined:

Physics {...
RayTrace((RayBeam1) (RayBeam2)... (RayBeamN))

}

Table 15.99 lists the options for each beam in the RayTrace statement.

Table 15.99 Keyword options for RayTrace command

Keyword Description

WaveInt = J0 [1/cm2/s]
or
WavePower = P0 [W/cm2]

Specifies the incident beam intensity or incident wave power. (In this case,
either the wavelength or photon energy must be specified.)

WaveLength = [cm]
or
WaveEnergy = Eph [eV]

Specifies the wavelength or photon energy.

WaveTime = (tmin,tmax) [s] Specifies a time interval when the incident beam intensity is constant.

WaveTsigma = [s] Standard deviation of the temporal of the Gaussian distribution that describes
the decay of the incident beam intensity outside of the time interval WaveTime.

WaveDirection = v Direction that the rays will travel is specified by the vector v.

SemAbs = [cm–1]
or
SemAbs(value =)

Both statements specify a constant value for the absorption coefficient.
This definition does not require the wave properties of the beam (wavelength
or photon energy).

SemAbs(model=Parameter) The absorption coefficient is computed according to the DESSIS parameter
file. This is the default.

SemAbs(model = RSS) Use the silicon absorption model [155].

SemAbs(model = ODB)
or
SemAbs(material = "MaterialName")
or
SemAbs("MaterialName")

In this case, DESSIS takes the absorption coefficient from table-based optical
database TableODB, in the DESSIS parameter file. If a material is specified,
only the data corresponding to this material is used to compute the absorption
coefficient for all regions where the beam is defined.

SemAbs(model = "<PMI model name>") Uses the noted PMI absorption coefficient model.

RefractiveIndex(value =) Specifies a constant value n for refractive index.

Refractive Index (model=Parameter) The refractive index is computed according to the DESSIS parameter file.

RefractiveIndex (model=ODB) Takes the value of the refractive index from the table-based optical database
TableODB, in DESSIS parameter file.

RefractiveIndex(model =
"<PMI model name>")

Uses the mentioned PMI refractive index model.

RefractiveIndex (model = ODB) Takes the value of the refractive index from the optical database file
optikdata.

J x y zo, ,() zo

λ

σt

α

α

α

n

15.250

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
MinIntensity = r One of two termination conditions for tracing rays. If the intensity of a ray
becomes less than r times the original intensity, DESSIS does not trace the
ray further.

DepthLimit = d The other termination condition for tracing rays. If a ray passes through more
than d material boundaries, DESSIS does not trace the ray further.

CircularWindow{...}
or
RectangularWindow{...}

Statement group that defines various properties of the window that allows
rays through. Table 15.100 lists the contents of these statements.

Print This statement creates a .grd file with information about the paths that the
rays take. The resulting plot file name is "<dessis plot file>_ray.grd" if
the plot file is specified. If no plot file is specified, then it is assigned a
default name of "Raytrace_ray.grd".

Table 15.100 Keyword options for CircularWindow{ . . .} or RectangularWindow{ . . .}

Keyword Description

CellSize = s [µm] Determines the spacing between rays. The definition of CellSize varies,
depending on the dimension of the simulation and the window type.

WindowCenter = C [µm, µm, µm] Position of the center of the window.

WindowDirection = D Direction that the window faces.

WindowSize = S
or
WindowRadius = R
or
WindowHeight = H
and WindowWidth = W [µm]

Specifies the size of window. WindowSize for any 2D structure. WindowRadius
for CircularWindow of any dimensionality. WindowHeight and WindowWidth for
RectangularWindow of a 3D device.

intvalue1 and intvalue2 Specifies the value for the spatially varying intensity spline function.

intposition1 and intposition2
or
intpositionnormalized1 and
intpositionnormalized2

Specifies the position of the values specified in intvalue1 and intvalue2 for
the spatially varying intensity spline function.

Polarization(...) Inserts the initial polarization description of rays. Table 15.101 lists the
options for Polarization.

Table 15.101 Keyword options for Polarization

Keyword Description

Axis1 Relative length of either major or minor axis.

Axis2 Relative length of the other axis direction from Axis1.

Axis1Dir Direction of Axis1. Axis2 is the perpendicular to Axis1 and direction of the ray.

Table 15.99 Keyword options for RayTrace command

Keyword Description
 15.251

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
13.3.2 Snell’s law, and refraction and reflection intensities

When a ray passes through a material boundary, it splits into two rays. The angles involved in DESSIS
raytracing are governed by Snell’s law, shown in Figure 15.45.

Figure 15.45 Snell’s law

(15.291)

The following formulas describe the intensity of the refracted electromagnetic wave on a plane surface
between two media:

(15.292)

(15.293)

The above formulas decompose the planar wave into a polarization component that is perpendicular to the
plane of incidence, the plane that the ray propagation direction and the vector normal to the plane surface lie
on, and a component parallel to the plane of incidence. Reflection coefficients can be computed by subtracting
the transmission coefficients from 1:

(15.294)

(15.295)

The possibility of absorption of a photon on the interface is disregarded.

Reflection coefficients of metals

An incident ray on metal is assumed to be reflected completely.

θi

θt

n1sin θi() n2sin θt()=

Tperp
sin 2θi()sin 2θt()

sin2 θi θt+()
--=

Tpar
sin 2θi()sin 2θt()

sin2 θi θt+()cos2 θi θt+()
--=

1 Tpar– Rpar=

1 Tperp– Rperp=
15.252

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
13.3.3 Polarization

Polarization information about a ray is stored as pairs of points that form an ellipse. This is not the elliptical
polarization conventionally thought of, but a point on the ellipse that represents the intensity of a component
of the ray polarized in that direction.

Figure 15.46 Polarization ellipse

The ray represents a wave that is considered to be ‘in phase.’ The seemingly out-of-phase components, for
example, the two points noted in Figure 15.46, are present to make operations on the ellipse itself more
convenient. The ellipse arises naturally when considering that a wave of unpolarized photons, which has equal
intensity components in all directions, would be represented as a circle. If this circle is transformed by the
above transmission and reflection coefficients, according to the parallel and perpendicular decomposition, the
result is an ellipse.

Figure 15.47 Operations performed on polarization ellipse of a ray upon its passing through a material boundary

Two things may happen to the polarization ellipse in Figure 15.47 when the ray corresponding to it passes
through a material boundary:

If the new plane of incidence of the material boundary is different from the one on which the current axes
of polarization are defined, the ellipse requires a change of basis into the vectors parallel and
perpendicular to the new plane of incidence.

Polarization components parallel and perpendicular to the plane of incidence are multiplied by if the
ray is a refracted portion of the original ray, or if the ray is a reflected portion.

Axis parallel to
plane of incidence

Axis perpendicular
to plane of incidence

These points represent
the presence of photons
polarized in the direction
whose intensity is
proportional to their
distances from origin.

Rotate Ellipse to New Basis
Decrease Parallel and Perpendicular
Component in New Basis AccordinglyOriginal Ellipse

T
par

T
perp

Txxx
Rxxx
 15.253

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Initial polarization of a ray can be specified by the Polarization statement, which must have the following
format:

RayTrace(...
Polarization(

axis1 = a
axis2 = b
axis1dir = v

)
)

where a and b are real numbers, and v is a vector in three-dimensional space. The ratio between a and b is
important, not their absolute values. The vector v specified in the input does not need to be orthogonal to the
direction, it only needs to be nonidentical to it. For the purpose of polarization, a projected value v from the
plane orthogonal to the ray direction is used.

Figure 15.48 Polarization syntax

Although in Figure 15.48, axis 1 is depicted as the major axis, this does not need to be the case. C is a constant
that ensures the intensity represented by the ellipse has a correct value.

13.3.4 Absorption models

The absorption models for raytrace generation are identical to those of photon beam generation (see
Section 13.2 on page 15.246).

13.3.5 Refractive index model

There are several options to define the refractive index for ray trace generation:

A constant value can be defined in the DESSIS input file.

A dependence on the mole fraction and temperature is in the DESSIS parameter file.

A table-based optical property that depends on photon energy can be entered in the DESSIS parameter
file (see Section 13.2.2 on page 15.247).

A new expression is created for the refractive index using the PMI.

C*a

C*b

v

Axis 1
15.254

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
This section discusses the second option. For the refractive index of a material at 300 K, the refractive index
is determined by:

(15.296)

where and are parameters specified in the DESSIS parameter file.

RefractiveIndex {
* refractiveindex() = refractiveindex * (1 + aplpha * (T-Tpar))
alpha = 2.0000e-04 # [1/K]
Tpar = 3.0000e+02 # [K]

}

Mole-fraction dependence is performed in the standard DESSIS polynomial spline fashion.

13.3.6 Intensity

A point on the ellipse represents a component in the photon beam that is polarized in that direction. The
distance of the point from the origin is the intensity of that component. The total intensity of a ray is an integral
of the distance of each point from the center of the ellipse.

For example, let the initial polarization ellipse have minor and major axes of 2a and 2b, respectively:

Figure 15.49 Polarization ellipse

(15.297)

The intensity is described by (Eq. 15.297), where is a constant of proportionality. The above integral does
not have a closed form solution.

The second formula of Ramanujan is used, which approximates the above integral by:

(15.298)

where .

13.3.7 Window of ray

In DESSIS raytracing, rays of photon come through some type of window. The window can be either circular
or rectangular, although for 2D structures, it makes no difference. The description of a window in DESSIS
raytracing is designed to be as flexible as possible.

n300

n T() n300 1 α T Tpar–()×+()=

α Tpar

a

b

I Io a2sin2θ b2cos2θ+ θd
0

2π

∫=

Io

I I0π a b+() 1 3h
10 4 3h–+
-------------------------------+=

h a b–
a b+
------------⎝ ⎠

⎛ ⎞ 2
=

 15.255

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
13.3.7.1 2D device and its window description

For a 2D device, a window is one-dimensional. The only properties of the window that must be defined are:

Where it is (the center of the window)

Its size

Which direction it faces

A window size can be described by specifying WindowRadius or WindowSize.

13.3.7.2 Example A: 2D device ray window
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5

)
)

windowcenter notes the position of the center of the window. WindowDirection notes the direction that the
window’s flat side is facing, which can be different from the actual wave propagation direction. The size of a
2D device raytracing window is specified by either WindowSize or WindowRadius. WindowSize works for both
rectangular and circular windows, and WindowRadius works only for the circular window type. This complexity
arose from a requirement to have the same syntax for 2D and 3D circular windows, although for rectangular
windows, having the same syntax for all dimensions was not possible.

NOTE By inputting the vector position for 2D, the value of the z component must be zero.

Figure 15.50 Window for 2D devices

The code of this example results in an identical window to example B.

13.3.7.3 Example B: 2D device ray window
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowSize = 10 # <-- changed here from Ex. A

)
)

Center C

Starting Position of Rays

Normal Vector N

Cell SizeRadius R

Window Size S
15.256

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Both examples A and B result in an identical window to that generated by example C.

13.3.7.4 Example C: 2D device ray window
RayTrace(...

rectangularwindow(# <-- changed here from Ex. B
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowSize = 10

)
)

Within the window, spatial distribution of the ray is uniform. The spacing is determined by the CellSize
parameter, which specifies the distance [µm] between ray starting points. For a 2D device, the parameter
NumberOfRays is used to place rays.

13.3.7.5 Example D: Number of rays
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
NumberOfRays = 100 # <-- changed here
WindowSize = 10

)
)

If the specified number of rays is N, then N rays are placed uniformly over the window.

13.3.7.6 3D devices and their windows: CircularWindow

The two window types, circular and rectangular, have some meaning for 3D devices. CircularWindow is a
window that is circular. Basic syntax is identical to the instance of a 2D circular window described in
Section 13.3.7.2 on page 15.256 (but not the others).

13.3.7.7 Example A: 3D device ray window
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5

)
)

The meanings of all keywords are identical except CellSize, which is now the length of an equilateral triangle
that makes up the lattice of ray starting points.
 15.257

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
The alignment of the lattice is controlled by the keyword WindowOrientation.

Figure 15.51 Circular window for 3D device and its lattice of rays

13.3.7.8 Example B: 3D device ray window
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
WindowOrientation = (0,0,1)

)
)

This code aligns one side of the equilateral triangle to the direction of (0,0,1). WindowCenter and
WindowDirection have the same meaning as in 2D device windows.

13.3.7.9 3D devices and their windows: RectangularWindow

Unlike the circular window, which requires only one length description (namely radius), a rectangle requires
two: height and width. Orienting this rectangle is performed using the WindowOrientation vector. This vector
specifies the upward and downward direction, or the direction of the side whose length is defined by the
WindowHeight field.

Figure 15.52 Rectangular window for 3D device and its lattice of rays

13.3.7.10 Example A: 3D device ray window
RayTrace(...

RectangularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1

Center C

Radius R

Normal Vector N Hexagonal Lattice

Cell Size
Equilateral Triangle

Normal Vector N

C

Orientation Vector

Height

Width
Square Lattice

Cell Size
15.258

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
WindowHeight = 5
WindowWidth = 10
WindowOrientation = (0,0,1)

)
)

If WindowOrientation is not specified or the specified orientation is identical to WindowDirection, a vector
perpendicular to WindowDirection is assigned to it. CellSize for a 3D device rectangular window is the length
of a side of the square that makes up the lattice of ray starting positions. Again, WindowCenter and
WindowDirection have the same meaning as in 2D device windows.

13.3.8 Spatial distribution of intensity

In DESSIS, the intensity of rays within a given window can vary by using the keywords intvalue1, intvalue2,
and intposition1, intposition2, or intPositionNormalized1, intPositionNormalized2 in the CircularWindow or
RectangularWindow statement group.

13.3.8.1 Method 1: Linear splines

intvalueX defines a spline, and represents ‘intensity value.’

13.3.8.2 Ray window with spatially varying intensity
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1, 1, 0.5, 0.3, 0.3, 0]

)
)

The intvalue1 statement in Figure 15.53 defines a linear spline. Let the vector specified in intvalue1 be
v = [v1, v2, v3, ..., vn].

Figure 15.53 Linear spline from example input

1 2 3 4 5

1

0.5

0.3
Half the length of the window = 5

intvalue1 = [1, 1, 0.5, 0.3, 0.3, 0]

p1 p2 p3 p4 p5 p6

 v1 v2

v3
v4 v5

v6
 15.259

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
For a given window, a set of points p = [p1, p2, p3, ..., pn] that equidistantly partition one half of the window
can be defined.

Figure 15.54 Half window and its partition

A spline is defined over this partitioned half window. Let this spline function be f(d), where d is the distance
from the center of the window.

13.3.8.3 2D device window intensity

In a 2D device, the spline in Figure 15.53 on page 15.259 is mirrored about the y-axis, and stretched or shrunk
to fit the window.

Figure 15.55 Multiplication for starting intensity

Stating this more formally, for a given ray r, starting in the window position p, distance d away from the center
of the window, the starting intensity I, specified by the waveint command, is internally modified for the ray r
to be f(d)*I. An example showing how to insert a Gaussian intensity profile follows.

13.3.8.4 Example A: Gaussian intensity
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1.0000 0.9610 0.8529 0.6990

0.5291 0.3698 0.2387 0.1423
0.0784 0.0398 0.0187 0.0000]

)
)

Whole Window

Half Window

p1 p2 p3 . . . pn-1 pn

Equidistant
Segments

Window

Multiplication Factor for
 Starting Intensity

p d

f(d)

r

15.260

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
If the device being simulated is a 2D device, the above code creates a window of length 10 µm, centered at
position (10, 12), with the intensity proportional to Figure 15.56, which is the plot of the string of numbers in
the intvalue1 vector in Section 13.3.8.4 on page 15.260.

Figure 15.56 Gaussian intensity

13.3.8.5 3D circular window intensity

For a circular window, use the same spline function f(d), still defined in terms of distance from the center. A
starting point of a ray p, distance d away from the center, will still be f(d)*I. The resulting intensity will
appear as in Figure 15.57 on page 15.262 for the following input code.

13.3.8.6 Example B: Gaussian intensity
RayTrace(...

CircularWindow(
windowcenter = (10, 12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1.0000 0.9610 0.8529 0.6990

0.5291 0.3698 0.2387 0.1423
0.0784 0.0398 0.0187 0.0000]

)
)

NOTE No rays are defined outside the window, which in the case of Figure 15.57 would be a circle of
radius 5.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 15.261

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Figure 15.57 Intensity in a 3D device circular window with intval1

13.3.8.7 3D device rectangular window

With the same method, adding the intvalue1 vector, for a rectangular window yields a different result.

13.3.8.8 Gaussian intensity on one side
RayTrace(...

RectangularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowHeight = 5
WindowWidth = 3
WindowOrientation = (0,0,1)
intvalue1 = [1.0000 0.9610 0.8529 0.6990

0.5291 0.3698 0.2387 0.1423
0.0784 0.0398 0.0187 0.0000]

)
)

This input code will result in the starting profile shown in Figure 15.58.

Figure 15.58 3D rectangular window with only intval1 specified

-5

0

5

-5

0

5
0

0.2

0.4

0.6

0.8

1

-5

0
5

-5

0

5
0

0.2

0.4

0.6

0.8

1

Height = 5 WindowOrientation Vector

Width = 3
15.262

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Viewed from the side, this is identical to that of the 2D device window intensity. The intvalue2 vector specifies
the intensity description along the ‘width’ direction.

13.3.8.9 3D rectangular window
RayTrace(...

RectangularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowHeight = 5
WindowWidth = 3
WindowOrientation = (0,0,1)
intvalue1 = [1.0000 0.9610 0.8529 0.6990

0.5291 0.3698 0.2387 0.1423
0.0784 0.0398 0.0187 0.0000]

intvalue2 = [1.0000 0.9610 0.8529 0.6990
0.5291 0.3698 0.2387 0.1423
0.0784 0.0398 0.0187 0.0000]

)
)

Identical to values in the intvalue1 string of numbers, the resulting spline function from intvalue2 is similar
in shape to that resulting from intvalue1, but thinner by a ratio of 3:5, the ratio of the window sizes.

Figure 15.59 Old Gaussian profile for WindowSize = 5 (height)

Let f(d1) continue to represent the spline function formed from intvalue1, and let g(d2) represent the spline
function formed from intvalue2. For a given ray starting point p in the window, d1 is the distance from the
point position to the ‘horizontal’ line bisecting the window. Whereas, d2 is the distance from the point position
to the ‘vertical’ line bisecting the window.

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

New thinner Gaussian profile for the WindowSize = 3 (width)

g(d2)

f(d1)

Old Gaussian profile for WindowSize = 5 (height)
 15.263

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Horizontal and vertical are defined by their relation to the WindowOrientation vector:

As before, if I was specified in the waveint input statement, the intensity of a ray starting at point p is internally
multiplied by f(d1) and g(d2) to be f(d1)*g(d2)*I. Therefore, for the example code given in Section 13.3.8.9
on page 15.263, the following intensity pattern will arise as shown in Figure 15.60.

Figure 15.60 3D device rectangular window intensity pattern

13.3.8.10 More flexible spline description

Simply inputting intvalueX vector makes a spline with uniform spacing of data points. While this works
reasonably well with a smoothly varying function like the Gaussian distribution function, to describe a sharply
varying function adequately would require too much redundant information. Take the earlier example.

13.3.8.11 Ray window with spatially varying intensity revisits I
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1, 1, 0.5, 0.3, 0.3, 0]

)
)

Window Orientation

Width

Height

d1

d2

Rectangular Window

Ray Starting Point p

C Horizontal Bisector

Vertical Bisector

-5

0

5

-5

0

5
0

0.2

0.4

0.6

0.8

1

15.264

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
This example results in the following spline function:

However, for a sharper drop from value 1 to 0.5 at d = 2, use the following code.

13.3.8.12 Ray window with spatially varying intensity revisits II
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1, 1, 0.5, 0.3, 0.3, 0]
intpositionnormalized1 = [0,0.39,0.4,0.6, 0.8, 1]

)
)

Use the intpositionnormalized1 input field to specify where each point in intvalue1 occurs on the window, in
the normalized length of the window. Therefore, in the above example, from 0 to 0.39*5 away from the
window, the value is 1.

An abrupt drop in value from 1 to 0.5 occurs from 0.39*5 to 0.4*5 and so on. The resulting spline function
appears as follows:

Rather than using lengths normalized to the window size, absolute lengths in the intensity position field can
be specified by using intposition1 rather than intpositionnormalized1.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1
0.2
0.3
0.4
0.5

Only intvalue1 Partitions the Window Equally

0.6
0.7
0.8
0.9

1

0 5
0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1
0.2
0.3
0.4
0.5

Partition Is Specified in Normalized
Window Length and Varies

0.6
0.7
0.8
0.9

1

0 5
0

 15.265

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
13.3.8.13 Ray window with spatially varying intensity revisits III
RayTrace(...

CircularWindow(
windowcenter = (10,12,0)
WindowDirection = (0,-1,0)
CellSize = 0.1
WindowRadius = 5
intvalue1 = [1, 1, 0.5, 0.3, 0.3, 0]
intposition1 = [0,1.99, 2, 3, 4, 5]

)
)

The above code achieves a similar result to the code shown previously. intvalue2 has its own companions,
intposition2 and intpositionnormalized2.

In case of a mismatch in length, DESSIS assumes that the vector intvalueX only is given and forms a uniform
length partition. In case of a nonmonotone increasing position field, either in intpositionX or
intpositionnormalizedX, the non-increasing portion is ignored.

13.4 Optical generation by transfer matrix approach
The DESSIS option OPTIK calculates the propagation of plane waves through layered media by using a
transfer matrix approach. An extension for inverted pyramid structures as they are used for high efficiency
solar cells allows for the modeling of light propagation in such structures by appropriately transforming them
into planar-layered media with similar optical properties.

13.4.1 Physical model

In the underlying model of the optical carrier generation rate, monochromatic plane waves with arbitrary
angles of incidence and polarization states penetrating a number of planar, parallel layers are assumed. Each
layer must be homogeneous, isotropic, and optically linear. In this case, the amplitudes of forward and
backward running waves and in each layer in Figure 15.61 on page 15.267 are calculated with help
of transfer matrices.

These matrices are functions of the complex wave impedances given by in the case of E
polarization (TE) and by in the case of H polarization (TM). Here, denotes the complex
index of refraction and is the complex counterpart of the angle of refraction ().

Real and complex parts of the complex refractive index can be defined using the keywords Refract
and Absorption in the Layer section of the input file or can be read off the OptikDB definable in DESSIS
parameter file. The transfer matrix of the interface between layers and is defined by:

(15.299)

Aj
 ± Bj

 ±

Zj Zj nj Θjcos⋅=
Zj nj Θjcos()⁄= nj

Θj n0 Θ0sin⋅ nj Θjsin⋅=

ñ n ik+=

j j 1+

Tj j 1+,
1

2Zj
-------- Zj Zj 1 ++ Zj Zj 1+–

Zj Zj 1 +– Zj Zj 1++
⋅=
15.266

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
The propagation of the plane waves through layer j can be described by the transfer matrix:

(15.300)

with the thickness of layer and the wavelength of the incident light. The transfer matrices connect the
amplitudes of Figure 15.61 on page 15.267 as follows:

 (15.301)

Figure 15.61 Wave amplitudes in a layered medium and transfer matrices connecting them

It is assumed that there is no backward-running wave behind the layered medium, and the intensity of the
incident radiation is known. Therefore, the amplitudes and at each interface can be calculated with
appropriate products of transfer matrices. For both cases of polarization, the intensity in layer at a distance

 from the upper interface is given by:

(15.302)

with the proper wave impedances. If is the angle between the vector of the electric field and the plane of
incidence, the intensities have to be added according to:

(15.303)

where .

Tj dj()
2πi nj Θj

dj
λ
----cos⎝ ⎠

⎛ ⎞exp 0

0 2πi nj
Θjdj

λ
-----------cos–⎝ ⎠

⎛ ⎞exp

=

dj j λ

Bj
+

Aj
+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Tj j 1+,
Aj 1+

-

Bj 1+
-

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅=

Aj
-

Bj
-

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Tj dj()
Bj

+

Aj
+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅=

Tj

Tj-1,j

Tj,j+1

Aj-1

Aj

Aj

Aj+1

Bj-1

Bj

Bj

Bj+1

+

+

+

+

- -

- -

nj-1

nj

nj+1

Aj
± Bj

±

j
d j j 1+,()

IT E TM,() d()
ℜ Zj()

ℜ Z0()
---------------- Tj d()

Aj
-

Bj
-

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

2

⋅=

δ

I d() a ITE d() 1 a–() ITE d()+=

a cos2
δ=
 15.267

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
One of the layers must be the electrical active silicon layer where the optical charge carrier generation rate
 is calculated. The rate is proportional to the photon flux .

In the visible and ultraviolet region, the photon energy is greater than the band gap of silicon. In this
region, the absorption of photons by excitation of electrons from the valence to the conduction band is the
dominant absorption process for nondegenerate semiconductors. Far from the absorption threshold, the
absorption is considered to be independent of the free carrier densities and doping. Therefore, the silicon layer
is considered to be a homogeneous region.

The absorption coefficient is the relative rate of decrease in light intensity along its path of propagation due
to absorption. This decrease must be distinguished from variations caused by the superposition of waves.
Therefore, the rate of generated electron–hole pairs is:

(15.304)

where the absorption coefficient is given by the imaginary part of . The quantum yield is
defined as the number of carrier pairs generated by one photon. Up to photon energies of 3 eV, equals one.
With increasing energy, it increases linearly in first approximation to a value of 3 at 6 eV [5][6]. The
additional pairs are created by impact ionization.

The quantum yield is given by:

(15.305)

unless it is defined using the keyword QuantumYield in the OpticalGeneration section of the input file.

Under the influence of ultraviolet radiation, the generated electron-hole pairs possess kinetic energies of at
least 1 eV, that is, 40 times the thermal energy . As drift-diffusion equations handle only carriers in
thermal equilibrium, the generated electron-hole pairs must not be taken into account in the simulation until
they are thermalized. During cooling, they diffuse from the location of generation. Therefore, the generation
rate must be spread out with a suitable weight function. The spreading is implemented with two weight
functions, the stepwise constant function:

(15.306)

and the Gaussian function:

(15.307)

Gopt Φ d() I d() hω⁄=

hω

α

G0
opt

α η I d()
hω
----------=

α 4π ZSi λ⁄ η
η

η 1 + 33.5 0.45µm λ– [µm]()
2 for λ 0.450µm<

1 else
⎩
⎪
⎨
⎪
⎧

=

kBT

G0
opt

c x()
1

2λsp
---------- λsp– x λsp≤ ≤

0 otherwise⎩
⎪
⎨
⎪
⎧

=

g x() 1
λsp π
--------------- exp x

λsp
-------⎝ ⎠

⎛ ⎞ 2
–⋅=
15.268

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Both functions are normalized:

(15.308)

The modified optical generation is the convolution of from (Eq. 15.304) and a weight function,
where those carriers that would diffuse out of the silicon layer are mirrored back with a loss factor :

(15.309)

Here, is the distance from the upper boundary of the silicon layer and is one of the weight functions. The
characteristic length can be calculated with a suggested random walk model [7]:

(15.310)

where is the average mean free path for phonon scattering and is the number of phonons
generated during thermalization.

Assuming that optical phonon scattering and impact ionization are the determining mechanisms in the
thermalization process, the number of phonons generated during this process is given by:

(15.311)

where is the band gap. and [8] are the average impact ionization and
phonon energies, respectively.

The weight functions are defined by assigning the keywords None, Constant, or Gaussian to the keyword
Spreading in the OpticalGeneration section of the input file. The characteristic spreading length is calculated
according to (Eq. 15.310) and (Eq. 15.311) unless it is defined using the keyword Lambda in the
OpticalGeneration section. The term is defined with the keyword Loss in the OpticalGeneration section.

13.4.2 Syntax and implementation

Opening an OpticalGeneration section inside the Physics section of DESSIS input file switches to the transfer
matrix approach in a DESSIS simulation. The syntax is:

OpticalGeneration{
<OpticalGeneration Options>
Light(

<Light Options>
)
Layers(

<Layers Options>
(<LayerEntry1>)
(<LayerEntry2>)

)
}

c x() xd

∞–

+∞

∫ g x() xd

∞–

+∞

∫ 1= =

Gopt G0
opt

β

Gopt d() G0
opt x()w d x'–()() x'd

0

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1 β–() G0
opt x()w d x'+() x'd()

0

∞

∫+=

d w
λsp

λsp
2
3
---Nph λph=

λph 5.5 nm= Nph

Nph

Nph
1
2

hω Egap η 1–() Eimp〈 〉––

Eph〈 〉
--=

Egap Eimp〈 〉 1.5 eV= Eph〈 〉 0.054 eV=

β

 15.269

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
All keywords that can be in angle brackets are listed in Table 15.102 to Table 15.105.

Table 15.102 OpticalGeneration options

Keyword Value Comments

QuantumYield float

Lambda float Mean free path [µm].

Loss float

StandingWaves none | include

Area float

Shift vector

MultipleReflections none | include

Table 15.103 Light options

Keyword Value Comments

Direction vector

Polarization float in [0,1]

Wavelength list of floats For example [0.1 0.2 …] in µm.

Intensity list of floats For example [1e2 1.2e3 …]. The i-th entry of this intensity
list is the intensity [W/cm2] of the light with i-th wavelength
in the above wavelength list.

Table 15.104 Layers options

Keyword Value Comments

FacetAngle float [degree]

InitialLayerRefract float Refractive index of the layer in which the light wave starts.

Table 15.105 LayerEntry options

Keyword Value Comments

Refract float Optional parameters that specify a constant value of
refractive index and absorption coefficient that overwrites
those values otherwise retrieved from OptikDB.Absorption float

Thickness float Thickness of current layer [µm].

Left vector ‘Upper left’ corner of the current layer illuminated by light
wave. Needed for 1D simulation.

Right vector ‘Upper right’ corner of the current layer illuminated by light
wave. Needed for 2D simulation along with Left vector.

Middle vector ‘Upper middle’ of current layer illuminated by light wave.
Needed for 3D simulation along with Left and Right vectors.
15.270

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
In DESSIS, the results of an optical generation simulation can be incorporated into a device simulation. The
syntax is:

File {
...
OpticalGenerationFile = <file name>
...

}

13.5 Optical generation from FDTD simulation
(EMLAB)

EMLAB™ is an electromagnetic solver based on the finite difference time domain (FDTD) method. DESSIS
can run EMLAB using an interface to generate the tensor grid native to EMLAB from the more general
DESSIS grid, to generate an EMLAB input command file, and to load the EMLAB output of an optical
generation profile.

This interface is not a coupling of Maxwell equations solved by EMLAB and semiconductor equations.
Maxwell equations are solve separately, completely outside of DESSIS, and the resulting optical generation
is loaded into the continuity equation.

13.5.1 Files of EMLAB generation

Optical generation loading from EMLAB simulation (EMLAB generation) is activated with the command
EMLABGeneration in the Physics section. However, a significant amount of relevant syntax is involved in the File
section that should be noted beforehand.

To run an EMLAB generation, two files are critical: the EMLAB input command file and the tensor grid
corresponding to the device being simulated. Both can be created by using either this DESSIS–EMLAB
interface or existing files that are specified by the user in the File section.

13.5.1.1 Creating the tensor grid and EMLAB input command file

If no existing files for DESSIS–EMLAB interface are specified in File section, the interface creates the
requisite files by using the following naming scheme.

In the absence of the command plot = "XXX" in the File section, the generated tensor grid file is named
EMLAB_grid.ten. If the command plot = "XXX" is present, the tensor grid is called EMLAB_XXX_grid.ten, which is
the name of the plot file inserted between EMLAB and grid.

TopReflectivity float in [0,1] Optional parameters that specify the reflectivity of the
current layer that overwrites those values that would have
been computed from OptikDB.BottomReflectivity float in [0,1]

Table 15.105 LayerEntry options

Keyword Value Comments
 15.271

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Similarly, the EMLAB input command file is named EMLAB_input.cmd or EMLAB_XXX_input.cmd depending on the
presence or absence of the plot file specification:

File {
Grid = "mytest_mdr.grd"
Doping = "mytest_mdr.dat"
Plot = "with_air"

}

The DESSIS–EMLAB interface with the above File section creates EMLAB_with_air_grid.ten and
EMLAB_with_air_input.cmd.

13.5.1.2 User-defined input or tensor grid

If users want to use their own EMLAB input file or EMLAB tensor grid file, specification of their name is
performed in the File section. Table 15.106 lists the commands available regarding the DESSIS–EMLAB
interface.

If the DESSIS–EMLAB interface ‘sees’ EMLABinput = "<filename>" in the File section, the interface does not
create either an input file of its own or a grid file. If it ‘sees’ EMLABgrid = "<filename>", it creates a grid file of
its own, but generates an input command file with which to run EMLAB, for example:

File {
Grid = "mytest_mdr.grd"
Doping = "mytest_mdr.dat"
Plot = "with_air"
EMLABinput = "MyEMLABinput.cmd"

}

This code runs EMLAB with MyEMLABinput.cmd as the command file. It is assumed that by specifying the input
command file the user has also provided the tensor grid file. Another example is:

File {
Grid = "mytest_mdr.grd"
Doping = "mytest_mdr.dat"
Plot = "with_air"
EMLABgrid = "MyEMLABGrid.ten"

}

This code creates an EMLAB input file with the information that is provided in the main EMLABGeneration area
of the Physics section, but does not generate a tensor grid file.

13.5.1.3 Log of EMLAB run

The log of an EMLAB execution is stored in <EMLABinputfile.cmd>.log. So, if EMLAB undergoes an abnormal
execution, refer to this file for more information.

Table 15.106 EMLAB-related file options

File commands Description

EMLABinput EMLAB input command file

EMLABgrid Tensor grid for EMLAB input
15.272

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
13.5.2 Syntax of EMLAB generation: EMLAB input file

In EMLABGeneration, the input language of EMLAB is replicated in varying degree. Table 15.107 lists the
arguments that are recognized by DESSIS EMLABGeneration.

13.5.2.1 Boundary

Boundary denotes the boundary condition. EMLAB has options for the following boundary conditions:

First-order and second-order Mur

Higdon operator (up to fourth-order)

Perfectly matched layer (PML)

Periodic boundary condition

Each of these boundary conditions can be restricted to any subset of the six boundary planes. This allows
combinations such as periodicity on one direction and absorbing boundary conditions in the remaining
directions. However, in the current version of EMLAB, there is one exception to this general concept of
combining different types of boundary conditions: PML boundary conditions cannot be combined with other
types of boundary conditions. The default boundary condition chosen by EMLAB is the Higdon condition of
second-order. Other choices can be made with the Boundary statement in the EMLAB command file. The
boundary arguments are listed in Table 15.108 on page 15.274.

Table 15.107 Options of EMLABGeneration

Option Value

Boundary See further descriptions in the tables that follow.

Excitation

Material

AutoMatGen –

SmoothingFactor = double

GridBoundX (double, double)

GridBoundY (double, double)

GridBoundZ (double, double)

NodePerWavelength = <integer> Minimum number of nodes that is placed in a wavelength in all
directions; default is 10.

NodePerWavelengthX = <integer> Similar to NodePerWavelength but only for the x direction.

NodePerWavelengthY = <integer> Similar to NodePerWavelength but only for the y direction.

NodePerWavelengthZ = <integer> Similar to NodePerWavelength but only for the z direction.
 15.273

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
NOTE As nonnumeric values assigned to the arguments inside Boundary or another EMLABGeneration option
are strings that are written exactly in the EMLAB input file that is generated during DESSIS
execution, there is no DESSIS check for their validity while parsing DESSIS input. EMLAB
registers an error upon its execution if illegal input is used. In addition, as these values are strings,
they must be in quotation marks (" ").

An example is:

Physics { ...
EMLABGeneration(

Boundary(
Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

<options>
)

)
}

13.5.2.2 Excitation

Excitation describes the electromagnetic source. Any number of excitations is allowed. At least one Excitation
section is necessary for DESSIS to generate a tensor grid. The existing interface syntax describes a plane wave
striking the device being simulated. WaveLength of the plane wave must be specified and it also determines the
minimum grid space when the tensor grid is being generated. The unit of wavelength for the
DESSIS–EMLAB interface is meter.

For 2D geometry, the direction of the plane wave propagation is defined by Theta, the angle the propagation
direction makes with the positive y-axis. The range of Theta is from 0 to 180. Phi and Psi should not be
specified for 2D.

Table 15.108 Boundary arguments

Argument Value Default

Sides {XMin XMax...ZMax} or {X Y Z} or {all} all

Type Mur Higdon

PeriodicMur

Higdon

PML

Periodic

Order 1..4(Hig)-1..2(Mur) 2
15.274

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
For 3D geometry, the direction of the plane wave propagation uses three angles: Theta, Phi, and Psi. Theta has
different meanings in 2D and 3D than in 2D, where it is the angle the wave propagation direction makes with
the positive z-axis. The range of Theta is still from 0 to 180. Phi is the angle that the wave direction makes with
the positive x-axis. Phi can be a number between 0 and 360. Psi is the polarization angle in degrees of the plane
wave measured from the direction given by , where is the wave vector and is a vector in the
z-direction.

Power in the plane wave can be specified as WavePower [W/m2] or Amplitude of the electric field [V/m]. When
both are specified, Amplitude is ignored.

NOTE WavePower is not an available option in EMLAB.

Electric field amplitude is related to wave power of the plane wave by:

(15.312)

where .

NOTE The excitation default in the DESSIS–EMLAB interface relies on automatic, which is the excitation
region option in EMLAB. Of most importance to the DESSIS–EMLAB user is that the ‘surfaces’
that the plane wave hits must be of uniform material (the material can also be a vacuum).

Figure 15.62 Device with periodic boundary conditions in y-direction

Figure 15.62 shows a device with periodic boundary conditions in the y-direction. There are two surfaces of
interest in this scheme: top x surface and bottom x surface. If the wave is descending, it hits the top x surface,
which consists of the same material. For devices without periodic boundary conditions, more than one surface
may need to be considered.

Syntax is available that will surround an existing device with a vacuum and, therefore, create a uniform
material surface (see Section 13.5.3 on page 15.279).

k z× k z

A P

A 2Z0P=

Z0
µ0
ε0
------ 376.73031 = Ω=

Periodic Boundary Conditions

Wave Direction

Wave Hits Surface That Is of Same Material: Good

Wave Direction

Wave Hits Surface That Is of Multiple
Materials: Not Good
 15.275

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Table 15.109 lists the options that are used in the Excitation statement.

13.5.2.3 Excitation example 1
Physics { ...

EMLABGeneration(
Boundary(

Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

WavePower = 1e4 # [W/m^2]
WaveLength = 1e-7 # [m]
Theta = 180

)
)

}

This 2D example with its combination of boundary conditions and excitation will create a plane wave
‘descending’ on a device with a power of W/m2.

Plane wave excitation is not the only excitation option available in EMLAB. Full EMLAB features are
accessed by a user by creating their own EMLAB input file and providing the file name to DESSIS.

13.5.2.4 Material/AutoMatGen

EMLAB has its own database of material properties, MATDB. The most common materials used in the
semiconductor field are listed. However, if a material is required that is not in MATDB or the user does not want
to use the values of existing material properties, there is the option to use choice values for the material
properties.

Material properties can be specified by either automatically extracting relative permittivity and conductivity
from the optical properties of the absorption coefficient and refractive index, or manually entering the material
properties in the input file.

Table 15.109 Excitation arguments

Argument Value Default Unit

Theta (double) – degree

Phi (double) (3D) – degree

Psi (double) (3D) – degree

Amplitude (double) – V/m

WavePower (double) – W/m2

WaveLength (double) – m

1 104×
15.276

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
Where the main interest is in the optical generation, the material properties relevant to an interface are
permittivity, permeability, conductivity, and name. The name given in the Material section should match the
name in the DESSIS grid file. Table 15.110 lists the arguments for the Material section.

An example of overwriting material properties of silicon is:

Physics { ...
EMLABGeneration(

Boundary(
Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

WavePower = 1e4 # [W/m^2]
WaveLength = 1e-7 # [m]
Theta = 180

)
Material(

Name = "Silicon"
Permittivity = 11.7
Permeability = 1
Conductivity = 9671.78

)
)

}

This example could be used for a more exotic material that MATDB does not contain. There is a more convenient
way of specifying unknown material properties or overwriting existing ones that are unsatisfactory. The
AutoMatGen section extracts permittivity and conductivity from internal DESSIS parameters. Permittivity is
taken from the DESSIS parameter Epsilon. Permeability is assumed to be 1. Conductivity is taken from a
specified absorption coefficient model and refractive index models.

Table 15.110 Material arguments

Argument Description Default Unit

Name String – –

Permittivity Relative permittivity 1 –

Permeability Relative permeability 1 –

Conductivity 0 S/m

MagneticConductivity 0 –

Density 0 1/m3

ThermalConductivity 0 W/m/K

SpecificHeat 0 –
 15.277

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
Conductivity is related to absorption coefficient , and refractive index n by the following relationship:

(15.313)

where .

Metal, for which absorption and refractive index models do not exist, takes permittivity and permeability to
be 1, and conductivity to be . The arguments inside AutoMatGen are identical to the absorption
coefficient and refractive index syntax of RayTracing.

NOTE A side effect of the matching between the absorption coefficient and refractive index of AutoMatGen
and those of RayTracing is that the unit of the constant absorption coefficient is cm–1, not m–1.

The following example demonstrates the usage of AutoMatGen:

Physics { ...
EMLABGeneration(

Boundary(
Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

WavePower = 1e4 # [W/m^2]

Table 15.111 AutoMatGen arguments

Argument Description

SemAbs = or SemAbs(value =) Both statements specify a constant value for the absorption
coefficient. This definition does not require the wave properties of
the beam (wavelength or photon energy). Unit is cm–1.

SemAbs(model = Parameter) The absorption coefficient is computed according to the DESSIS
parameter file. This is the default.

SemAbs(model = RSS) Use the silicon absorption model [155].

SemAbs(model = ODB) In this case, DESSIS takes the absorption coefficient from the optical
database file optikdata.

SemAbs(model = "<PMI Model Name>") Use the mentioned PMI absorption coefficient model.

RefractiveIndex(value =) Specifies a constant value for refractive index.

RefractiveIndex(model = Parameter) The refractive index is computed according to the DESSIS parameter
file.

RefractiveIndex(model = ODB) Takes the value of the refractive index from the table-based internal
DESSIS optical database OptikDB.

RefractiveIndex(model = "<PMI Model Name>") Use the mentioned PMI refractive index model.

σ α

σ αn
Z0
-------=

Z0
µ0
ε0
------ 376.73031 = Ω=

1 1030×

α α α

n n
15.278

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
WaveLength = 1e-7 # [m]
Theta = 180

)
AutoMatGen(

SemAbsorption(model = parameter)
RefractiveIndex(model = ODB)

)
)

}

This example uses the DESSIS parameter absorption coefficient model and refractive index taken from
OptikDB to write out a Material section in the input command file for EMLAB that looks like:

Material {
Name = Metal
Permittivity = 1
Permeability = 1
Conductivity = 1e+30
MagneticConductivity = 0
Density = 0
ThermalConductivity = 0
SpecificHeat = 0

}
Material {

Name = Si3N4
Permittivity = 7.5
Permeability = 1
Conductivity = 7681.36
MagneticConductivity = 0
Density = 0
ThermalConductivity = 0
SpecificHeat = 0

}
Material {

Name = Silicon
Permittivity = 11.7
Permeability = 1
Conductivity = 9671.78
MagneticConductivity = 0
Density = 0
ThermalConductivity = 0
SpecificHeat = 0

}

13.5.3 EMLAB generation: Tensor grid, syntax, and algorithm

Before describing the syntax relating to tensor grid generation, a brief description of the algorithm is required.
The x-, y-, and z-coordinates of vertices of the original DESSIS mesh are queued separately for consideration.

First, the x-coordinates of the vertices are considered. As each x-coordinate of a vertex is popped off the queue
of all x-coordinates, some x-coordinates are placed in a second queue. If the location of the x-coordinate is
further than d_min from other coordinates already in the second queue, it is put in the second queue or it is
discarded.

Any gaps between the members of this sparser second queue is filled by inserting more x-coordinates, so that
no member of this second queue is further than d_max from its neighbors.
 15.279

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
The maximum grid space, d_max, in the resulting tensor mesh is determined by the wavelength specified in the
Excitation section: d_max is wavelength/20 and d_min is d_max/2. GridBound* arguments can limit the range of
coordinates, and the smoothingfactor argument can make the distribution of coordinates more uniform. Their
functionality and syntax are discussed in the following sections.

The coordinates in this second queue note where the tensor grid’s vertices if x direction will be. The same
algorithm is performed for the y-coordinates and z-coordinates.

13.5.3.1 GridBoundX, GridBoundY, and GridBoundZ

Arguments relating to the tensor grid that DESSIS generates for EMLAB are GridBound* series arguments that
specify the domain that is represented by the tensor grid that is generated and, therefore, the physical domain
where the EMLAB simulation will run. GridBound* is followed by a two-entry vector in parentheses, for
example, GridBoundX(1, 5) binds the x-grid in the interval [1, 5].

Figure 15.63 demonstrates this concept. Similarly, GridBoundZ ‘bind’ the resulting EMLAB device in the z-
direction. If GridBoundY is not specified, as in the second figure, the entire DESSIS device in the y-direction
will be present in the EMLAB device and nothing else. The region that does not correspond to any part of the
original device is considered to be a vacuum. The GridBound* series of arguments has two functions. First, by
binding the simulation area to a smaller region where all the interesting events will occur, the
DESSIS–EMLAB interface can speed up the EMLAB run. Second, for the excitation option used by the
DESSIS–EMLAB interface, the very ‘top’ surface where the plane wave will first come in contact with the
device needs to be uniform in material. By ‘padding’ the top with vacuum for some uneven-surfaced devices,
such as a silicon dioxide lens, there can be a layer of uniform material covering the top surface without the
user having to alter the original device. Further, it may be desirable to have a vacuum layer where the
excitation plane wave of devices, such as solar cells and photo detectors, will probably come from.

Figure 15.63 Illustration of GridBoundX, GridBoundY, and GridBoundZ

Device

GridBoundX

GridBoundY

Original DESSIS Device Generated EMLAB Device

Vacuum

GridBoundX

Original DESSIS Device Generated EMLAB Device
15.280

PART 15 DESSIS CHAPTER 13 OPTICAL GENERATION
An example of code is:

Physics { ...
EMLABGeneration(

Boundary(
Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

WavePower = 1e4 # [W/m^2]
WaveLength = 1e-7 # [m]
Theta = 180

)
AutoMatGen(

SemAbsorption(model = parameter)
RefractiveIndex(model = ODB)

)
SmoothingFactor = 1.5
GridBoundX(0, 10)
GridBoundY(-1, 12)

)
}

13.5.3.2 SmoothingFactor

The argument smoothingfactor, which relates to the tensor grid that DESSIS generates for EMLAB, regulates
the grid spacing in the generated tensor mesh.

Closer to uniform, a mesh with grid spacing that is equal, a tensor mesh is, more stable the FDTD simulation
is. Although complete uniformity is not necessary, a large difference between grid spacing in adjacent nodes
is not good. The argument smoothingfactor = s in the EMLABGeneration statement forces the ratio of adjacent grid
spacings in the generated mesh within the smoothing factor s, which is a number strictly greater than 1.1. If
the smoothing factor is less than 1.1, DESSIS issues a warning and uses 1.1. The following is a sample code
containing the Smoothing option of EMLABGeneration:

Physics { ...
EMLABGeneration(

Boundary(
Type = "Periodic"
notice the quotation marks("") for Type argument is assigned
a string value.
Side = "X"

)
Boundary(

Type = "Higdon"
Side = "Y"
Order = 2

)
Excitation(

WavePower = 1e4 # [W/m^2]
WaveLength = 1e-7 # [m]
Theta = 180

)

 15.281

PART 15 DESSISCHAPTER 13 OPTICAL GENERATION
AutoMatGen(
SemAbsorption(model = parameter)
RefractiveIndex(model = ODB)

)
Smoothingfactor = 1.5

)
}

13.6 Optical AC analysis
An optical AC analysis calculates the quantum efficiency as a function of the frequency of the optical signal.
The method is based on the AC analysis technique and provides real and imaginary parts of the quantum
efficiency versus the frequency.

During an optical AC analysis, a small perturbation of the incident wave power is applied. Therefore, the
photo generation rate is perturbated as , where (is the frequency) and is an
amplitude of a local perturbation. The resulting small-signal device current perturbation is the sum of
real and imaginary parts, and the expressions for the quantum efficiency are:

(15.314)

where the quantity gives a perturbation of the total number of photons and is a
perturbation of the total number of electrons at an electrode. As a result, for each electrode, DESSIS places
two values into the AC output file, photo_a and photo_c, that correspond to and , respectively. To start
the optical AC analysis, add the keyword Optical in the ACCoupled statement, for example:

ACCoupled (StartFrequency=1.e4 EndFrequency=1.e9
NumberOfPoints=31 Decade Node(a c) Optical)
{ poisson electron hole }

NOTE If an element is excluded (Exclude statement) in optical AC (this is usually the case for voltage
sources in regular AC simulation), it means that this element is not present in the simulated circuit
and, correspondingly, it provides zero AC current for all branches that are connected to the element.
Therefore, do not exclude voltage sources.

δP0
Gopt δGopteiωt+ ω 2πf= f δGopt

δIdev

η
Re δIdev[] q⁄

δPtotλ hc⁄
-------------------------------=

Copt
1
ω

Im δIdev[] q⁄

δPtotλ hc⁄
-------------------------------⋅=

δPtot δP0 sd
S

∫=

δPtotλ hc⁄ Re δIdev[] q⁄

η Copt
15.282

PART 15 DESSIS CHAPTER 14 SINGLE EVENT UPSET (SEU)
DESSIS

CHAPTER 14 Single event upset (SEU)

14.1 Alpha particles
See Section 14.3 on page 15.288.

14.1.1 Syntax and implementation

Specify the keyword AlphaParticle in the Physics section of the DESSIS input file:

Physics { ...
AlphaParticle (<optional keywords>)

}
Plot { ...

AlphaCharge
}

Table 15.112 lists the keyword options for alpha particles.

Table 15.112 Keyword options for AlphaParticle command

Keyword Description

Energy = <float> Defines the energy of the alpha particle.

Time = <float> Defines the time at which the charge generation peaks in the device.

Location = <x,y,z> Defines the point where the alpha particle enters the device [µm].

Direction = <vector> Vector (x, y, z) defines the direction of motion of the particle.

Table 15.113 Coefficients for carrier generation by alpha particles

Symbol Parameter name Default value Unit

s s 2 x 10–12 s

wt wt 1 x 10–5 cm

c2 c2 1.4 1

a alpha 90 cm–1

alpha2
alpha3

5.5 x 10–4

2 x 10–4
cm
cm

EP Ep 3.6 eV

a0
a1
a2

a0
a1
a2

–1.033 x 10–4

2.7 x 10–10

4.33 x 10–17

cm
cm/eV
cm/eV2

α2
α3
 15.283

PART 15 DESSISCHAPTER 14 SINGLE EVENT UPSET (SEU)
14.1.1.1 Model description

The generation rate caused by an alpha particle with energy E is computed by:

(15.315)

if , and by:

(15.316)

if [89]. In this case, is the coordinate along the particle path and and are coordinates
orthogonal to . The direction and place of incidence are defined in the Physics section of the input file with
the keywords Direction and Location, respectively. Parameter is the time of the generation peak defined by
the keyword Time. A Gaussian time dependence can also be used to simulate the typical generation due to
pulsed laser or electron beams.

The maximum of the Bragg peak, , is fitted to data [90] by a polynomial function:

(15.317)

The parameter is given by:

(15.318)

The scaling factor a is determined from:

(15.319)

where is the average energy needed to create an electron–hole pair. The remaining parameters are listed
in Table 15.112 on page 15.283. They are available in the parameter file dessis.par and are valid for alpha
particles with energies between 1 MeV and 10 MeV. The generation by alpha particles cannot be used except
in transient simulations. The amount of electron–hole pairs generated before the initial time of the transient
is added to the carrier densities at the beginning of the simulation. The charge density is plotted by
using the keyword AlphaCharge in the Plot statement of the input file.

An option to improve the spatial integration of the charge generation is presented in Section 14.3 on
page 15.288.

14.2 Heavy ions
The single event upset (SEU) (or bit flip or soft error) is a switch of the accidental, occasional, localized,
logical state of a device. The SEU can be observed in bipolar and MOS technologies. This phenomenon is
important in satellites, for example, there are 180 upsets/year on GALILEO.

When a heavy ion penetrates into a device structure, it loses energy and creates a trail of electron–hole pairs.

G u v w t, , ,() a
2π s⋅

-----------------e
1
2

t tm–
s

-------------⎝ ⎠
⎛ ⎞

2
–

e

1
2
--- v2 w2+

wt
2

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

c1eαu c2e

1
2

u α1–
α2

----------------⎝ ⎠
⎛ ⎞

2
–

+×=

u α1 α3+<

G u v w t, , ,() 0=

u α1 α3+≥ u v w
u

tm

α1

α1 a0 a1E a2E2+ +=

c1

c1 e
α α1 10MeV[] α1 E[]–()

=

G u v w t, , ,() t w v udddd
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫
0

∞

∫
E
Ep
------=

Ep

tGd
∞–

∞
∫

15.284

PART 15 DESSIS CHAPTER 14 SINGLE EVENT UPSET (SEU)
These additional electrons and holes may cause a large enough current to switch the logic state of a device,
for example, that of a memory cell. Important factors are:

The energy and type of the ion.

The angle of penetration of the ion.

The relation between the lost energy or linear energy transfer (LET) and the number of pairs created.

14.2.1 Syntax and implementation

The simulation of an SEU caused by a heavy ion impact is activated by using the keyword HeavyIon in an
appropriate Physics section:

Physics {
HeavyIon (<keyword_options>) }

Table 15.114 describes the keyword options for HeavyIon. The generation rate by the heavy ion is generally
used in transient simulations. The number of electron–hole pairs generated before the initial time of the
transient is added to the carrier densities at the beginning of the simulation. The total charge density is plotted
using the keyword HeavyIonCharge in the Plot statement of the input file.

NOTE If the value of Wt_hi is 0, then uniform generation is selected. If the value of LET_f is 0, the keyword
LET_f can be ignored.

Table 15.114 Keyword options for HeavyIon command

Keyword Description

Time = <float> Defines the time [s] at which the ion penetrates the device.

Location = <x,y,z> Defines the point [µm] where the heavy ion enters the device.

Direction = <vector> Vector (x,y,z) defines the direction of motion of the ion.

Gaussian Choose a Gaussian shape for the spatial distribution, R(w).

Exponential Choose an exponential shape for R(w) (true by default).

LET_f = [float1, float2, ...] Defines the linear energy transfer (LET) function of the heavy ion (in pairs/cm3
by default or pC/µm if the PicoCoulomb option is selected). LET_f = [float1] is
the LET value for Length = [float1].

Wt_hi = [float1, float2, ...] Defines the characteristic distance, (in cm by default or µm if the
PicoCoulomb option is toggled). Wt_hi = [float1] is the distance value
corresponding to Length = [float1].

Length = [float1, float2, ...] Defines the length l, where Wt_hi and Let_f will be specified (Length in cm by
default or µm if the PicoCoulomb option is selected).

PicoCoulomb Enforces the picocoulomb/micron unit in LET_f. The default unit for LET_f is
pairs/cm3.

wt l()
 15.285

PART 15 DESSISCHAPTER 14 SINGLE EVENT UPSET (SEU)
14.2.2 Model description

Figure 15.64 A heavy ion penetrating into semiconductor; its track is defined by a length and
the transverse spatial influence is assumed to be symmetric about the track axis

A simple model for the heavy ion impinging process is shown in Figure 15.64. The generation rate caused by
the heavy ion is computed by:

(15.320)

if (is the length of the track), and by:

(15.321)

if . and are functions describing the spatial and temporal variations of the generation rate.
 is the linear energy transfer generation density and its unit is pairs/cm3.

 is defined as a Gaussian function:

(15.322)

where time is the moment of the heavy ion penetration (see the keyword Time in Table 15.114 on page 15.285),
and is the characteristic value of the Gaussian (see s_hi in Table 15.116 on page 15.287).

The spatial distribution, , can be defined as an exponential function (default):

(15.323)

or a Gaussian function:

(15.324)

where is a radius defined as the perpendicular distance from the track. The characteristic distance is
defined as Wt_hi in the HeavyIon statement and can be a function of the length (see Table 15.114).

lmax

Heavy Ion

Track

w(l)

G l w t, ,() GLET l() R w l,() T t()××=

l lmax< lmax

G l w t, ,() 0=

l lmax≥ R w() T t()
GLET l()

T t()

T t()

2 exp⋅ t time–
shi

-------------------⎝ ⎠
⎛ ⎞ 2

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

shi π 1 erf time
shi

-----------⎝ ⎠
⎛ ⎞–

⎝ ⎠
⎜ ⎟
⎛ ⎞

---=

shi

R w l,()

R w l,() e

w
wt l()

⎝ ⎠
⎛ ⎞–

=

R w l,() e

w
wt l()

⎝ ⎠
⎛ ⎞

2
–

=

w wt
l

15.286

PART 15 DESSIS CHAPTER 14 SINGLE EVENT UPSET (SEU)
The linear energy transfer (LET) generation density, , is given by:

(15.325)

where (defined likewise by the keyword LET_f) is a function of the length . Example 2 in
Section 14.2.3 on page 15.288 shows how one can use an array of values to specify the length dependence of

. A linear interpolation is used for values between the array entries of LET_f.

There are two options for the units of LET_f: pairs/cm3 (default) or pC/µm (activated by the keyword
PicoCoulomb). Depending on the units of LET_f chosen, k’ takes on different values in order to make the above
equation dimensionally consistent. The appropriate values of k’ for different device dimensions are
summarized in Table 15.115.

Great care must also be exercised to choose the correct units for Wt_hi and Length. The default unit of Wt_hi
and Length is centimeter. If the keyword PicoCoulomb is specified, the unit becomes µm. Examples illustrating
the correct unit use are shown in Section 14.2.3. The other coefficients used in (Eq. 15.325) are listed in
Table 15.116 with their default values, and they can be adjusted in the DESSIS parameter file.

Table 15.115 Setting correct k' to make LET generation density equation dimensionally consistent

Condition Two-dimensional device Three-dimensional device

LET_f has units of pairs/cm3 for
R(w,l) is exponential or Gaussian

LET_f has units of pC/µm
and
R(w,l) is exponential

LET_f has units of pC/µm
and
R(w,l) is Gaussian

Table 15.116 Coefficients for carrier generation by heavy ion (in DESSIS parameter file)

shi a1 a2 a3 a4 k c1 c2 c3 c4

Keyword s_hi a_1 a_2 a_3 a_4 k_hi c_1 c_2 c_3 c_4

Default value 2e-12 0 0 0 0 1 0 1 0 1

Default unit s pairs/cm3 pairs/cm3/cm pairs/cm3 cm–1 1 pairs/cm3 1 cm–1 1

Unit if
Picocoulomb
is chosen

s pairs/cm3 pairs/cm3/µm pairs/cm3 µm–1 1 pC/µm 1 µm–1 1

GLET l()

GLET l() a1 a2 l× a3e
a4 l×

k′ c1 c2 c3∗l+()
c4× LET_f l()++ + +=

LET_f l() l

LET_f l()

k′ k= k′ k=

k′ k
2wtd
------------=

d 1µm=

k′ k
2πwt

2
-------------=

k′ k
π wt d××

----------------------------=

d 1µm=

k′ k
πwt

2
----------=
 15.287

PART 15 DESSISCHAPTER 14 SINGLE EVENT UPSET (SEU)
14.2.3 Examples: Heavy ions

14.2.3.1 Example 1

The track has a constant LET_f value of 0.2 pC/µm across the track. The track length is 1 µm (= 1 µm)
and the heavy ion crosses the device at the time 0.1 pS. The unit of LET_f is pC/µm and the spatial distribution
is Gaussian. Since PicoCoulomb was chosen, the values of Length and wt_hi are expressed in terms of µm. The
keyword HeavyIonChargeDensity in the Plot statement allows users to plot the charge density generated by the
ion.

Physics { Recombination (SRH(DopingDep))
Mobility (DopingDep Enormal HighFieldSaturation)
HeavyIon (

Direction=(0,1)
Location=(1.5,0)
Time=1.0e-13
Length=1
wt_hi=3
LET_f=0.2
Gaussian
PicoCoulomb)

}
Plot { eDensity hDensity ElectricField HeavyIonChargeDensity
}

14.2.3.2 Example 2

The LET_f and radius (wt_hi) values are functions of the position along the track (in this case, = 1.7 µm =
 cm). Values in between the array entries are linearly interpolated. The unit of LET_f is pairs/cm3

(because the keyword Picocoulomb is not used), and the unit for Length and wt_hi is centimeter. For each value
of length, there is a corresponding value of LET_f and a value for the radius. The spatial distribution in the
perpendicular direction from the track is exponential.

Physics { Recombination (SRH(DopingDep))
HeavyIon (

Direction=(0,1)
Location=(1.5,0)
Time=1.0e-13
Length = [1e-4 1.5e-4 1.6e-4 1.7e-4]
LET_f = [1e6 2e6 3e6 4e6]
wt_hi = [0.3e-4 0.2e-4 0.25e-4 0.1e-4]
Exponential)

}

14.3 Improved alpha particle/heavy ion generation rate
integration

Accurate integration of alpha particle or heavy ion generation rates is very important for predictive modeling
of SEU phenomena. By default, in DESSIS, the integration of the generation rate over the control volume
associated with each vertex in the mesh is performed under the assumption that the generation rate is constant
inside the vertex control volume and equal to the generation rate value at the vertex. As alpha particle or heavy

lmax

lmax
1.7 10 4–×
15.288

PART 15 DESSIS CHAPTER 14 SINGLE EVENT UPSET (SEU)
ion generation rates can change very rapidly in space, the approximation error with such an approach may
lead to large errors on a coarse mesh (in particular, the method does not guarantee charge conservation).

To eliminate this source of numeric error, an improved spatial integration can be performed. The procedure
used in DESSIS for optical generation (see Chapter 13 on page 15.243) extends to the alpha particle/heavy
ion case. Each control volume is covered by a set of small rectangular boxes and the generation rate is
integrated numerically inside these boxes. To activate this procedure, the keyword RecBoxIntegr must be
specified in the Math section. The same keyword is used as for optical generation, with the same set of default
parameters. By changing the default parameters, the user can also control the accuracy of the integration (see
Section 13.1 on page 15.243).
 15.289

PART 15 DESSIS CHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
DESSIS

CHAPTER 15 Noise and fluctuation analysis

15.1 Overview
Noise analysis is concerned with deviations from the average behavior that occur dynamically in an average
device. Fluctuation analysis is concerned with (static) deviations of device properties from an average device.
Section 15.2 explains how to perform noise and fluctuation analysis. Deviations occur for a multitude of
reasons; for each of them, a physical model is required, and the availability of models determines the kind of
noise or fluctuation that can be modeled. Section 15.3 on page 15.293 discusses the models DESSIS offers.
Section 15.4 on page 15.295 discusses the background of the impedance field method [119], and Section 15.5
on page 15.296 summarizes the data available for visualization.

15.2 Performing noise and fluctuation analysis
DESSIS models noise and fluctuations of device properties in a unified manner as an extension of small-
signal analysis (see Section 3.8.3 on page 15.117). DESSIS computes the variances and correlation
coefficients for the voltages at selected circuit nodes, assuming the net current to these nodes is fixed. As the
computation is performed in frequency space, the computed quantities are called the noise voltage spectral
densities.

To use noise and fluctuation analysis, first specify the physical models for the microscopic origin of the
deviations (called the local noise sources, LNS) as options to the keyword Noise in the Physics section of the
DESSIS command file:

Physics {
...
Noise (<Noisemodels>)

}

where <Noisemodels> is a list that specifies any number of noise models listed in Table 15.117. As for other
physical models, noise sources can be specified regionwise or materialwise.

Table 15.117 Noise sources

Noise model Keyword Options

Diffusion noise DiffusionNoise LatticeTemperature
eTemperature
hTemperature
e_h_Temperature

Generation–recombination
(GR) noise

MonopolarGRNoise –

FlickerGRNoise –

Random dopant fluctuations Doping –
 15.291

PART 15 DESSISCHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
Second, use the ObservationNode option to the ACCoupled statement to specify the device nodes for which the
noise voltage spectral densities are desired, for example:

ACCoupled (
StartFrequency = 1.e8 EndFrequency = 1.e11
NumberOfPoints = 7 Decade
Node (n_source n_drain n_gate)
Exclude (v_drain v_gate)
ObservationNode (n_drain n_gate)
ACExtraction = "mos"
NoisePlot = "mos"
){
poisson electron hole contact circuit
}

}

The keyword ObservationNode enables noise analysis (in this case, for the nodes n_drain and n_gate). NoisePlot
specifies a file name prefix for device-specific plots (see Section 15.5 on page 15.296). For more information
on the ACCoupled statement, see Section 3.8.3 on page 15.117.

NOTE The observation nodes must be a subset of the nodes specified in Node(...).

The results of the analysis are the noise voltage autocorrelation and cross-correlation spectral densities. They
appear in the ACExtraction file (see Table 15.118).

Table 15.118 Noise voltage spectral densities

Name Description

S_V Noise voltage spectral density (NVSD)

S_V_ee
S_V_hh

Electron NVSD
Hole NVSD

S_V_eeDiff
S_V_hhDiff

Electron NVSD due to diffusion LNS
Hole NVSD due to diffusion LNS

S_V_eeMonoGR
S_V_hhMonoGR

Electron NVSD due to monopolar GR LNS
Hole NVSD due to monopolar GR LNS

S_V_eeFlickerGR
S_V_hhFlickerGR

Electron NVSD due to flicker GR LNS
Hole NVSD due to flicker GR LNS

S_V_Doping NVSD due to random dopant fluctuations

ReS_VXV
ImS_VXV

Real/imaginary parts of the cross-noise voltage
spectral density (NVXVSD)

ReS_VXV_ee
ImS_VXV_ee
ReS_VXV_hh
ImS_VXV_hh

Real/imaginary parts of the electron/hole NVXVSD

ReS_VXV_eeDiff
ImS_VXV_eeDiff
ReS_VXV_hhDiff
ImS_VXV_hhDiff

Real/imaginary parts of the electron/hole NVXVSD
due to diffusion LNS
15.292

PART 15 DESSIS CHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
15.3 Noise sources

15.3.1 Diffusion noise

The diffusion noise source (keyword DiffusionNoise) available in DESSIS reads:

(15.326)

where is the electron density and is the electron mobility. A corresponding expression is used for holes.
 is a diagonal tensor.

 is either the lattice or carrier temperature, depending on the specification in the command file:

DiffusionNoise (<temp_option>)

where <temp_option> is LatticeTemperature, eTemperature, hTemperature, or e_h_Temperature. The default is
LatticeTemperature. For example, if the following command is specified:

Physics {
Noise (DiffusionNoise (eTemperature))

}

DESSIS uses the electron temperature for the electron noise source and the lattice temperature for the hole
noise source. The keyword e_h_Temperature forces the corresponding carrier temperature to be used for the
diffusion noise source for each carrier type.

15.3.2 Equivalent monopolar generation–recombination noise

An equivalent monopolar generation–recombination (GR) noise source model (keyword MonopolarGRNoise) for
a two-level, GR process can be expressed as a tensor [120]:

(15.327)

ReS_VXV_eeMonoGR
ImS_VXV_eeMonoGR
ReS_VXV_hhMonoGR
ImS_VXV_hhMonoGR

Real/imaginary parts of the electron/hole NVXVSD
due to monopolar GR LNS

ReS_VXV_eeFlickerGR
ImS_VXV_eeFlickerGR
ReS_VXV_hhFlickerGR
ImS_VXV_hhFlickerGR

Real/imaginary parts of the electron/hole NVXVSD
due to flicker GR LNS

ReS_VXV_Doping
ImS_VXV_Doping

Real/imaginary parts of the NVXVSD due to random
dopant fluctuations

Table 15.118 Noise voltage spectral densities

Name Description

Kn n,
Diff r1 r2 ω, ,() 4qn r1()kBT r1()µn r1()δ r1 r2–()=

n µn
Kn n,

Diff

T

Kn n,
GR r1 r2 ω, ,()

Jn r1() Jn r1()⊗
n

4ατeq

1 ω2 τeq
2⋅+

---------------------------δ r1 r2–()⋅=
 15.293

PART 15 DESSISCHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
where is the electron current density; , the electron density; , a fitting parameter; and , an equivalent
GR lifetime. The expression denotes the outer (dyadic) product. The parameters and can be
modified in the DESSIS parameter file. A similar expression is used for holes.

15.3.3 Bulk flicker noise

The flicker generation–recombination (GR) noise model (keyword FlickerGRNoise) for electrons (similar for
holes) is:

(15.328)

where is the electron current density; , the electron density; , a fit parameter; , the angular
frequency; and the time constants fulfill . The parameters , , and for electrons and holes are
accessible in the DESSIS parameter file. With increasing frequency, the noise source changes from constant
to behavior close to the frequency and, ultimately, to behavior at .

15.3.4 Random dopant fluctuations

The noise sources for random dopant fluctuations are activated by the Doping keyword. The noise source for
acceptor fluctuations reads:

(15.329)

Here, is the frequency and is the unit step function. An analogous expression holds for the noise
source for donors, . Physically, the noise sources are static. However, to avoid a -function in frequency
space, DESSIS spreads the spectral density of the noise source over a 1 Hz frequency interval. (Eq. 15.329)
is based on the assumption that individual dopant atoms are completely uncorrelated.

By default, DESSIS neglects the impact of the random dopant fluctuations on mobility and band-gap
narrowing. To take their impact into account, specify the Mobility and BandGapNarrowing options to the Doping
keyword. For example:

Physics { Noise(Doping(Mobility)) }

activates the random dopant fluctuation noise source, taking into account the impact of the fluctuations on
mobility.

15.3.5 Noise from SPICE circuit elements

To take into account the noise generated by SPICE circuit elements (see Compact Models, Chapter 1 on
page 16.1), specify the CircuitNoise option to ACCoupled. The form of the noise source for a particular circuit
element is defined by the respective compact model.

Due to a restriction of the SPICE noise models, SPICE circuit elements contribute only to the autocorrelation
noise. For cross-correlation noise, DESSIS considers SPICE circuit elements as noiseless. Non–SPICE
compact circuit elements do not implement noise at all and, therefore, DESSIS always treats them as
noiseless.

Jn n α τeq
Jn Jn⊗ τeq α

Kn n,
fGR r1 r2 ω, ,()

Jn r1() Jn r1()⊗
n r1()

2αH

πf τ1 τ0⁄()log
--------------------------------- ωτ1() ωτ0()atan–atan[]δ r1 r2–()⋅ ⋅=

Jn n αH ω 2πf=
τ0 τ1< αH τ0 τ1

1 f⁄ f1 1 τ1⁄= 1 f⁄ 2 f0 1 τ0⁄=

KA
RDF r1 r2 ω, ,() NA r1()Θ 0.5Hz f–()

1Hz
-----------------------------------δ r1 r2–()=

f ω 2π⁄= Θ
KD

RDF δ
15.294

PART 15 DESSIS CHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
15.4 Impedance field method
The impedance field method splits noise and fluctuation analysis into two tasks. The first task is to provide
models for the noise sources, that is, for the local microscopic fluctuations inside the devices (see Section 15.3
on page 15.293). The selection of the appropriate models depends on the problem. Users have to pick the
models according to the kind of noise they are interested in. The second task is to determine the impact of the
local fluctuations on the terminal characteristics. To solve this task, the response of the contact voltage to local
fluctuation is assumed to be linear. For each contact, Green functions are computed that describe this linear
relationship. In contrast to the first task, the second task is purely numeric, as the Green functions are
completely specified by the transport model.

A Green function describes the response of the potential at location due to a perturbation at
location with angular frequency in the right-hand side of the partial differential equation for solution
variable . can be (see (Eq. 15.19)), or (see (Eq. 15.20)), (see (Eq. 15.28)), or (see
(Eq. 15.29)).

The implemented models result in the following expression for the noise voltage spectral density:

(15.330)

(15.331)

(15.332)

(15.333)

(15.334)

(15.335)

(15.336)

(15.337)

where the are the noise sources (see Section 15.3). The spatial coordinates and each correspond to a
contact.

For drift-diffusion simulations, . For hydrodynamic simulations, is replaced by an effective
Green function, (see Section 4.2.4 on page 15.130). Similar relations
hold for .

The Green function for random dopant fluctuations reads:

(15.338)

Gξ x x' ω, ,() x
x' ω
ξ ξ Ψ n p Tn Tp

S x x' ω, ,() Gn x x'' ω, ,()Kn n,
Diff x'' ω,()Gn

* x' x'' ω, ,() x''d∫=

Gn x x'' ω, ,()Kn n,
GR x'' ω,()Gn

* x' x'' ω, ,() x''d∫+

Gn x x'' ω, ,()Kn n,
fGR x'' ω,()Gn

* x' x'' ω, ,() x''d∫+

Gp x x'' ω, ,()Kp p,
Diff x'' ω,()Gp

* x' x'' ω, ,() x''d∫+

Gp x x'' ω, ,()Kp p,
GR x'' ω,()Gp

* x' x'' ω, ,() x''d∫+

Gp x x'' ω, ,()Kp p,
fGR x'' ω,()Gp

* x' x'' ω, ,() x''d∫+

GA x x'' ω, ,()KA
RDF x'' ω,()GA

* x' x, '' ω,() x''d∫+

GD x x'' ω, ,()KD
RDF x'' ω,()GD

* x' x, '' ω,() x''d∫+

K x x'

Gn Gn∇= Gn
Gn Gn GTn

∇EC
5
2
---rnkBTn∇GTn

–+∇=
Gp

GA

GA Gn
∇ Jn⋅∂

NA∂
---------------- Gp

∇ Jp⋅∂
NA∂

---------------- GTn

∇ Sn Jn ∇EC⋅–⋅()∂
NA∂

--- GTp

∇ Sp Jp ∇EV⋅–⋅()∂
NA∂

--- GΨ–+ ++=
 15.295

PART 15 DESSISCHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
An analogous expression holds for . The expression above is valid for hydrodynamic simulations. The
expression for drift-diffusion simulations is similar. The derivatives with respect to describe the impact
of dopant fluctuations on mobility and band-gap narrowing. DESSIS takes them into account only if explicitly
requested by the user (see Section 15.3.4 on page 15.294).

15.5 Noise output data
Several variables can be plotted during noise analysis. For each device, a NoisePlot section can be specified
similar to the Plot section, where the data to be plotted is listed. Besides the standard data, additional noise-
specific data or groups of data can be specified, as listed in Table 15.119 (for the device autocorrelation data)
and Table 15.120 on page 15.297 (for the device cross-correlation data). In the tables, the abbreviations LNS
(local noise source) and LNVSD (local noise voltage spectral density) are used.

Autocorrelation data refers to (Eq. 15.330) to (Eq. 15.336), when and are identical. Data selected in the
NoisePlot section is plotted for each device and observation node at a given frequency into a separate file. File
names with the following format are used:

<noise-plot>_<device-name>_<ob-node>_<number>_acgf_des.dat

where <noise-plot> is the prefix specified by the NoisePlot option to ACCoupled.

Table 15.119 Device noise data for node autocorrelation

Keyword Description Reference equation

eeDiffusionLNS Electron diffusion LNS (Eq. 15.326)

hhDiffusionLNS Hole diffusion LNS

eeMonopolarGRLNS Trace of electron monopolar GR LNS (Eq. 15.327)

hhMonopolarGRLNS Trace of hole monopolar GR LNS

eeFlickerGRLNS Trace of electron flicker GR LNS (Eq. 15.328)

hhFlickerGRLNS Trace of hole flicker GR LNS

LNVSD Total LNVSD Sum of integrands in
(Eq. 15.330)–(Eq. 15.336)

eeLNVSD Total electron LNVSD Sum of integrands in
(Eq. 15.330)–(Eq. 15.332)

hhLNVSD Total hole LNVSD Sum of integrands in
(Eq. 15.333)–(Eq. 15.335)

eeDiffusionLNVSD Electron diffusion LNVSD Integrand of (Eq. 15.330)

hhDiffusionLNVSD Hole diffusion LNVSD Integrand of (Eq. 15.333)

eeMonopolarGRLNVSD Electron monopolar GR LNVSD Integrand of (Eq. 15.331)

hhMonopolarGRLNVSD Hole monopolar GR LNVSD Integrand of (Eq. 15.334)

eeFlickerGRLNVSD Electron flicker GR LNVSD Integrand of (Eq. 15.332)

hhFlickerGRLNVSD Hole flicker GR LNVSD Integrand of (Eq. 15.335)

GD
NA

x x'
15.296

PART 15 DESSIS CHAPTER 15 NOISE AND FLUCTUATION ANALYSIS
In the case of in (Eq. 15.330) to (Eq. 15.336), node cross-correlation spectra are computed and
integrands become complex. Data specified in the NoisePlot section is plotted for each device and each pair
of observation nodes at a given frequency into a separate file. The file names have the format:

<noise-plot>_<device-name>_<ob-node-1>_<ob-node-2>_<number>_acgf_des.dat

PoECReACGreenFunction
PoECImACGreenFunction
PoHCReACGreenFunction
PoHCImACGreenFunction

Real/imaginary (Re/Im) of (EC) and (HC)

Grad2PoECACGreenFunction
Grad2PoHCACGreenFunction

 and

AllLNS All used LNS

AllLNVSD All used LNVSD

GreenFunctions All used Green functions and their gradients

Table 15.120 Device noise data for node cross-correlation

Keyword Description

ReLNVXVSD
ImLNVXVSD

Real/imaginary parts of total cross LNVSD

ReeeLNVXVSD
ImeeLNVXVSD

Real/imaginary parts of cross LNVSD for electrons

RehhLNVXVSD
ImhhLNVXVSD

Real/imaginary parts of cross LNVSD for holes

ReeeDiffusionLNVXVSD
ImeeDiffusionLNVXVSD

Real/imaginary parts of cross-diffusion LNVSD for electrons

RehhDiffusionLNVXVSD
ImhhDiffusionLNVXVSD

Real/imaginary parts of cross-diffusion LNVSD for holes

RehhMonopolarGRLNVXVSD
ImhhMonopolarGRLNVXVSD

Real/imaginary parts of cross-electron/hole diffusion LNVSD

ReeeFlickerGRLNVXVSD ImeeFlickerGRLNVXVSD

RehhFlickerGRLNVXVSD ImhhFlickerGRLNVXVSD

AllLNVXVSD All use LNVXVSD

Table 15.119 Device noise data for node autocorrelation

Keyword Description Reference equation

Gn Gp

Gn
2 Gp

2

x x'≠
 15.297

PART 15 DESSIS CHAPTER 16 TUNNELING
DESSIS

CHAPTER 16 Tunneling

16.1 Overview
In current microelectronic devices, tunneling has become a very important physical effect. In some devices,
tunneling leads to undesired leakage currents (for gates in small MOSFETs). For other devices such as
EEPROMs, tunneling is essential for the operation of the device. The importance of tunneling is reflected by
the multitude of models DESSIS offers to simulate it. These models differ in both numeric efficiency and
physical sophistication. This section gives an overview of the available models and their recommended
applications.

The tunneling models discussed refer to processes at interfaces or contacts. They all describe transport of
charge. Tunneling also plays a role for some of the generation–recombination models (see Chapter 9 on
page 15.201). These models do not deal with spatial transport of charge and, therefore, are not discussed here.
In addition to tunneling, hot carrier injection can also contribute to carrier transport across barriers. To model
hot carrier injection, see Chapter 17 on page 15.317.

The most versatile tunneling model available in DESSIS is the nonlocal tunneling model (see Section 16.4 on
page 15.306). It allows to describe tunneling at Schottky and gate contacts as well as tunneling at
heterointerfaces and semiconductor–metal interfaces. This model:

Handles arbitrary barrier shapes.

Includes carrier heating terms.

Allows to describe tunneling between valence band and conduction band.

Optionally, uses nonparabolic two-band dispersion relation (important for valence to conduction band
tunneling).

By default, uses a simple WKB-based approximation for the tunneling probability.

Optionally, accurately computes the tunneling probability using the Schrödinger equation.

Typically increases the number of off-diagonal matrix elements significantly and, therefore, slows down
the simulation.

It is recommended that this model is used to describe tunneling at Schottky contacts, tunneling in
heterostructures, and gate leakage through thin, stacked insulators.

The second most powerful model is the Schenk direct tunneling model (see Section 16.3 on page 15.302).
This model:

Is based on the physically very accurate quantum mechanical transmission computation.

Increases the number of off-diagonal matrix elements only marginally.

Optionally, accounts for image charge effects (at the cost of reduced numeric robustness).

Assumes a trapezoidal barrier (this restricts the range of application to tunneling through insulators).

Neglects heating of the tunneling carriers.
 15.299

PART 15 DESSISCHAPTER 16 TUNNELING
It is recommended that this model is used to describe leakage through thin gate insulators, provided those are
of uniform or of uniformly graded composition.

The simplest tunneling model is the Fowler–Nordheim model (see Section 16.2). Fowler–Nordheim
tunneling is a special case of tunneling also covered by the nonlocal and Schenk tunneling models, where
tunneling is to the conduction band of the oxide. The model is simple and efficient, and has proven useful to
describe erase operations in EEPROMs, which is the application for which this model is recommended.

Gate current computation is important in steady state analysis (for example, gate current simulations and
device degradation problems) and transient simulation, where write and erase simulations of EEPROM
devices are crucial. If the simulated device contains a floating gate, gate currents are used to update the charge
on the floating gate after each time step in transient simulations.

If EEPROM cells are simulated in 2D, it is generally necessary to include an additional coupling capacitance
between the control and floating gates to account for the additional influence of the third dimension on the
capacitance between these electrodes (see Section 4.5.1.6 on page 15.143). The additional floating gate
capacitance can be specified as FGcap in the Electrode statement (see Section 2.3 on page 15.39).

16.2 Fowler–Nordheim tunneling

16.2.1 Syntax and implementation

To switch on the Fowler–Nordheim tunneling model, specify Fowler as an argument of the GateCurrent
statement inside the Physics section, as follows:

Physics { GateCurrent(Fowler) }

or:

Physics { GateCurrent(Fowler(EVB)) }

The second specification activates the tunneling of electrons from and to the valence band as discussed in
Section 16.2.2 on page 15.301.

If GateCurrent is specified in the bulk Physics statement in this way, DESSIS computes gate currents between
all semiconductor–insulator interfaces and the nearest electrodes. If the gate current is to be computed only
for selected interfaces and electrodes, specify the keyword GateCurrent inside a material-interface or region-
interface Physics section (see Section 2.5.5 on page 15.49).

There is an additional option to restrict the tunneling current to a particular gate electrode by specifying the
keyword GateName in the GateCurrent statement:

Physics(MaterialInterface="Silicon/Oxide") {
GateCurrent(Fowler GateName="real_electrode_name")

}

The Fowler–Nordheim tunneling model can be used with any of the hot carrier injection models (see
Chapter 17 on page 15.317), for example:

GateCurrent(Fowler Lucky)
15.300

PART 15 DESSIS CHAPTER 16 TUNNELING
switches on the Fowler–Nordheim tunneling model and the classical lucky electron injection model
simultaneously.

16.2.2 Model description

The tunneling of electrons through insulators in the presence of high electric fields is incorporated in DESSIS
by the Fowler–Nordheim equation:

(15.339)

where is the tunnel current density, F is the insulator electric field at the interface, and A and B are
physical constants. The electric field at the interface shown by Tecplot-ISE is an interpolation of the fields in
both regions, but DESSIS uses the insulator field internally.

Due to the large energy difference between oxide and silicon conduction bands, tunneling electrons create
electron–hole pairs in the erase operation when they enter the semiconductor. This additional carrier
generation is included by an energy-independent multiplication factor γ > 1:

(15.340)

(15.341)

If the electrons flow in an opposite direction, by default, γ is equal to 1. The formulas above reflect the default
behavior of DESSIS, but sometimes the Fowler–Nordheim equation is used to emulate other tunneling
effects, for example, the tunneling of electrons from the valence band into the gate. Such capability is
activated by the additional keyword EVB in the input file. DESSIS will continue to function even if γ < 1. For
any electron tunneling direction, particularly a floating body SOI, this tunneling current is important because
it strongly defines floating body potential. The tunneling current is implemented as a current boundary
condition at interfaces. Different coefficients are needed for the write and erase operations because, in the first
case, the electrons are emitted from monocrystalline silicon and, in the latter case, they are emitted from the
polysilicon contact into the oxide.

16.2.3 Model parameters

The parameters of the Fowler–Nordheim model can be modified in the FowlerModel section of the parameter
file. DESSIS uses two parameter sets (denoted as erase and write) depending on the direction of the electric
field between the contact and semiconductor in the oxide layer. For example, if the field points from the
contact to the semiconductor (that is, electrons flow into the contact), the ‘write’ parameter set is used.

Table 15.121 lists the keywords of the parameters and their default values. Calculated tunneling
characteristics based on these parameters are plotted in Figure 15.65 on page 15.302.

Table 15.121 Coefficients for Fowler–Nordheim tunneling (defaults for silicon–oxide interface)

Symbol Parameter name Default value Unit Remarks

A (erase) Ae 1.82 × 10–7 A/V2 A for the erase cycle

B (erase) Be 1.88 × 108 V/cm B for the erase cycle

jFN AF2e
B
F
---–

=

jFN

jn γ jFN⋅=

jh γ 1–() jFN⋅=
 15.301

PART 15 DESSISCHAPTER 16 TUNNELING
Figure 15.65 Fowler–Nordheim current densities for erase/write operations
including multiplicative factor (default values used)

16.3 Direct tunneling through gate oxides
Direct tunneling is the main gate leakage mechanism for oxides thinner than 3 nm. It turns into
Fowler–Nordheim tunneling at oxide fields higher than approximately 6 MV/cm, independent of the oxide
thickness. When solving the continuity equations, the tunnel current obtained from the model is balanced with
the drift-diffusion current in the semiconductor, resulting in a self-consistent solution.

In some application examples (n-channel MOSFETs), convergence problems can occur far from equilibrium
if the image force effect is switched on, probably due to the nonlocal nature of the problem. With such possible
convergence problems, the image force effect is switched off by default in DESSIS.

To switch on the image force effect, the parameters E0, E1, and E2 must be specified (in eV) in the parameter
file. If these values are all equal, the image force is neglected. Recommended values for both electrons and
holes are E0=0, E1=0.3, and E2=0.7. For most purposes, this effect can be reasonably modeled as an effective
lowering of the trapezoidal barrier (by adjustment of the input parameter). If the minority carrier substrate
current is negligible, it is recommended that minority carriers are excluded from the coupled solve.

16.3.1 Syntax and implementation

Like other gate current mechanisms, direct tunneling is specified as an option of the GateCurrent statement (see
Section 16.2.1 on page 15.300) in an appropriate interface Physics section:

Physics(MaterialInterface="Silicon/Oxide") {
GateCurrent(DirectTunneling)

}

The keyword GateName and the compatibility with the hot carrier injection models (see Chapter 17 on
page 15.317) are as for the Fowler–Nordheim model, see Section 16.2 on page 15.300.

A (write) Aw 1.23 × 10–6 A/V2 A for the write cycle

B (write) Bw 2.37 × 108 V/cm B for the write cycle

Gm 1.0 1

Table 15.121 Coefficients for Fowler–Nordheim tunneling (defaults for silicon–oxide interface)

Symbol Parameter name Default value Unit Remarks

γ

EB
15.302

PART 15 DESSIS CHAPTER 16 TUNNELING
To plot the direct tunneling current, the keywords eDirectTunnel or hDirectTunnel must be included in the Plot
section:

Plot {eDirectTunnel hDirectTunnel}

16.3.2 Model description

This section contains a short description of the model, which has been fully described elsewhere [118]. Here,
the formulas are for electrons only, but the implementation is performed for both electrons and holes,
assuming that the potential barrier for hole tunneling is determined by the SiO2 valence band edge. The actual
barrier for hole tunneling is still uncertain as it is poorly determined from experimental data. The density of
the elastic tunnel current is given by:

(15.342)

where is the effective thickness of the barrier, is the elementary charge, is a mass prefactor, is the
Boltzmann constant, is the substrate Fermi energy at the Si–SiO2 interface, is the gate Fermi
energy at the gate–SiO2 interface, is the conduction band energy at the Si–SiO2 interface, is the
energy of the elastic tunnel process (relative to the zero point), is the temperature, and is the
quantum-mechanical transmission coefficient. For the latter, the explicitly available expression for a
trapezoidal potential barrier is used:

(15.343)

with:

(15.344)

and:

(15.345)

and so on, where and denotes the (silicon-side) barrier height for
electrons, which is modeled as a function of the tunnel energy . is the tunneling energy with respect to
the conduction band edge in the contact .

jn
qmc

*kB

2π2h3
---------------- Eϒ E() T 0()ln exp

EF S, 0() Ec 0()– E–
kBT 0()

--- 1+⎝ ⎠
⎛ ⎞

T d()ln exp
EF M, d() Ec 0()– E–

kBT d()
--- 1+⎝ ⎠

⎛ ⎞–

⎩

⎭

⎨

⎬

⎧

⎫

d
0

∞

∫=

d q mc
* kB

EF S, 0() EF M, d()
Ec 0() E

Ec 0() T ϒ E()

ϒ E() 2
1 g E()+
---------------------=

g E() π2

2

EM
E

mc
mM
-------- Bi'dAi0 Ai'dBi0–()2

E
EM

mM
mc
-------- BidAi'0 AidBi'0–()2

mMmSi
mox

hΘox

EEM

---------------- Bi'dAi'0 Ai'dBi'0–()2

mox

mMmSi

EEM

hΘox
---------------- BidAi0 AidBi0–()

+

+

+

⎩

⎭

⎨

⎬

⎧

⎫

=

Ai0 Ai
EB E() E–

hΘox
-------------------------⎝ ⎠

⎛ ⎞≡ Aid Ai
EB E() qFoxd E––

hΘox
--⎝ ⎠

⎛ ⎞≡,

hΘox q2h2Fox
2 2mox⁄()1 3⁄= EB E()

E EM
EM E Ec d()– Ec 0()–=
 15.303

PART 15 DESSISCHAPTER 16 TUNNELING
For compatibility with an earlier implementation of the tunneling model, is truncated to the value
specified by the parameter E_F_M if it exceeds this value. is the electric field in the oxide (assumed
to be uniform within the oxide, and including a band edge–related term when different barrier heights are
specified at the two insulator interfaces). The quantities , and represent the effective electron
masses in the three materials, respectively. and are Airy functions. and are the first derivatives
of the Airy functions.

To solve this set of equations, the insulator electric field and semiconductor Fermi level are
needed. Outside of thermal equilibrium, the Fermi level is split into the electron and hole quasi-Fermi levels,

, , such that is used for electron tunneling and is used for hole tunneling,
respectively. is obtained by solving the Laplace equation in the insulator.

The tunnel current obtained from (Eq. 15.342) is balanced with the drift-diffusion current in the
semiconductor when solving the continuity equations, resulting in a self-consistent solution.

The expression for the tunneling transmission coefficient is based on these assumptions:

Independent particle approximation (all scattering processes and interaction with the environment are
implicitly absorbed by the one-particle, quasi-equilibrium, distribution functions and by the potential
model for)

Plane waves for incoming and outgoing states

No fixed oxide charges

Parabolic relations (energy bands) in all three materials

Further, the explicit dependence of on the energy that is perpendicular to the tunnel current is neglected.
With this approximation, an additional numeric integration is avoided.

16.3.2.1 Image force effect

Ultrathin oxide barriers are affected by the image force effect. If the latter is neglected, is the bare
barrier height , which is an input parameter and assumed to be known from tables or measurements. The
image force effect is included in the model by taking as an energy-dependent pseudobarrier:

(15.346)

where the three energy values are chosen in the lower energy range of the barrier potential
(between 0 and 1.5eV in practical cases). If these values are chosen to be equal, the image force effect is
automatically switched off. Otherwise, a numeric iteration of the equation:

(15.347)

at three discrete energies is performed for each bias point, which results in three pseudobarrier
heights of (Eq. 15.346). In (Eq. 15.347), is the action of the trapezoidal
pseudobarrier:

(15.348)

EM
Fox Vox d⁄=

mM mox mSi
Ai Bi Ai' Bi'

Fox EF S, 0()

φn φp EF S, 0() φn= EF S, 0() φp=
Fox

ϒ E()

Ek

ϒ E()

EB E()
EB

EB E()

EB E() EB E0()
EB E2() EB E0()–
E2 E0–() E1 E2–()

--- E E0–() E1 E–()
EB E1() EB E0()–
E1 E0–() E1 E2–()

--- E E0–() E2 E–()–+=

Ej j 0 1 2, ,=()

Stra E() Sim E()=

Ej j 0 1 2, ,=()
EB Ej() j 0 1 2, ,=() Stra E()

Stra E() 2
3

EB E() qFoxd– E–
hΘox

3
2

Θ EB E() qFoxd– E–[]

EB E() E–
hΘox

3
2

–=
15.304

PART 15 DESSIS CHAPTER 16 TUNNELING
and is the action of the respective image potential barrier:

(15.349)

(for example, for Al-SiO2).

 denotes the classical turning points for a given carrier energy that follow from:

(15.350)

For the thickness d of the pseudobarrier, is used, that is, the distance between the two
turning points at the energy of the semiconductor conduction band edge of the interface. All energies are
relative to that value.

Therefore, d is smaller than the user-given oxide thickness, when the image force effect is considered. The
image potential itself is given by:

(15.351)

with:

(15.352)

In (Eq. 15.352), is the dielectric permittivity of the gate oxide.

In the special case of , the arguments of the Airy functions diverge. Then, becomes:

(15.353)

with .

16.3.3 Model parameters

The parameters of the direct tunneling model are modified in the DirectTunneling section of the parameter file.
The appropriate default parameters for an oxide barrier on silicon are in Table 15.122. The parameters are
specified according to the interface.

Table 15.122 Coefficients for direct tunneling (defaults for oxide barrier on silicon)

Symbol Parameter name Electrons Holes Unit Description

εox eps_ins 2.13 2.13 1 Optical dielectric constant

E_F_M 11.7 11.7 eV Metal Fermi energy

Sim E()

Sim E()
2mox

h2
------------ ξ EB qFoxξ– Eim ξ() E–+d

xl E()

xr E()

∫=

EB const 3.15eV= =

xl r, E()

EB qFoxxl r,– Eim xl r,()+ E=

d xr E=0() xl E=0()–=

Eim x() q2

16πεox
----------------- k1k2()n

k1
nd x+

k2
d n 1+() x–

2k1k2
d n 1+()
--------------------+ +

n 0=

10

∑=

k1
εox εSi–
εox εSi+
-------------------- k2

εox εM–
εox εM+
--------------------=, 1–= =

εox

Vox Fox 0= = g E()

g E() 1
2

EF M,
E

mc
mM
-------- E

EF M,

mM
mc
--------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

dκ()cos2

mMmSi
mox

E EB E()–

EEF M,

mox

mMmSi

EEF M,

E EB E()–
----------------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

dκ()sin2

+
⎩

⎭

⎨

⎬

⎧

⎫

=

κ 2mox E EB E()–[] h⁄=

EF M, d()
 15.305

PART 15 DESSISCHAPTER 16 TUNNELING
If tunneling occurs between two semiconductors, the coefficients for metal (m_M and E_F_M) are not used. The
semiconductor parameters for the respective interface are used. It is not valid to have contradicting parameter
sets for two interfaces of an insulator between which tunneling occurs. In particular, eps_ins, m_ins, E0, E1, and
E2 must agree in the parameter specifications for both interfaces.

16.4 Nonlocal tunneling at interfaces and contacts
The magnitude of the tunneling current depends on the band edge profile along the entire path between the
points connected by tunneling. This makes tunneling a nonlocal process. In general, the band edge profile has
a complicated shape, and DESSIS must compute it by solving the transport equations and the Poisson
equation. The model described here takes this dependence fully into account. It provides good convergence
and consistent results for AC analysis by including the nonlocal couplings introduced by tunneling into the
Jacobian of the system. The model can be applied to contacts (such as Schottky contacts and gate contacts)
and interfaces (such as heterointerfaces and poly/oxide interfaces).

To use the nonlocal tunneling model:

1. Construct a special purpose ‘nonlocal’ mesh (see Section 16.4.1).

2. Specify the physical details of the tunneling model (see Section 16.4.2 on page 15.307).

3. Adjust the physical and numeric parameters (see Section 16.4.3 on page 15.309).

16.4.1 Defining a nonlocal mesh

It is necessary to specify a special purpose ‘nonlocal’ mesh for each interface or contact for which you want
to use the nonlocal tunneling model. The nonlocal mesh connects the mesh vertices in the vicinity of the
contact or interface to the closest point on it. These connections form the tunneling paths for the carriers.

NOTE If the nonlocal tunneling model is switched on as described in Section 16.4.2, but the specification
for the nonlocal mesh as described here is omitted, DESSIS will construct a default nonlocal mesh.
The default nonlocal mesh feature provides compatibility with previous DESSIS versions.
However, it is unlikely to fit the needs of your particular situation. Therefore, do not rely on the
default nonlocal mesh.

m_M 1 1 m0 Effective mass in metal gate

m_ins 0.50 0.77 m0 Effective mass in insulator

m_s 0.19 0.16 m0 Effective mass in semiconductor

mc m_dos 0.32 0 m0 Semiconductor DOS effective mass

E_barrier 3.15 4.73 eV Semiconductor/insulator barrier (no image
force)

E0, E1, E2 E0, E1, E2 0.0 / 0.0 eV Energy nodes 0, 1, and 2 for pseudobarrier
calculation

Table 15.122 Coefficients for direct tunneling (defaults for oxide barrier on silicon)

Symbol Parameter name Electrons Holes Unit Description

mM

mox

mSi

EB
15.306

PART 15 DESSIS CHAPTER 16 TUNNELING
To control the construction of the nonlocal mesh, use the options of the keyword NonLocal. For basic use,
specify NonLocal in the contact-specific or interface-specific Math section, with the option Length. Length (given
in centimeters) is the maximum tunneling distance and, therefore, determines for which vertices DESSIS must
construct nonlocal mesh lines.

You must select Length to be at least as large as the thickness of the tunneling barrier. For example, with:

Math(Electrode="Gate") {
Nonlocal(Length=5e-7)

}

DESSIS constructs nonlocal mesh lines for vertices up to a distance of 5 nm from the Gate electrode.

NOTE The areas covered by the nonlocal meshes for different interfaces or contacts must not overlap.

The prohibition of overlap means that you must specify a nonlocal mesh only for one side of a tunneling
barrier. If on one side of the tunneling barrier there is a contact or a metal–nonmetal interface, specify the
mesh for this contact or interface. In other cases, it is recommended to specify the nonlocal mesh for the
interface on the side of the barrier from which the carriers will mainly tunnel away. For tunneling barriers
consisting of multiple layers, do not specify a nonlocal mesh for the interfaces internal to the barrier.

For more options to the keyword NonLocal, see Table 15.36 on page 15.84. For details about the nonlocal mesh
and its construction, see Section 2.10.7.4 on page 15.85.

NOTE The nonlocality of tunneling can increase dramatically the time that is needed to solve the linear
systems in the Newton iteration. To limit the speed degradation, it is important to choose a Length
that is not larger than that physically needed. If the performance is still unacceptable, optimize the
construction of the nonlocal mesh using the advanced options of NonLocal (see Table 15.36 and
Section 2.10.7.4).

16.4.2 Specifying the physical model

The physical aspects of the nonlocal tunneling model are activated and controlled in an electrode-specific or
interface-specific Physics section. DESSIS distinguishes two components of the tunneling current to an
interface or a contact: The tunneling current that goes to the conduction band at the interface or contact, and
the tunneling current that goes to the valence band. To switch on the former, specify the keyword
eBarrierTunneling. To switch on the latter, specify the keyword hBarrierTunneling. These keywords are options
to Recombination. For example:

Physics(Electrode="Gate"){
Recombination(eBarrierTunneling hBarrierTunneling)

}

switches on electron and hole tunneling to the electrode Gate, and:

Physics(MaterialInterface="Silicon/Oxide") {
Recombination(eBarrierTunneling(PeltierHeat))

}

switches on tunneling to the conduction band of silicon at all silicon-oxide interfaces. The option PeltierHeat
to eBarrierTunneling activates the Peltier heating of the tunneling particles.
 15.307

PART 15 DESSISCHAPTER 16 TUNNELING
NOTE The recommendations in Section 16.4.1 on page 15.306, on the proper choice of the contacts and
interfaces for which to construct a nonlocal mesh, also apply to the activation of the nonlocal
tunneling model.

By default, all tunneling to the conduction band at the interface or contact originates from the conduction band
in the bulk, (‘electron tunneling’), see (Eq. 15.362). Likewise, by default, the tunneling to the
valence band at the interface or contact originates from the valence band in the bulk, (that is, ‘hole
tunneling’).

In addition, DESSIS supports nonlocal band-to-band tunneling. To include the contributions by tunneling to
and from the valence band in the bulk in , specify eBarrierTunneling with the Band2Band option. Then,

, see (Eq. 15.362) and (Eq. 15.364). To include contributions by tunneling to and from the
conduction band in the bulk to , specify hBarrierTunneling with the Band2Band option. Then, .

Figure 15.66 illustrates the four contributions to the total tunneling current.

Figure 15.66 Various nonlocal tunneling current contributions

By default, DESSIS assumes a single-band parabolic band structure for the tunneling particles, uses a WKB-
based model for the tunneling probability, and ignores band-to-band tunneling and Peltier heating. Options to
eBarrierTunneling and hBarrierTunneling override the default behavior. For available options, see
Table 15.123. For a detailed discussion of the physics of the nonlocal tunneling model, see Section 16.4.5 on
page 15.310.

Table 15.123 Physical model options for eBarrierTunneling and hBarrierTunneling

Keyword Description

Band2Band Includes tunneling of valence band electrons to the conduction band and of conduction
band electrons to the valence band (default is -Band2Band) (see (Eq. 15.363)).

BandGap Allows tunneling into the band gap at the interface for which tunneling is specified (default
is -BandGap). This option provides backward compatibility with previous DESSIS versions.

PeltierHeat Includes the Peltier heating terms for tunneling carriers (default is -PeltierHeat)
(see (Eq. 15.367) and (Eq. 15.368)).

Schroedinger Activates a Schrödinger equation–based model for tunneling probabilities (see
Section 16.4.5.2) instead of the WKB-based model used by default (see Section 16.4.5.1).
This option does not work with the TwoBand or Band2Band option.

jC jCC=
jV jVV=

jC
jC jCC jCV+=

jV jV jVC jVV+=

Cj
CC

compute
always

V

j

compute
always

j
VV

VCCV

E

j

E

In
te

rfa
ce

eBarrierTunneling hBarrierTunneling

In
te

rfa
ce

Band2Band

Band2Band

In
te

rfa
ce

In
te

rfa
ce
15.308

PART 15 DESSIS CHAPTER 16 TUNNELING
16.4.3 Physical and numeric parameters

The model provides four distinct fit parameters. The dimensionless prefactors and (see (Eq. 15.361)
and (Eq. 15.363)) for tunneling to the conduction band or valence band are specific to the contact or interface
to which the tunneling model is applied. Therefore, specify them in the section of the parameter file specific
to this contact or interface. Both prefactors default to 1.

The effective tunneling masses for the conduction band and valence band (and , see (Eq. 15.354)
and (Eq. 15.355)) are properties of the materials that form the tunneling barrier. Hence, specify them in the
region- or material-specific sections of the parameter file.

DESSIS treats effective tunneling masses of value zero as undefined. If an effective tunneling mass for a
region is undefined, DESSIS uses the effective tunneling mass for the interface or contact for which tunneling
is activated. If this parameter is undefined also, DESSIS uses a built-in default of 0.1. By default, all effective
tunneling masses are zero (that is, undefined) and, therefore, DESSIS substitutes a value of 0.1 everywhere.
This feature ensures backward compatibility with earlier DESSIS versions where the effective tunneling
masses were interface or contact parameters.

For example:

MaterialInterface="Silicon/Oxide" {
BarrierTunneling {

g = 1 , 2
}

}
Material = "Oxide" {

BarrierTunneling {
mt = 0.42 , 1.0

}
}

changes the prefactors and for silicon-oxide interfaces to 1 and 2, respectively. The example also
changes the effective tunneling masses and in oxide to 0.42 and 1.

Specify numeric parameters for the model in the Math section specific to the interface or contact to which the
nonlocal tunneling model is applied. The EnergyResolution(NonLocal) parameter (given in eV) is a lower limit
for the energy step that DESSIS uses to perform integrations over band-edge energies.

If EnergyResolution(NonLocal) has a negative value, DESSIS approximates integrals like in (Eq. 15.369) by a
single energy value. Additionally, DESSIS changes other computational details to provide compatibility with
a numerically less accurate model implemented in an earlier DESSIS version.

Transmission Activates additional interface transmission coefficients according to (Eq. 15.359).

TwoBand Switches to a two-band dispersion relation (default is -TwoBand) (see (Eq. 15.358)).

Table 15.123 Physical model options for eBarrierTunneling and hBarrierTunneling

Keyword Description

gC gV

mC∗ mV∗

gC gV
mC∗ mV∗
 15.309

PART 15 DESSISCHAPTER 16 TUNNELING
The parameter Digits(Nonlocal) determines the relative accuracy (the number of valid decimal digits) to which
DESSIS computes the tunneling currents. The default value for Digits(Nonlocal) is 2, whereas for
EnergyResolution(NonLocal), it is 0.005. For example:

Math(Electrode="Gate") {
Digits(NonLocal)=3
EnergyResolution(NonLocal)=0.001
Nonlocal(Length=1e-7)

}

increases the energy resolution for tunneling at the Gate contact to 1 meV and the relative accuracy of the
tunneling current computation to three digits. Additionally, this example contains the nonlocal mesh
specification (see Section 16.4.1 on page 15.306 and Section 2.10.7.4 on page 15.85).

16.4.4 Visualizing nonlocal tunneling

To visualize nonlocal tunneling, specify the keyword eBarrierTunneling or hBarrierTunneling in the Plot section
(see Section 2.6 on page 15.52). The quantities plotted are in units of and represent the rate at which
electrons and holes are generated or disappear due to tunneling.

The rates are plotted vertexwise and are averaged over the semiconductor volume controlled by a vertex.
Therefore, they depend on the mesh spacing. This dependence can become particularly strong at interfaces
where the band edges change abruptly.

16.4.5 Physics of nonlocal tunneling model

The nonlocal tunneling model in DESSIS is based on the approach presented in the literature [128], but
provides significant enhancements over the model presented there.

16.4.5.1 WKB tunneling probability

The computation of the tunneling probabilities (for carriers tunneling to the conduction band at the
interface or contact) and (for tunneling to the valence band) is, by default, based on the WKB
approximation. The WKB approximation uses the local (imaginary) wave numbers of particles at position
and with energy :

(15.354)

(15.355)

Here, is an approximation based on a parabolic extension of the conduction band structure into the gap,
 is the effective conduction band tunneling mass, and is the conduction band energy. Likewise,

is an approximation based on the valence band structure, is the effective valence band tunneling mass,
and is the valence band energy. is the free electron mass and is the reduced Planck constant. Both
effective tunneling masses are adjustable parameters (see Section 16.4.3 on page 15.309).

cm 3– s 1–

ΓC
ΓV

r
ε

κC r ε,() 2m0mC∗ r() EC r() ε– Θ EC r() ε–[] h⁄=

κV r ε,() 2m0mV∗ r() ε E– V r() Θ ε E– V r()[] h⁄=

κC
mC∗ EC κV

mV∗
EV m0 h
15.310

PART 15 DESSIS CHAPTER 16 TUNNELING
Using the local wave numbers and the interface reflection coefficients and , the tunneling probability
between position and for a particle with energy can be written as:

(15.356)

and:

(15.357)

However, if the option TwoBand is specified to eBarrierTunneling (see Table 15.123 on page 15.308), DESSIS
replaces in (Eq. 15.356) with the two-band dispersion relation:

(15.358)

If the option TwoBand is specified to hBarrierTunneling, DESSIS replaces in (Eq. 15.357) with the two-band
relation (Eq. 15.358). Near the conduction and the valence band edge, the two-band dispersion relation
approaches the single band dispersion relations (Eq. 15.354) and (Eq. 15.355), and provides a smooth
interpolation in between. Figure 15.67 illustrates this.

Figure 15.67 Comparison of two-band and single-band dispersion relations

The two-band dispersion relation does not distinguish between electrons and holes. In particular, for the two-
band dispersion relation, .

The two-band dispersion relation is most useful when band-to-band tunneling is active (keyword Band2Band,
see Table 15.123). However, the two-band dispersion relation can be used independently from band-to-band
tunneling.

By default, the interface transmission coefficients and in (Eq. 15.356) and (Eq. 15.357) equal one.
If the Transmission option is specified to eBarrierTunneling [178]:

(15.359)

TCC TVV
0 r ε

ΓCC r ε,() TCC 0 ε,() 2 κC r′ ε,() r′d
0

r

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

TCC r ε,()exp=

ΓVV r ε,() TVV 0 ε,() 2 κV r′ ε,() r′d
0

r

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

TVV 0 ε,()exp=

κC

κ
κCκV

κC
2 κV

2+
------------------------=

κV

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Energy [eV]

0
1
2
3
4
5
6
7
8
9

W
av

e
N

um
be

r [
nm

 -
1]

κCκV

ECEV

mC
*= 0.5

mV
*= 5

ΓCC ΓVV=

TCC TVV

TCC x ε,()
v- x ε,() v- x ε,()2 16v+ x ε,()2+

v+ x ε,()2 v- x ε,()2+
---=
 15.311

PART 15 DESSISCHAPTER 16 TUNNELING
Here, denotes the velocity of a particle with energy on the side of the interface or contact at position
 where the particle moves freely in the conduction band, and denotes the imaginary velocity on the

side of the tunneling barrier (where the particle is in the gap). If the particle is free or in the barrier on both
sides, . Velocities are the derivatives of the particle energy with respect to the wave number,

. With the TwoBand option, [177] (see (Eq. 15.358)). If the Transmission option is
specified to hBarrierTunneling, analogous expressions hold for .

By default, the band-to-band tunneling probabilities and are also given by the expressions
(Eq. 15.356) and (Eq. 15.357), respectively. When the TwoBand and Transmission options are specified for
eBarrierTunneling to compute , in the expression for (see (Eq. 15.359)) is the velocity of the
particle in the valence band and computed from valence band parameters. The converse holds for when
those options are specified for hBarrierTunneling.

For metals and contacts, the band-edge energy to compute the interface transmission coefficients is obtained
from the FermiEnergy parameter of the BandGap parameter set for the metal or contact. The masses used to
compute the velocities are the tunneling effective masses for the metal or contact.

16.4.5.2 Schrödinger equation–based tunneling probability

In addition to the WKB-based models discussed in Section 16.4.5.1 on page 15.310, DESSIS can compute
tunneling probabilities based on the Schrödinger equation. For the Schrödinger equation–based model,
DESSIS computes the tunneling probability (or) by solving the 1D Schrödinger equation:

(15.360)

between the classical turning points that belong to tunneling energy . For , DESSIS uses the tunneling
mass mt (see Section 16.4.3 on page 15.309).

For boundary conditions, DESSIS assumes incident and reflected plane waves outside the barrier on one side,
and an evanescent plane wave on the other side. The energy for the plane waves is the greater of and

, where the carrier temperature and band-edge energy are taken at the point immediately outside
the barrier on the respective side.The masses outside the barrier are the tunneling masses mt that are valid
there.

16.4.5.3 Nonlocal tunneling current

For an interface located at 0 and a point at , the expression for the net conduction band electron
recombination rate due to tunneling to and from the conduction band at point immediately to the left of
the interface is:

(15.361)

where and are the (position-dependent) conduction band edge and electron Fermi energy, ,
 is the unit step function, is the effective Richardson constant (with the Richardson

v- x ε,() ε
x v+ x ε,()

TCC x ε,() 1=
v ε∂ hκC∂⁄= v+ ε∂ hκ∂⁄=

TVV

ΓCV ΓVC

ΓCV v- TCC r ε,()
ΓVC

ΓCC E() ΓVV E()

rd
d 1

m r()
----------- rd

d– EC r()+⎝ ⎠
⎛ ⎞ Ψ r() E r()=

E m r()

kBTn
E EC– Tn EC

r 0>
0–

RCC r() GCC r()– Θ ε EC 0-()–[]
ACC

*

qkB

ECd
rd

---------- r() Θ
ECd
rd

----------– r() Γ
CC

r ε,()

Tn r() 1
EFn

r() ε–

kBTn r()
------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Tn 0-() 1
EFn

0-() ε–

kBTn 0-()
---------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–log

×=

EC EFn
ε EC r()=

Θ ACC
* gC A0⋅= A0
15.312

PART 15 DESSIS CHAPTER 16 TUNNELING
constant for free electrons), is a fit parameter (see Section 16.4.3 on page 15.309), and is the electron
temperature. relates to the first term and to the second term in the second line of (Eq. 15.361).
is the tunneling probability (see (Eq. 15.356)). For contacts, metals, or in presence of the option BandGap, the
unit step function directly to the right of the equation sign in (Eq. 15.361) is omitted.

The current density of electrons that tunnel from the conduction band in the bulk to the conduction band at an
interface or a contact is the integral over the recombination rate (Eq. 15.361):

(15.362)

Here, denotes the location infinitesimally to the right of the interface.

The options for hBarrierTunneling and the expressions for the valence band to valence band tunneling current
density are analogous.

16.4.5.4 Band-to-band contributions to the nonlocal tunneling current

If DESSIS finds the option Band2Band to eBarrierTunneling (see Table 15.123 on page 15.308), the total current
that flows to the conduction band of the interface or contact includes also electrons that originate from the
valence band at position . The recombination rate of valence band electrons at (in other words, the
generation rate of holes at) is:

(15.363)

where and are the valence band edge and the hole Fermi energy, and .
The prefactor is a fit parameter, see Section 16.4.3. is the hole temperature and the other symbols have
the same meaning as in (Eq. 15.361). is the band-to-band tunneling probability discussed above.

Unless you use the Band2Band option to eBarrierTunneling (see Table 15.123), DESSIS assumes that
 vanishes. The modifications for contacts, metals, and the BandGap option are as for

(Eq. 15.361).

The current density of electrons that tunnel from the valence band of the bulk to the conduction band at an
interface or a contact is the integral over the recombination rate (Eq. 15.363):

(15.364)

For band-to-band tunneling processes, the energy of the tunneling particles often lies deep in the gap of the
barrier. The single-band dispersion relations that DESSIS uses by default (see (Eq. 15.354) and (Eq. 15.355))
are based on the band structure near the band edges, and may not be useful in this regime. The two-band
dispersion relation according (Eq. 15.358) is a better choice. To use the two-band dispersion relation, specify
the option TwoBand to eBarrierTunneling (see Table 15.123).

gC Tn
RCC GCC ΓCC

jCC q RCC r() GCC r()–[] rd

0+

∞

∫–=

0+

jVV

r r
r

RCV r() GCV r()– Θ ε EC 0-()–[]
ACV

*

qkB

EVd
rd

---------- r() Θ
EVd
rd

---------- r() Γ
CV

r ε,()

Tp r() 1
EFp

r() ε–

kBTp r()
------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Tn 0-() 1
EFn

0-() ε–

kBTn 0-()
---------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–log

×=

EV EFp
ε EV r()= ACV

* gC gV⋅ A0⋅=
gV Tp

ΓCV

RCV r() GCV r()–

jCV q RCV r() GCV r()–[] rd

0+

∞

∫–=
 15.313

PART 15 DESSISCHAPTER 16 TUNNELING
The options for hBarrierTunneling and the expressions for the conduction band to valence band tunneling
current density are analogous.

16.4.5.5 Carrier heating

In hydrodynamic simulations, carrier transport leads to energy transport and, therefore, to heating or cooling
of electrons and holes. The energy transport has a convective and a Peltier part. By default, DESSIS ignores
the Peltier part. To include the Peltier terms for the tunneling particles, specify the option PeltierHeat to
eBarrierTunneling or hBarrierTunneling (see Table 15.123 on page 15.308).

We approximate the convective part of the heat generation in the conduction and valence band at position
due to tunneling to and from the conduction band at the interface or contact as:

(15.365)

and:

(15.366)

By default, DESSIS neglects Peltier heating and uses , which corresponds to the three degrees of
freedom of the carriers. If Peltier heating is included in a simulation, the convective contribution due to one
degree of freedom is already contained in the Peltier heating term. Therefore, in this case, DESSIS uses

. The convective parts of the heat flux to the conduction band at the interface or contact, due to
tunneling from the conduction band and the valence band in the bulk, are the integrals of and

 over the positive -axis. The expressions for the convective part of the heat flux to the valence band
at the interface or contact are analogous.

If the computation of Peltier heating is activated (see Table 15.123), DESSIS computes additional heating
terms.

The Peltier part of the heat flux to the electron system in the interval from to due to tunneling to and
from the conduction band at the interface or contact is:

(15.367)

where, in the integrand of the right side, is the location where the energy level intersects the
conduction band edge. The integrand of (Eq. 15.367) vanishes everywhere except at abrupt jumps of the band
edge. For contacts, metals, and in presence of the BandGap option, the heat flux is given by (Eq. 15.367) with
the function removed from the integrand. The Peltier part of the heat flux to the electron system at the
interface or contact due to tunneling from the conduction band in the bulk obeys an equation similar to
(Eq. 15.367), but with a factor rather than a factor in the integrand, and with the
integration limits and .

jVC

r

Hconv,CC r() δ
2
---kB GCC r()Tn 0-() RCC r()Tn r()–[]=

Hconv,CV r() δ
2
---kB RCV r()Tp r() GCV r()Tn 0-()–[]=

δ 3=

δ 2=
Hconv,CC–

H– conv,CV r

r1 r2

HPelt,CC r() rd
r1

r2

∫ Θ EC r1() EC r2()–[]
ACC

*

qkB
------------ Θ ε EC 0-()–[] EC r() ε–()ΓCC r ε,()

Tn r() 1
EFn

r() ε–

kBTn r()
------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Tn 0-() 1
EFn

0-() ε–

kBTn 0-()
---------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–log

×

εd

EC r1()

EC r2()

∫=

r r ε()= ε

Θ

ε EC 0-()– EC r() ε–
r1 0+= r2 ∞=
15.314

PART 15 DESSIS CHAPTER 16 TUNNELING
When the Band2Band option is used (see Table 15.123 on page 15.308), DESSIS also takes into account the
band-to-band terms of the Peltier part of the heat generation. The contribution to the heat generation in the
hole system due to tunneling from the conduction band at the interface or contact is:

(15.368)

The Peltier part of the heat flux to the electron system at the interface or contact due to tunneling from the
valence band in the bulk obeys an equation similar to (Eq. 15.368), but with a factor rather than a
factor in the integrand, and with the integration limits and .

The expressions for , , and the respective heat fluxes are analogous.

16.4.5.6 Implementation consideration

DESSIS computes integrals such as the one in (Eq. 15.362) as a sum of contributions from single vertices.
Each vertex has a nonlocal mesh line (see Section 2.10.7 on page 15.83), and for each vertex, DESSIS
performs an integration on the interval between the two intersection points of the box and the nonlocal mesh
line of the vertex. To handle abrupt band edge jumps, DESSIS transforms the spatial integration to an
integration over the band edge energy, for example:

(15.369)

Here, and denote the intersections of the box and nonlocal line. The derivative that appears in
(Eq. 15.369) cancels with the derivatives that appear in (Eq. 15.361) and (Eq. 15.363). Hence, even for abrupt
band edge jumps, the integrand of (Eq. 15.369) remains finite.

HPelt,CV r() rd
r1

r2

∫ Θ EV r2() EV r1()–[]
ACV

*

qkB
------------ Θ ε EC 0-()–[] EV r() ε–()ΓCV r ε,()

Tp r() 1
EFp

r() ε–

kBTp r()
------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Tn 0-() 1
EFn

0-() ε–

kBTn 0-()
---------------------------exp+

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–log

×

εd

EV r1()

EV r2()

∫=

ε EC 0-()–
EV r() ε– r1 0+= r2 ∞=

HPelt,VV r() HPelt,VC r()

RCC r() GCC r()–[] rd
r1

r2

∫
dEC
dr

---------- ε()⎝ ⎠
⎛ ⎞

1–
RCC r ε()[] GCC r ε()[]–() εd

EC r1()

EC r2()

∫=

r1 r2
 15.315

PART 15 DESSIS CHAPTER 17 HOT CARRIER INJECTION MODELS
DESSIS

CHAPTER 17 Hot carrier injection models

17.1 Overview
Hot carrier injection is a mechanism for gate leakage. The effect is especially important for write operations
in EEPROMs. DESSIS provides two hot carrier injection models:

Classical Lucky electron injection (Maxwellian energy distribution)

Fiegna’s hot carrier injection (non-Maxwellian energy distribution)

To activate the hot carrier injection models for electrons (holes), use the eLucky (hLucky) or eFiegna (hFiegna)
options to the GateCurrent statement in an interface-specific Physics section. To activate the models for both
carrier types, use the Lucky or Fiegna options. The hot carrier injection models can be combined with all
tunneling models (see Chapter 16 on page 15.299). The meaning of a specification in the global Physics
section and the GateName keyword are the same as for the Fowler–Nordheim model (see Section 16.2 on
page 15.300).

Both hot carrier injection models are implemented as a postprocessing computation after each DESSIS
simulation point. These models specify some properties of semiconductor–insulator interfaces. The most
important parameter is the height of the Si–SiO2 barrier (). The height is a function of the insulator field

 and, at any point along the interface, it can be written as:

(15.370)

where is the zero field barrier height at the semiconductor–insulator interface. The second term in the
equation represents barrier lowering due to the image potential. The third term of the barrier lowering is due
to the tunneling processes. For the Si–SiO2 interface, is 2.59e-4 (Vcm)1/2. There is a large deviation in the
literature for the value of , so it can be considered a fitting parameter.

Also, all hot carrier models contain a probability of scattering in the image force potential well:

(15.371)

where is the scattering mean free path in the insulator and the distance is given as:

(15.372)

In the above expression, is the dielectric constant of the insulator.

All models below are considered only for electrons, but these expressions can also be applied to holes.

EB
Fins

EB

EB0 α Fins

1
2

β Fins

2
3

Fins 0<––

EB0 α Fins

1
2

β Fins

2
3

–– Vins Fins 0>+⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

EB0

α
β

Pins

Pins
x0

λins
---------–⎝ ⎠

⎛ ⎞exp=

λins x0

x0
q

16πεinsεoFins
-----------------------------------=

εins
 15.317

PART 15 DESSISCHAPTER 17 HOT CARRIER INJECTION MODELS
All of the hot carrier injection models below have an effective electric field as a parameter.

In DESSIS, there are three possibilities to calculate the effective field:

With the electric field parallel to the carrier flow (switched on by the keyword Eparallel, which is default
for hot carrier currents).

With recomputation of the carrier temperature of the hydrodynamic simulation (switched on by the
keyword CarrierTempDrive).

With a simplified approach (compared to the second method): The drift-diffusion model is used for the
device simulation, and carrier temperature is estimated as the solution of the simplified and linearized
energy balance equation. As this is a postprocessing calculation, the keyword CarrierTempPost activates
this option.

These keywords are parameters of the model keywords. For example, the Lucky electron model looks like
eLucky(CarrierTempDrive). The user, however, must remember that if the model includes the keyword
CarrierTempDrive, Hydro and a carrier temperature calculation must be specified in the Physics section.

17.2 Classical Lucky electron injection
The classical total Lucky electron current from an interface to a gate contact can be written as [115]:

(15.373)

where is the current density at any point (x,y) in the device, is the probability that the electron will
travel a distance to the interface without losing any energy, is the probability that the electron has energy
between and , is the probability of scattering in the image force potential well ((Eq. 15.371)),
and is the probability that the electron will be redirected. These probabilities are given by the expressions:

(15.374)

(15.375)

(15.376)

where is the scattering mean free path in the semiconductor, is redirection mean free path, is the
effective electric field considered in Section 17.1 on page 15.317. EB0 is the height of the
semiconductor–insulator barrier. The model coefficients and their defaults are given in Table 15.124 on
page 15.319. They can be changed in the parameter file in the section:

LuckyModel { ... }

Feff

Ig Jn x y,()PsPins PεPr εd
EB

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

xd yd∫∫=

Jn x y,() Ps
y Pε

ε ε dε+ Pins
Pr

Pr ε() 1
2λr
-------- 1

EB0
ε

---------–⎝ ⎠
⎛ ⎞=

Ps y() y
λ
---–⎝ ⎠

⎛ ⎞exp=

Pε ε() 1
λFeff
------------ ε

λFeff
------------–⎝ ⎠

⎛ ⎞ dεexp=

λ λr Feff
15.318

PART 15 DESSIS CHAPTER 17 HOT CARRIER INJECTION MODELS
17.3 Fiegna hot carrier injection
The total hot carrier injection current according to the Fiegna model [91] can be written as:

(15.377)

where ε is the electron energy, EB0 is the height of the semiconductor–insulator barrier, v⊥ is the velocity
normal to the interface, f(ε) is the electron energy distribution, g(ε) is the density of states of the electrons,

 is the probability of scattering in the image force potential well as described by (Eq. 15.371), and is
an integral along the semiconductor–insulator interface.

The following expression for the electron energy distribution was proposed for a parabolic and an isotropic
band structure, and equilibrium between lattice and electrons:

(15.378)

Therefore, the gate current can be rewritten as:

(15.379)

where n is the electron density and Feff is an effective field considered in Section 17.1 on page 15.317. The
coefficients and their defaults are given in Table 15.125.

Table 15.124 Default coefficients for Lucky electron model

Symbol Parameter name
(Electrons)

Default value
(Electrons)

Parameter name
(Holes)

Default value
(Holes)

Unit

eLsem 8.9 × 10–7 hLsem 1.0 × 10–7 cm

eLins 3.2 × 10–7 hLins 3.2 × 10–7 cm

eLsemR 6.2 × 10–6 hLsemR 6.2 × 10–6 cm

eBar0 3.1 hBar0 4.7 eV

eBL12 2.6 × 10–4 hBL12 2.6 × 10–4

eBL23 3.0 × 10–5 hBL23 3.0 × 10–5

Table 15.125 Coefficients for Fiegna model

A [cm/s/eV2.5]
 []

 [cm] [eV]
[] []

Electrons 4.87 × 102 1.3 × 108 3.2 × 10–7 3.1 2.6 × 10–4 1.5 × 10–5

Holes 4.87 × 102 1.3 × 108 3.2 × 10–7 4.7 2.6 × 10–4 1.5 × 10–5

λ

λins

λr

EB0

α V cm⋅()1 2⁄

β V cm2⋅()
1 3⁄

Ig q Pins v⊥ ε()f ε()g ε() εd
EB0

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

sd∫=

Pins sd∫

f ε() A χ ε3

Feff
1.5

---------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

Ig q A
3χ
------ Pins∫ n

Feff
3 2⁄

EB

-----------e

χEB
3

Feff
3 2⁄

-----------–

ds=

χ V
cm eV⋅
------------------⎝ ⎠

⎛ ⎞ 1.5 λins EB0 α
V cm⋅()1 2⁄

β
V cm2⋅()

1 3⁄
 15.319

PART 15 DESSISCHAPTER 17 HOT CARRIER INJECTION MODELS
The above coefficients can be changed in the parameter file in the FiegnaModel section. Coefficients A, , ,
, , and correspond to eA, eChi, eLins, eBar0, eBL12, and eBL23 for electrons and hA, hChi, hLins, hBar0,

hBL12, and hBL23 for holes in the parameter file.

χ λins
EB0 α β
15.320

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
DESSIS

CHAPTER 18 Heterostructure device simulation

18.1 Overview
DESSIS supports the simulation of devices containing arbitrary materials and heterojunctions. In addition, it
is possible to use different physical models and different parameter sets in different regions and materials of
the device. This is available for both homogenous and heterojunction devices as described in Section 2.5.3 on
page 15.47. To use the default material parameters and the same set of models for all regions and materials,
special specifications are not required for the input file. The program automatically uses appropriate
parameters for all materials defined in the geometry file.

18.2 Physics models and differential equations
Most of the models described in this manual can be applied to both homogenous semiconductors and
heterostructures. Conversely, some models are applicable only for heteromaterials. In this section, the most
important models are described:

Transport equations and energy balance equations contain terms such as , , and , which
are equal to 0 for homogeneous structures (the term can be nonzero if the band-gap narrowing effect
is taken into account), but are nonzero and crucial if a heterostructure is simulated.

Thermionic emission models at abrupt heterointerfaces (see Section 18.10 on page 15.330).

Tunneling at heterointerfaces (see Chapter 16 on page 15.299).

18.3 Mole fraction materials
DESSIS reads the file Molefraction.txt to determine mole fraction–dependent materials. The following search
strategy is used to locate this file:

1. DESSIS looks for Molefraction.txt in the current working directory.

2. DESSIS checks if the environment variable DESSISDB is defined. This variable should contain a directory
or a list of directories separated by spaces or colons1, for example:

DESSISDB="/home/usr/lib /home/tcad/lib"

DESSIS scans the directories in the given order until Molefraction.txt is found.

NOTE The environment variable DESSISDB is also used to locate libraries of material parameters
(see Section 2.13.5 on page 15.92).

1. On Windows NT, colons can be part of a directory name. Therefore, only spaces can be used to separate directories.

∇χ ∇Eg ∇ me()ln
∇Eg
 15.321

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
3. If the environment variables ISEROOT and ISERELEASE are defined, DESSIS tries to read the file:

$ISEROOT/tcad/$ISERELEASE/lib/dessis/MaterialDB/Molefraction.txt

4. If these previous strategies are unsuccessful, DESSIS uses the built-in defaults that follow.

The default Molefraction.txt file has the following content:

Ge(x)Si(1-x)
SiliconGermanium (x=0) = Silicon
SiliconGermanium (x=1) = Germanium

Al(x)Ga(1-x)As
AlGaAs (x=0) = GaAs
AlGaAs (x=1) = AlAs

In(1-x)Al(x)As
InAlAs (x=0) = InAs
InAlAs (x=1) = AlAs

In(1-x)Ga(x)As
InGaAs (x=0) = InAs
InGaAs (x=1) = GaAs

Ga(x)In(1-x)P
GaInP (x=0) = InP
GaInP (x=1) = GaP

InAs(x)P(1-x)
InAsP (x=0) = InP
InAsP (x=1) = InAs

GaAs(x)P(1-x)
GaAsP (x=0) = GaP
GaAsP (x=1) = GaAs

Hg(1-x)Cd(x)Te
HgCdTe (x=0) = HgTe
HgCdTe (x=1) = CdTe

In(1-x)Ga(x)As(y)P(1-y)
InGaAsP (x=0, y=0) = InP
InGaAsP (x=1, y=0) = GaP
InGaAsP (x=1, y=1) = GaAs
InGaAsP (x=0, y=1) = InAs

In order to add a new mole fraction–dependent material, the material (and its side and corner materials) must
first be added to datexcodes.txt. Afterwards, Molefraction.txt can be updated.

Quaternary alloys are specified by their corner materials in the file Molefraction.txt. For example, the 2:2
III–V quaternary alloy In1-xGaxAsyP1-y is given by:

InGaAsP (x=0, y=0) = InP
InGaAsP (x=1, y=0) = GaP
InGaAsP (x=1, y=1) = GaAs
InGaAsP (x=0, y=1) = InAs

and the 3:1 III–V quaternary alloy AlxGayIn1-x-yAs is defined by:

AlGaInAs (x=0, y=0) = InAs
AlGaInAs (x=1, y=0) = AlAs
AlGaInAs (x=0, y=1) = GaAs
15.322

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
When the corner materials of an alloy have been specified, DESSIS determines the corresponding side
materials automatically. In the case of In1-xGaxAsyP1-y , the four side materials are InAsxP1-x , GaAsxP1-x ,
GaxIn1-xP, and In1-xGaxAs. Similarly, for AlxGayIn1-x-yAs, there are the three side materials In1-xAlxAs,
AlxGa1-xAs, and In1-xGaxAs.

NOTE All side and corner materials must appear in datexcodes.txt, and their mole dependencies must be
specified in Molefraction.txt (see Section 2.5.4 on page 15.48).

NOTE If it is unable to parse the file Molefraction.txt, DESSIS reverts to the defaults shown above. This
may lead to unexpected simulation results.

18.4 Mole fraction specification
In DESSIS, the mole fraction of a compound semiconductor or insulator is defined in two ways:

In the data file (<name>.dat) of the device structure

Internally, in the Physics section of the des.cmd input file

If the mole fraction is loaded from the .dat file and an internal mole fraction specification is also applied, the
loaded mole fraction values are overwritten in the regions specified in the MoleFraction sections of the input
file. The internal mole fraction distribution is described in the MoleFraction statement inside the Physics
section:

Physics { ...
MoleFraction(<MoleFraction parameters>)

}

The parameters for the mole fraction specification are given in Table 15.126 and grading options are described
in Table 15.127 on page 15.324.

Table 15.126 Parameters for mole fraction specification

Option Description

xFraction=<value> Specifies a constant value of xMoleFraction.

yFraction=<value> Specifies a constant value of yMoleFraction.

RegionName = <reg_name> or
RegionName = [<reg_name1>

<reg_name2>...]

Defines a region or a set of regions where the mole fraction specification will
take affect.

GrDistance=<value>: Specifies the distance [µm] in the direction normal to the boundaries of the
specified region (or specified set of regions), where linear interpolation of mole
fraction(s) from the specified constant value to 0 occurs (see below for a more
sophisticated grading specification).

Grading(
(<grading_option1>)
(<grading_option2>)
...)

Another option to specify grading; allows a nonzero mole fraction and different
distance of grading from different parts of the boundaries.
 15.323

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
The specification of an xFraction is mandatory in the MoleFraction statement for binary or ternary compounds;
a yFraction is also mandatory for quaternary materials. If the MoleFraction statement is inside a default Physics
section, the RegionName must be specified. If it is inside a region-specific Physics section, by default, it is
applied only to that region. If a MoleFraction statement is inside a material-specific Physics section and the
RegionName is not specified, this composition is applied to all regions containing the specified material. If
RegionName is specified inside a region-specific and material-specific Physics section, this specification is used
instead of the default regions.

NOTE Similar to all statements, only one MoleFraction statement is allowed inside each Physics section.
By default, grading is not included.

An example of a mole fraction specification is:

Physics{
MoleFraction(RegionName = ["Region.3" "Region.4"]

xFraction=0.8
yFraction=0.7
Grading(

(xFraction=0.3 GrDistance=1
RegionInterface=("Region.0" "Region.3"))

(xFraction=0.2 yFraction=0.1 GrDistance=1
RegionInterface=("Region.0" "Region.5"))

(yFraction=0.4 GrDistance=1
RegionInterface=("Region.0" "Region.3"))

)
)

}
Physics (Region = "Region.6") {

MoleFraction(xFraction=0.1 yFraction=0.7 GrDistance=0.01)
}

18.5 Composition-dependent models
The following model parameter sets provide mole fraction dependencies. All models are available for
compound semiconductors only, except where otherwise noted:

Epsilon (also available for compound insulators)

LatticeHeatCapacity (also available for compound insulators)

Kappa (lattice thermal conductivity, also available for compound insulators)

Table 15.127 Grading options in mole fraction specification

Option Description

xFraction=<value> Specifies the boundary xMoleFraction at the selected interface.

yFraction=<value> Specifies the boundary yMoleFraction at the selected interface.

GrDistance = <value>: Specifies the distance [µm] in the direction normal to the boundaries of the
specified interface, where linear interpolation of mole fraction(s) from the
constant value to the specified boundary mole fraction(s) occurs.

RegionInterface =
(<regionname1> <regionname2>)

Defines an interface where this grading option is applied. Applied to all
boundaries by default.
15.324

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
Bandgap

eDOSMass

hDOSMass

ConstantMobility

DopingDependence (in the mobility models)

HighFieldDependence (in the mobility models)

Enormal (in the mobility models)

ToCurrentEnormal (in the mobility models)

PhuMob (in the mobility models)

vanOverstraetendeMan (impact ionization model)

SchroedingerParameters

AbsorptionCoefficient

QWStrain (see Section 28.7.1 on page 15.452)

RefractiveIndex (also available for compound insulators)

DESSIS supports the suppression of the mole fraction dependence of a given model and the use of a fixed
(mole fraction–independent) parameter set instead. If this is required, specify the (fixed) values for the
parameter (for example, Eg0=1.53) and delete all other coefficients associated with the interpolation over the
mole fraction (for example, Eg0(1), B(Eg0(1)), and C(Eg0(1))) from this section of the parameter file. It is not
necessary to set them to zero individually.

NOTE When specifying a fixed value for one parameter of a given model, all other parameters for the
same model must be fixed.

In summary, if the mole fraction dependence of a given model is suppressed, the parameter specification for
this model is performed in exactly the same manner as for mole fraction–independent material.

18.6 Ternary semiconductor composition
To illustrate a calculation of mole fraction–dependent parameter values for ternary materials, consider one
mole interval from xi–1 to xi. For mole fraction value (x) of this interval, to compute the parameter value (P),
DESSIS uses the expression:

(15.380)

P Pi 1– A ∆x Bi ∆x2 Ci ∆x3⋅+⋅+⋅+=

A
∆Pi
∆xi
--------- Bi ∆xi Ci– ∆xi

2⋅⋅–=

∆Pi Pi Pi 1––=

∆xi xi xi 1––=

∆x x xi 1––=
 15.325

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
where Pi, Bi, Ci, xi are values defined in the parameter file for each mole fraction interval, x0=0, P0 is the
parameter value (at x=0) specified using the same manner as for mole fraction–independent material (for
example, Eg0=1.53). As in the formulas above, the user is not required to specify coefficient A of the
polynomial because it is easily recomputed inside DESSIS.

In a case of undefined parameters (these can be listed by printing the parameter file), DESSIS uses linear
interpolation using two parameter values of side materials (for x = 0 and x = 1):

 (15.381)

Figure 15.68 Parameter value as a function of mole fraction

Example 1: Electron effective mass specification

This example shows the specification of the parameters that define the electron effective mass, in the default
section of the parameter file, for the material GaAs:

eDOSMass
{

* For effective mass specification Formula1 (me approximation):
* or Formula2 (Nc300) can be used:

Formula= 1 # [1]
* Formula1:
* me/m0 = [(6 * mt)^2 * ml]^(1/3) + mm
* mt = a[Eg(0)/Eg(T)]
* Nc(T) = 2(2pi*kB/h_Planck^2*me*T)^3/2 = 2.540e19 ((me/m0)*T)^3/2

a = 0.1905 # [1]
ml = 0.9163 # [1]
mm = 0.0000e+00 # [1]

* Formula2:
* me/m0 = (Nc300/2.540e19)^2/3
* Nc(T) = Nc300 * (T/300)^3/2

Nc300 = 2.8000e+19 # [cm-3]
}

The user can select between Formula1 and Formula2. By default, one value (Formula=...) is chosen for each
material. If necessary, the formula is also changeable in the parameter file.

For mole fraction–dependent materials, certain model parameters are specified as a function of the mole
fraction. The mole fraction dependence is implemented as a piecewise polynomial approximation, up to the
third order.

P 1 x–()Px0 xPx1+=

10

Parameter Value

xi–1 xi

Pi

Pi–1

Mole Fraction
15.326

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
Example 2: Specifying dielectric permittivity

This example provides the specification of dielectric permittivity for AlxGa1–xAs:

Epsilon
{ * Ratio of the permittivities of material and vacuum

epsilon = 13.18 # [1]
* Mole fraction dependent model.
* The linear interpolation is used on interval [0,1].

epsilon(1) = 10.06 # [1]
}

A linear interpolation is used for the dielectric permittivity, where epsilon specifies the value for the mole
fraction x=0, and epsilon(1) specifies the value for x=1.

NOTE Although this example uses a linear interpolation over the whole interval [0,1], a higher order
polynomial can be selected by specifying the appropriate parameters. Additional mole fraction
intervals can also be introduced as shown in the next example.

Example 3: Specifying band gap

This example provides a specification of the band gap parameters for AlxGa1–xAs. A polynomial
approximation, up to the third degree, describes the mole fraction–dependent band parameters on every mole
fraction interval. In the previous example, two intervals were used, namely, [Xmax(0), Xmax(1)] and
[Xmax(1), Xmax(2)]. The parameters Eg0, Chi0, ... correspond to the values for x=Xmax(0); while the parameters
Eg0(1), Chi0(1), ... correspond to the values for x=Xmax(1) and, finally, Eg0(2), Chi0(2), ... correspond to the
values for x=Xmax(2). The coefficients A and F of the polynomial:

(15.382)

are determined from the values at both ends of the intervals, while the coefficients B and C must be specified
explicitly. The user can introduce additional intervals:

Bandgap *temperature dependent*
{ * Eg = Eg0 - alpha T^2 / (beta + T) + alpha Tpar^2 / (beta + Tpar)

* Eg0 can be overwritten in below Band Gap Narrowing models,
* if any of the BGN model is chosen in physics section.
* Parameter 'Tpar' specifies the value of lattice
* temperature, at which parameters below are defined.

Eg0 = 1.42248 # [eV]
Chi0 = 4.11826 # [eV]
alpha = 5.4050e-04 # [eV K^-1]
beta = 2.0400e+02 # [K]
Tpar = 3.0000e+02 # [K]

* Mole fraction dependent model.
* The following interpolation polynomial can be used on interval [Xmin(I),Xmax(I)]:
* F(X) = F(I-1)+A(I)*(X-Xmin(I))+B(I)*(X-Xmin(I))^2+C(I)*(X-Xmin(I))^3,
* where Xmax(I), F(I), B(I), C(I) are defined below for each interval.
* A(I) is calculated for a boundary condition F(Xmax(I)) = F(I).
* Above parameters define values at the following mole fraction:

Xmax(0) = 0.0000e+00 # [1]
* Definition of mole fraction intervals, parameters, and coefficients:

Xmax(1) = 0.45 # [1]
Eg0(1) = 1.98515 # [eV]
B(Eg0(1)) = 0.0000e+00 # [eV]
C(Eg0(1)) = 0.0000e+00 # [eV]

F A X Xmin I()–() B X Xmin I()–()2 C X Xmin I()–()3+ + +
 15.327

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
Chi0(1) = 3.575 # [eV]
B(Chi0(1)) = 0.0000e+00 # [eV]
C(Chi0(1)) = 0.0000e+00 # [eV]
alpha(1) = 4.7727e-04 # [eV K^-1]
B(alpha(1)) = 0.0000e+00 # [eV K^-1]
C(alpha(1)) = 0.0000e+00 # [eV K^-1]
beta(1) = 1.1220e+02 # [K]
B(beta(1)) = 0.0000e+00 # [K]
C(beta(1)) = 0.0000e+00 # [K]
Xmax(2) = 1 # [1]
Eg0(2) = 2.23 # [eV]
B(Eg0(2)) = 0.143 # [eV]
C(Eg0(2)) = 0.0000e+00 # [eV]
Chi0(2) = 3.5 # [eV]
B(Chi0(2)) = 0.0000e+00 # [eV]
C(Chi0(2)) = 0.0000e+00 # [eV]
alpha(2) = 4.0000e-04 # [eV K^-1]
B(alpha(2)) = 0.0000e+00 # [eV K^-1]
C(alpha(2)) = 0.0000e+00 # [eV K^-1]
beta(2) = 0.0000e+00 # [K]
B(beta(2)) = 0.0000e+00 # [K]
C(beta(2)) = 0.0000e+00 # [K]

}

18.7 Quaternary semiconductor composition
DESSIS supports 1:3, 2:2, and 3:1 III–V quaternary alloys. A 1:3 III–V quaternary alloy is given by:

(15.383)

where is a group III element, and , , and are group V elements (usually listed according to increasing
atomic number). Conversely, a 3:1 III-V quaternary alloy can be described as:

(15.384)

where , , and are group III elements, and is a group V element. The composition variables , ,
and are nonnegative, and they are constrained by:

(15.385)

An example would be AlxGayIn1-x-yAs, where corresponds to .

DESSIS uses the symmetric interpolation scheme proposed by Williams et al. [157] to compute the parameter
value of a 3:1 III–V quaternary alloy as a weighted sum of the corresponding ternary values:

(15.386)

where:

(15.387)

ABxCyDz

A B C D

AxByCzD

A B C D x y
z

x y z+ + 1=

1 x– y– z

P AxByCzD()

P AxByCzD()
xyP A1 u– BuD() yzP B1 v– CvD() xzP A1 w– CwD()+ +

xy yz xz+ +
--=

u 1 x– y+
2

-------------------- v, 1 y– z+
2

-------------------- w, 1 x– z+
2

--------------------= = =
15.328

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
The parameter values for 1:3 III–V quaternary alloys are computed similarly. A general 2:2
III–V quaternary alloy is given by:

(15.388)

where and are group III elements, and and are group V elements. The composition variables and
 satisfy the inequalities and . As an example, we mention the material In1-xGaxAsyP1-y .

The parameters of a 2:2 III–V quaternary alloy are determined by interpolation between
the four ternary side materials:

(15.389)

The interpolation of model parameters for quaternary alloys is also discussed in the literature [159]–[162]. A
comprehensive survey paper is available [158].

18.8 Default model parameters for compound
semiconductors

It is important to understand how the default values for different physical models in different materials are
determined. The approach used in DESSIS is summarized here. For example, consider the material Material.
Assume that no default parameters are defined for this material and a given physical model Model.

In this case, use the command dessis -P:Material to see for which models specific default parameters are
predefined in the material Material:

1. Silicon parameters are used, by default, in the model Model if the material Material is mole fraction
independent.

2. If Material is a compound material and dependent on the mole fraction x, the default values of the
parameters for the model Model are determined by a linear interpolation between the values of the
respective parameters of the corresponding ‘pure’ materials (that is, materials corresponding to x = 0 and
x = 1). For example, for AlxGa1–xAs, values of the parameters of GaAs and AlAs are used in the
interpolation formula.

3. If Material is a quaternary material and dependent on x and y, an interpolation formula, which is based on
the values of all corresponding ternary materials, is used. For example, for InGaAsP, the values of four
materials (InAsP, GaAsP, GaInP, and InGaAs) are used in the interpolation procedure to obtain the default
values of the parameters.

Additional details for each model and specific materials are found in the comments of the parameter file.

Sometimes, it is difficult to analyze such a parameter file to obtain a real value of physical models (for
example, the band gap) for certain composition mole fraction. By using the command dessis -M

<inputfile.cmd>, DESSIS creates a dessis-M.par file that will contain regionwise parameters with only constant
values (instead of the polynomial coefficients) for regions where the composition mole fraction is constant.
For regions where the composition is not a constant, DESSIS prints the default material parameters.

P ABxCyDz()

AxB1 x– CyD1 y–

A B C D x
y 0 x 1≤ ≤ 0 y 1≤ ≤

P AxB1 x– CyD1 y–()

P AxB1 x– CyD1 y–()
x 1 x–() yP AxB1 x– C() 1 y–()P AxB1 x– D()+() y 1 y–() xP ACyD1 y–() 1 x–()P BCyD1 y–()+()+

x 1 x–() y 1 y–()+
--=
 15.329

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
18.9 Abrupt and graded heterojunctions
DESSIS is designed to support both abrupt and graded heterojunctions, with an arbitrary mole fraction
distribution. As previously described, a piecewise polynomial interpolation is used for interpolation of
parameters of the physical models over the mole fraction x. In the case of abrupt heterojunctions, DESSIS
treats discontinuous datasets properly by introducing double points at the heterointerfaces.

This option is switched on automatically when thermionic emission (see Section 18.10) or tunneling models
(see Chapter 16 on page 15.299) are selected, or when the keyword HeteroInterface is specified in the Physics
section of a selected heterointerface. By default, this double points option is switched off.

NOTE The keyword HeteroInterface provides the equilibrium conditions for the double points. It gives
quasi-Fermi potential and a simple, exponential relation between concentrations, but it does not
follow real physics at the interface for high current regimes. The HeteroInterface option without the
thermionic emission and tunneling models can be used for experimental simulations only.

To illustrate the double points option, Figure 15.69 shows a distribution of the conduction band near an abrupt
heterointerface. The wide line shows a case without double points, which requires a very fine mesh to avoid
a large barrier error (δEC).

Figure 15.69 Heterostructure barrier representation with and without double points

18.10 Thermionic emission current
Conventional transport equations cease to be valid at a heterojunction interface, and currents and energy
fluxes at the abrupt interface between two materials are better defined by the interface condition at the
heterojunction. In defining thermionic current and thermionic energy flux, DESSIS follows the
literature [124].

18.10.1 Syntax and implementation

To activate the thermionic current model for electrons at a region-interface (material-interface)
heterojunction, the keyword eThermionic must be specified in the appropriate region-interface (material-
interface) Physics section, for example:

Physics(MaterialInterface="GaAs/AlGaAs") {
eThermionic }

EC1

Dc

EC2

δEC

Mesh Nodes
15.330

PART 15 DESSIS CHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
Similarly, to activate thermionic current for holes, the keyword hThermionic must be specified. The keyword
Thermionic activates the thermionic emission model for both electrons and holes. If any of these keywords is
specified in the Physics section for a region Region.0, where Region.0 is a semiconductor, the appropriate model
will be applied to each Region.0–semiconductor interface. For small particle and energy fluxes across the
interface, the condition of continuous quasi-Fermi level and carrier temperature is sometimes used. This
option is activated by the keyword Heterointerface in the appropriate Physics section.

NOTE In realistic transistors, such an approach may lead to unsatisfactory results [125].

The user can change the default values of the coefficients of the thermionic emission model in the
ThermionicEmission section of the parameter file:

ThermionicEmission {
A = 2, 2 # [1]
B = 4, 4 # [1]
C = 1, 1 # [1]

}

18.10.2 Model description

Assume that at the heterointerface between materials 1 and 2, the conduction edge jump is positive, that is
, where (that is,). If and are the electron current density and

electron energy flux density entering material 2, and and are the electron current density and
electron energy flux density leaving material 1, the interface condition can be written as:

(15.390)

(15.391)

(15.392)

(15.393)

where the ‘emission velocities’ are defined as:

(15.394)

and by default, the coefficients in the above equations are a=2, b=4, and c=1, which corresponds to the
literature [124]. Similar equations for the hole thermionic current and hole thermionic energy flux are
presented below:

(15.395)

(15.396)

∆EC 0> ∆EC EC2 EC1–= χ1 χ2> Jn 2, Sn 2,
Jn 1, Sn 1,

Jn 2, Jn 1,=

Jn 2, aq vn 2, n2
m2
m1
------vn 1, n1

∆EC
kBTe 1,
----------------–⎝ ⎠

⎛ ⎞exp–=

Sn 2, Sn 1,
c
q
---Jn 2, ∆EC+=

Sn 2, b–() vn 2, n2kBTe 2,
m2
m1
------vn 1, n1kBTe 1,

∆EC
kBTe 1,
----------------–⎝ ⎠

⎛ ⎞exp–=

vn i,
kBTe i,
2πmi
---------------=

Jp 2, Jp 1,=

Jp 2, ah–()q vp 2, p2
m2
m1
------vp 1, p1

∆EV
kBTh 1,
----------------⎝ ⎠

⎛ ⎞exp–=
 15.331

PART 15 DESSISCHAPTER 18 HETEROSTRUCTURE DEVICE SIMULATION
(15.397)

(15.398)

(15.399)

An equivalent set of equations are used if Fermi carrier statistics are selected.

Sp 2, Sp 1,
ch
q
-----Jp 2, ∆EV+=

Sp 2, bh–() vp 2, p2kBTh 2,
m2
m1
------vp 1, n1kBTh 1,

∆EV
kBTh 1,
----------------⎝ ⎠

⎛ ⎞exp–=

vp i,
kBTh i,
2πmi
---------------=
15.332

PART 15 DESSIS CHAPTER 19 ENERGY-DEPENDENT PARAMETERS
DESSIS

CHAPTER 19 Energy-dependent parameters

19.1 Overview
DESSIS provides the possibility to specify some parameters as a ratio of two irrational polynomials. The
general form of such ratio is written as:

(15.400)

where subscripts n and d corresponds to numerator and denominator, respectively; f is a factor, w is a primary
variable, and s is an additional variable. It is possible to use (Eq. 15.400) with different coefficients for
different intervals k defined by the segment . By default, it is assumed that only one interval k=0
with the boundaries [0,] exists, and function G is constant, that is, , , , .
Factor f is defined accordingly for each model.

A simplified syntax is introduced to define the piecewise linear function G. The boundaries of the intervals
and the value of factor must be specified, which means the value of G is at the right side of the interval. All
other coefficients should not be specified to use this possibility. As there are some peculiarities in parameter
specification and model activation, the specific models for which the approximation by (Eq. 15.400) is
supported are described here separately.

19.2 Energy-dependent energy relaxation time
For the specification of the energy relaxation time, the following modification of (Eq. 15.400) is used:

(15.401)

where for electrons and for holes. The factor f in (Eq. 15.400) is defined by
, which can be specified in the parameter file by the values (tau_w)_ele and (tau_w)_hol.

To activate the specification of the energy-dependent energy relaxation time, the parameter Formula(tau_w)_ele
(or Formula(tau_w)_hol for holes) must be set to 2. The following example shows the energy relaxation time
section of the parameter file and provides a short description of the syntax:

EnergyRelaxationTime
{ * Energy relaxation times in picoseconds

(tau_w)_ele = 0.3 # [ps]
(tau_w)_hol = 0.25 # [ps]

* Below is the example of energy relaxation time approximation
* by the ratio of two irrational polynomials.
* If Wmax(interval-1) < Wc < Wmax(interval), then:
* tau_w = (tau_w)*(Numerator^Gn)/(Denominator^Gd),
* where (Numerator or Denominator)=SIGMA[A(i)(Wc^P(i))],
* Wc=1.5(k*Tcar)/q (in eV).

G w s,() f
aiw

pi∑() dns+()
gn

ajw
pj∑() dds+()

gd
--=

wk 1–
max wk

max,[]
∞ a0 0= ai 0= p d 0= = g 1=

τ w() τw
0 aiw

pi∑()()
gn

ajw
pj∑()()

gd
----------------------------------=

w 1.5 kTn() q⁄= w kTp() q⁄=
τw

0

 15.333

PART 15 DESSISCHAPTER 19 ENERGY-DEPENDENT PARAMETERS
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.
 * The option can be activated by specifying appropriate Formula equals 2
 * Formula(tau_w)_ele = 2
 * Formula(tau_w)_hol = 2
 * Wmax(interval)_ele =
 * (tau_w)_ele(interval) =
 * Numerator(interval)_ele{
 * A(0) =
 * P(0) =
 * A(1) =
 * P(1) =
 * G =
 * }
 * Denominator(interval)_ele{
 * A(0) =
 * P(0) =
 * G =
 * }
 * Wmax(interval)_hol =
 * (tau_w)_hol(interval) =

(tau_w)_ele = 0.3 # [ps]
(tau_w)_hol = 0.25 # [ps]

 Formula(tau_w)_ele = 2
 Numerator(0)_ele{
 A(0) = 0.048200
 P(0) = 0.00
 A(1) = 1.00
 P(1) = 3.500
 A(2) = 0.0500
 P(2) = 2.500
 A(3) = 0.0018100
 P(3) = 1.00
 }
 Denominator(0)_ele{
 A(0) = 0.048200
 P(0) = 0.00
 A(1) = 1.00
 P(1) = 3.500
 A(2) = 0.100
 P(2) = 2.500
 }

The following example shows a simplified syntax for piecewise linear specification of energy relaxation time:

EnergyRelaxationTime:
{ * Energy relaxation times in picoseconds

(tau_w)_ele = 0.3 # [ps]
(tau_w)_hol = 0.25 # [ps]

 Formula(tau_w)_ele = 2
 Wmax(0)_ele = 0.5
 (tau_w)_ele(1) = 0.46 # [ps]
 Wmax(1)_ele = 1.
 (tau_w)_ele(2) = 0.4 # [ps]
 Wmax(2)_ele = 2.
 (tau_w)_ele(3) = 0.2 # [ps]
}

DESSIS also allows spline approximation of energy relaxation time over energy. In this case, the parameter
Formula(tau_w)_ele for electron energy relaxation time (and similarly, parameter Formula(tau_w)_hol for hole
energy relaxation time) must be equal to 3.
15.334

PART 15 DESSIS CHAPTER 19 ENERGY-DEPENDENT PARAMETERS
Inside the braces following the keyword Spline(tau_w)_ele (or Spline(tau_w)_hol), an energy [eV] and tau [ps]
value pair must be specified in each line. For the values outside of the specified intervals, energy relaxation
time is treated as a constant and equal to the closest boundary value.

The following example shows a spline approximation specification for energy-dependent energy relaxation
time for electrons:

EnergyRelaxationTime {
Formula(tau_w)_ele = 3
Spline(tau_w)_ele {

0. 0.3
0.5. 0.46
1. 0.4
2. 0.2

}
}

19.3 Energy-dependent mobility
In addition to the existing energy-dependent mobility models (such as Caughey–Thomas, where the effective
field is computed inside DESSIS as a function of the carrier temperature), a more complex, user-supplied
mobility model can be defined. For such specification of energy-dependent mobility, a modification to
(Eq. 15.400) is used:

(15.402)

where for electrons or for holes, is a low field mobility, and is a total doping
concentration.

To activate the model, the driving force keyword CarrierTemperatureDrivePolynomial must be specified as a
parameter of the high-field saturation mobility model. Parameters of the polynomials must be defined in the
HydroHighFieldMobility section of the parameter file.

This example shows the output of the HydroHighFieldMobility section and the specification of coefficients:

HydroHighFieldDependence:
{ * Parameter specifications for the high field degradation in
 * some hydrodynamic models.
 * B) Approximation by the ratio of two irrational polynomials
 * (driving force 'CarrierTempDrivePolynomial'):
 * If Wmax(interval-1) < w < Wmax(interval), then:
 * mu_hf = mu*factor*(Numerator^Gn)/(Denominator^Gd),
 * where (Numerator or Denominator)={SIGMA[A(i)(w^P(i))]+D*Ni},
 * w=Tc/Tl; Ni(cm^-3) is total doping.
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.

 * Wmax(interval)_ele =
 * F(interval)_ele =
 * Numerator(interval)_ele{
 * A(0) =
 * P(0) =
 * A(1) =
 * P(1) =
 * D =

µ w Ni,() µlow

aiw
pi∑() dnNi+()

gn

ajw
pj∑() ddNi+()

gd
---=

w Tn TL⁄= w Tp TL⁄= µlow Ni
 15.335

PART 15 DESSISCHAPTER 19 ENERGY-DEPENDENT PARAMETERS
 * G =
 * }
 * Denominator(interval)_ele{
 * A(0) =
 * P(0) =
 * D =
 * G =
 * }
 * F(interval)_hol =
 * Wmax(interval)_hol =
 Denominator(0)_ele
{
 A(0) = 0.3
 P(0) = 0.0
 A(1) = 1.0
 P(1) = 2.
 A(2) = 0.001
 P(2) = 2.500
 D = 3.00e-16
 G = 0.2500
 }
}

19.4 Energy-dependent Peltier coefficient
DESSIS allows for the following modification of the expression of the energy flux equation:

(15.403)

The standard expression corresponds to . If , then:

(15.404)

DESSIS allows the user to specify the function Q:

(15.405)

For the specification of Q, the following modification of (Eq. 15.400) is used:

(15.406)

Coefficients must be specified in the HeatFlux section of the parameter file, and the dependence can be
activated by specifying a nonzero factor f.

Sn
5rn
2

kBTn

q
------------Jn fn

hfκ̂n
∂ wnΠn()

∂wn
---------------------- Tn∇+

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

Πn 1= Πn 1 P w()+=

∂ wnΠn()

∂wn
---------------------- 1 w ∂P w()C

∂w
--------------------+=

Q w() w ∂P w()
∂w

----------------=

Q w() f
aiw

pi∑()()
gn

ajw
pj∑()()

gd
----------------------------------=
15.336

PART 15 DESSIS CHAPTER 19 ENERGY-DEPENDENT PARAMETERS
For , the result is . This is an example of the parameter file section
for such a function :

HeatFlux
{ * Heat flux factor (0 <= hf <= 1)

hf_n = 1 # [1]
hf_p = 1 # [1]

* Coefficients can be defined also as:
 * hf_new = hf*(1.+Delta(w))
 * where Delta(w) is the ratio of two irrational polynomials.
 * If Wmax(interval-1) < Wc < Wmax(interval), then:
 * Delta(w) = factor*(Numerator^Gn)/(Denominator^Gd),
 * where (Numerator or Denominator)=SIGMA[A(i)(w^P(i))], w=Tc/Tl
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.
 * Option can be activated by specifying nonzero 'factor'.
* Wmax(interval)_ele =

 * F(interval)_ele = 1
 * Numerator(interval)_ele{
 * A(0) =
 * P(0) =
 * A(1) =
 * P(1) =
 * G =
 * }
 * Denominator(interval)_ele{
 * A(0) =
 * P(0) =
 * G =
 * }
* Wmax(interval)_hol =

 * F(interval)_hol = 1
 f(0)_ele = 1
 Denominator(0)_ele{
 A(0) = 1.
 P(0) = 0.
 A(1) = 1.
 P(1) = 2.
 G = 1.5

}

Πn 1 1 1 w2+()⁄+= Q 1 w2 1+()
1.5

⁄=
Qn
 15.337

PART 15 DESSIS CHAPTER 20 ANISOTROPIC PROPERTIES
DESSIS

CHAPTER 20 Anisotropic properties

DESSIS allows for the modeling of the anisotropic properties of certain semiconductors.

20.1 Anisotropic mobility
In some semiconductors, such as silicon carbide, the electrons and holes may exhibit different mobilities
along different crystallographic axes.

20.1.1 Crystal reference system

The crystal reference system of the semiconductor can be specified in the DESSIS parameter file as follows:

LatticeParameters {
X = (1, 0, 0)
Y = (0, 1, 0)

}

Instead of LatticeParameters, the keywords Piezo or PiezoParameters are recognized as well.

By default, DESSIS uses X=(1,0,0), Y=(0,1,0), and Z=(0,0,1).

20.1.2 Anisotropy factor

In a 3D simulation, DESSIS assumes that the electrons or holes exhibit a mobility along the x and y axes,
and an anisotropic mobility along z. In a 2D simulation, the regular mobility is observed along the
x-axis, and is observed along the y-axis. The anisotropy factor is defined as the ratio:

(15.407)

20.1.3 Current densities

In the isotropic case, the current densities can be expressed by:

(15.408)

(15.409)

where and are the currents without mobilities. In the drift-diffusion model, we have:

(15.410)

µ
µaniso µ

µaniso r

r µ
µaniso
-------------=

Jn µngn=

Jp µpgp=

gn gp

gn nq φn∇–=
 15.339

PART 15 DESSISCHAPTER 20 ANISOTROPIC PROPERTIES
(15.411)

as can be seen from (Eq. 15.21) and (Eq. 15.22). For the thermodynamic model, (Eq. 15.23) and (Eq. 15.24)
imply that:

(15.412)

(15.413)

In the hydrodynamic case, we have:

(15.414)

(15.415)

according to (Eq. 15.26) and (Eq. 15.27). For anisotropic mobilities, (Eq. 15.408) and (Eq. 15.409) need to be
rewritten as:

(15.416)

(15.417)

where and are the anisotropy factors for electrons and holes, respectively. If the crystal reference system
coincides with the DESSIS coordinate system, the matrices are given by:

 or (15.418)

depending on the dimension of the problem. In general, however, needs to be written as:

 or (15.419)

where is the 3-by-3 orthogonal matrix:

(15.420)

and the quantity denotes the leading 2-by-2 submatrix of . For 2D problems, the vectors and must
lie in the x-y plane.

gp pq φp∇–=

gn nq φn∇ Pn T∇+()–=

gp pq φp∇ Pp T∇+()–=

gn n∇EC kBTn∇n fn
tdkBn∇Tn 1.5nkBTn∇ meln–+ +=

gp p∇EV kBTp∇p– fp
tdkBp∇Tp– 1.5pkBTp∇ mhln–=

Jn µnArn
gn=

Jp µpArp
gp=

rn rp
Ar

Ar

1
 1
 1 r⁄

= Ar
1
 1 r⁄

=

Ar

Ar Q
1
 1
 1 r⁄

QT= Ar Q2:2
1
 1 r⁄

Q2:2
T=

Q

Q X

X 2
---------- Y

Y 2
---------- Z

Z 2
----------=

Q2:2 Q X Y
15.340

PART 15 DESSIS CHAPTER 20 ANISOTROPIC PROPERTIES
Therefore, will have the form:

(15.421)

20.1.4 Driving forces

In the isotropic case, the electric field parallel to the electron or hole current is given by:

(15.422)

where denotes the inner product between two vectors (see (Eq. 15.190)). For anisotropic mobilities:

(15.423)

Similarly, the electric field perpendicular to the current, as given in (Eq. 15.166), needs to be rewritten as:

(15.424)

(Eq. 15.191) shows how the gradient of the Fermi potential may be used as the driving force in high-field
saturation models. Instead, for anisotropic mobilities, DESSIS uses:

(15.425)

In the isotropic hydrodynamic Canali model, the driving force satisfies:

(15.426)

as can be seen from (Eq. 15.192). To derive the appropriate expression in the anisotropic case we assume that
 operates parallel to the current, that is:

(15.427)

where:

(15.428)

is the direction of the electron or hole current.

Q

Q
x x 0
x x 0
0 0 1±

Q2:2 0

0 1±
= =

Fc
E Jc(,)

Jc Jc(,)

E gc(,)

gc gc(,)
--------------------= =

. .(,)

Fc
E Agc(,)

Agc Agc(,)
----------------------------=

Fc ⊥, E E(,)
2 E Agc(,)

2

Agc Agc(,)
------------------------–=

ϕc

Fc A ϕc∇=

Fc

µFc Fc(,)
wc w0–

τe c, q
------------------=

Fc

Fc Fcec=

ec
Agc

Agc

--------------=
 15.341

PART 15 DESSISCHAPTER 20 ANISOTROPIC PROPERTIES
Instead of (Eq. 15.426), we now have:

(15.429)

or:

(15.430)

20.1.5 Total anisotropic mobility

This is the simplest mode in DESSIS. Only a total anisotropy factor or is specified in the command file:

Physics {
Aniso(

eMobilityFactor (Total) = re
hMobilityFactor (Total) = rh

)
}

DESSIS computes the mobility for electrons or holes along the main crystallographic axis as usual. The
mobility is then given by:

(15.431)

NOTE In this mode, DESSIS does not update the driving forces as discussed in Section 20.1.4 on
page 15.341.

20.1.6 Total direction-dependent anisotropic mobility

This mode is activated by specifying the total direction-dependent anisotropy factor or in the DESSIS
command file:

Physics {
Aniso(

eMobilityFactor (TotalDD) = re
hMobilityFactor (TotalDD) = rh

)
}

First, DESSIS updates the driving forces as discussed in Section 20.1.4. Afterwards, the electron or hole
mobility along the main crystallographic axis is computed as usual, and the mobility is given by:

(15.432)

µFc
2 Aec ec(,)

wc w0–
τe c, q

------------------=

Fc
wc w0–

τe c, qµ Aec ec(,)
------------------------------------=

re rh

µ
µaniso

µaniso
µ
r
---=

re rh

µ µaniso

µaniso
µ
r
---=
15.342

PART 15 DESSIS CHAPTER 20 ANISOTROPIC PROPERTIES
20.1.7 Self-consistent anisotropic mobility

This is the most accurate, but also the most expensive, mode in DESSIS. The electron and hole mobility
models specified in the Physics section are evaluated separately for the major and minor crystallographic axes,
but with different parameters for each axis. This option is activated in the Physics section for electron or hole
mobilities as follows:

Physics {
Aniso(

eMobility
hMobility

)
}

To simplify matters, it is possible to specify:

Physics {
Aniso(

Mobility
)

}

to activate self-consistent, anisotropic, mobility calculations for both electrons and holes. Table 15.128 lists
the mobility models that offer an anisotropic version.

The PMI also supports anisotropic mobility calculations. The constructors of the classes
PMI_DopingDepMobility, PMI_EnormalMobility, and PMI_HighFieldMobility contain an additional flag to distinguish
between the isotropic and anisotropic case (see Chapter 33 on page 15.535). For example, users can specify
these parameters for the constant mobility model in the DESSIS parameter file:

ConstantMobility {
mumax = 1.4170e+03, 4.7050e+02
Exponent = 2.5, 2.2

}

The following parameters would then compute a reduced constant mobility along the anisotropic axis:

ConstantMobility_aniso {
mumax = 1.0e+03, 4.0e+02
Exponent = 2.5, 2.2

}

Table 15.128 Anisotropic mobility models

Isotropic model Anisotrophic model

ConstantMobility ConstantMobility_aniso

DopingDependence DopingDependence_aniso

EnormalDependence EnormalDependence_aniso

HighFieldDependence HighFieldDependence_aniso

UniBoDopingDependence UniBoDopingDependence_aniso

UniBoEnormalDependence UniBoEnormalDependence_aniso

UniBoHighFieldDependence UniBoHighFieldDependence_aniso

HydroHighFieldDependence HydroHighFieldDependence_aniso
 15.343

PART 15 DESSISCHAPTER 20 ANISOTROPIC PROPERTIES
In each vertex, DESSIS introduces the anisotropy factors and as two additional unknowns. For a given
value of , the driving forces and are computed as discussed in Section 20.1.4 on page 15.341, and
the mobilities along the isotropic and anisotropic axes are obtained.

The equation for the unknown factor is then given by:

(15.433)

This nonlinear equation is solved in each vertex for both electron and hole mobilities.

20.1.8 Math section

Table 15.129 lists the options that pertain to anisotropic mobility calculations.

20.1.9 Plot section

Table 15.130 lists the plot variables that may be useful for visualizing anisotropic mobility calculations.

20.2 Anisotropic avalanche generation
DESSIS computes the avalanche generation according to (Eq. 15.238). In the isotropic case, the terms
and can also be written as:

(15.434)

Table 15.129 Math options for anisotropic mobility calculations

Option Description

NewAniso This flag activates the new implementation of anisotropic mobilities. It is active by
default and is switched off by specifying -NewAniso.

TensorGridAniso The anisotropic effects are modeled using a tensor grid approximation. This option can
only be used for total anisotropic mobility on tensor grids or near-tensor grids.

Table 15.130 Plot variables for anisotropic mobility

Plot variable Description

eMobility Electron mobility along main axis

hMobility Hole mobility along main axis

eMobilityAniso Electron mobility along anisotropic axis

hMobilityAniso Hole mobility along anisotropic axis

eMobilityAnisoFactor Anisotropic factor for electrons

hMobilityAnisoFactor Anisotropic factor for holes

re rh
r Fc Fc ⊥,

r

r µ r()
µaniso r()
---------------------=

nvn
pvp

nvn µn gn=
15.344

PART 15 DESSIS CHAPTER 20 ANISOTROPIC PROPERTIES
and:

(15.435)

respectively. If anisotropic mobilities are switched on, (Eq. 15.434) and (Eq. 15.435) are replaced by:

(15.436)

and:

(15.437)

NOTE (Eq. 15.436) and (Eq. 15.437) only apply to total direction–dependent and self-consistent mobility
calculations. If the total anisotropic option (see Section 20.1.5 on page 15.342) is selected,
(Eq. 15.434) and (Eq. 15.435) are used.

Anisotropic avalanche calculations can be activated in the Physics section, independently for electrons and
holes:

Physics {
Aniso(

eAvalanche
hAvalanche

)
}

The keyword Avalanche activates calculations of anisotropic avalanche for both electrons and holes:

Physics {
Aniso(

Avalanche
)

}

In the anisotropic mode, different avalanche parameters can be specified along the isotropic and anisotropic
axes. Table 15.131 shows the avalanche models that are supported.

DESSIS uses interpolation to compute avalanche parameters for an arbitrary direction of the current. Let
be the direction of the electron or hole current as defined in (Eq. 15.428). In the crystal reference system, the
current is given by:

(15.438)

Table 15.131 Anisotropic avalanche models

Isotropic model Anisotrophic model

vanOverstraetendeMan vanOverstraetendeMan_aniso

OkutoCrowell OkutoCrowell_aniso

pvp µp gp=

nvn µn Arn
gn=

pvp µp Arp
gp=

ec

εc QTec

εx

εy

εz

= =
 15.345

PART 15 DESSISCHAPTER 20 ANISOTROPIC PROPERTIES
NOTE Both vectors and are of unit length.

DESSIS interpolates an avalanche parameter depending on the direction of the current according to:

(15.439)

in a 3D simulation, and, in a 2D simulation:

(15.440)

The PMI also supports the calculation of anisotropic avalanche generation. The current without mobility
is passed as an input parameter, and it can be used by the PMI code to determine the model parameters
depending on the direction of the current (see Section 33.8 on page 15.544).

20.3 Anisotropic electrical permittivity
The electrical permittivity in (Eq. 15.19) can have different values along different crystallographic axes. If
the crystallographic axes coincide with the DESSIS coordinate system, the scalar is replaced by the matrix:

 or (15.441)

depending on the dimension of the problem. For general crystallographic axes, the matrix is given by:

 or (15.442)

where is defined in (Eq. 15.420).

Anisotropic electrical permittivity is switched on by using the keyword Poisson in the Physics section of the
DESSIS command file:

Physics {
Aniso (Poisson)

}

This command should only appear in the global Physics section. Regionwise activation of anisotropic
electrical permittivity is not supported.

The model parameters for and can be specified in the DESSIS parameter file. Table 15.132 lists the
names of the corresponding models.

Table 15.132 Anisotropic electrical permittivity models

Isotropic model Anisotrophic model

Epsilon Epsilon_aniso

ec εc

p ec

p ec() εx
2 εy

2+() pisotropic⋅ εz
2 panisotropic⋅+=

p ec() εx
2 pisotropic⋅ εy

2 panisotropic⋅+=

Agc

ε
ε

Ε
ε
 ε
 εaniso

= Ε ε
 εaniso

=

Ε

Ε Q
ε
 ε
 εaniso

QT= Ε Q2:2
ε
 εaniso

Q2:2
T=

Q

ε εaniso
15.346

PART 15 DESSIS CHAPTER 20 ANISOTROPIC PROPERTIES
Different parameters can be specified for each region or each material. The following statement in the
DESSIS command file can be used to plot the electrical permittivities:

Plot {
DielectricConstant
"DielectricConstantAniso"

}

20.4 Anisotropic thermal conductivity
The thermal conductivity in (Eq. 15.25) can have different values along different crystallographic axes. If
the crystallographic axes coincide with the DESSIS coordinate system, the scalar is replaced by the matrix:

 or (15.443)

depending on the dimension of the problem. For general crystallographic axes, the matrix is given by:

 or (15.444)

where is defined in (Eq. 15.420).

Anisotropic thermal conductivity is switched on by the keyword Temperature in the Physics section of the
DESSIS command file:

Physics {
Aniso (Temperature)

}

This command should only appear in the global Physics section. Regionwise activation of anisotropic thermal
conductivity is not supported.

The model parameters for and can be specified in the DESSIS parameter file. Table 15.133 lists the
names of the corresponding models.

Different parameters can be specified for each region or each material. The PMI can also be used to compute
anisotropic thermal conductivities. The constructor of the class PMI_ThermalConductivity has an additional
parameter to distinguish between the isotropic and anisotropic directions (see Section 33.20 on page 15.581).
The following statement in the DESSIS command file can be used to plot the thermal conductivities:

Plot {
"ThermalConductivity"

"ThermalConductivityAniso"
}

Table 15.133 Anisotropic thermal conductivity models

Isotropic model Anisotrophic model

Kappa Kappa_aniso

κ
κ

Κ
κ
 κ
 κaniso

= Κ κ
 κaniso

=

Κ

Κ Q
κ
 κ
 κaniso

QT= Κ Q2:2
κ
 κaniso

Q2:2
T=

Q

κ κaniso
 15.347

PART 15 DESSIS CHAPTER 21 FERROELECTRIC MATERIALS
DESSIS

CHAPTER 21 Ferroelectric materials

21.1 Overview
In ferroelectric materials, the polarization depends nonlinearly on the electric field . The polarization at
a given time depends on the electric field at that time and the electric field at previous times. The history
dependence leads to the well-known phenomenon of hysteresis, which is utilized in nonvolatile memory
technology.

21.2 Syntax and implementation
DESSIS implements a model for ferroelectrics that features minor loop nesting and memory wipeout.
Figure 15.70 demonstrates these properties and Section 21.3 on page 15.350 discusses them further. To
activate the model, specify the keyword Polarization in the Physics section of the DESSIS command file. Use
the optional parameter Memory to prescribe the maximum allowed nesting depth of minor loops. The smallest
allowed value for Memory is 2; the default value is 10. If minor loop nesting becomes too deep, the nesting
property of the minor loops can be lost. However, the polarization curve remains continuous.

For example:

Physics (region = "Region.17") {
Polarization (Memory=20)

}

switches on the ferroelectric model in region Region.17 and sets the size of the memory to 20 turning points
for each element and each mesh axis.

To obtain a plot of the polarization field, specify Polarization/Vector in the Plot section of the DESSIS
command file.

Figure 15.70 Example polarization curve

P F

150 100 50 0 50 100 150
F [kV/cm]

20

10

0

10

20

P
 [m

A
s/

cm
2]

a

b

c

d

e

f

g

h

i

k

Fc

Pr

Ps
 15.349

PART 15 DESSISCHAPTER 21 FERROELECTRIC MATERIALS
DESSIS characterizes the static properties of a ferroelectric material by three parameters: the remanent
polarization , the saturation polarization , and the coercive field . The hysteresis curve in Figure 15.70
on page 15.349 illustrates these quantities. Furthermore, DESSIS parameterizes the transient response of the
ferroelectric material by the relaxation times and , and by a nonlinear coupling constant (see
Section 21.3).

Specify the values for these parameters in the Polarization section of the DESSIS parameter file, for example:

Polarization
{ * Remanent polarization P_r, saturation polarization P_s,

* and coercive field F_c for x,y,z direction (crystal axes)
 P_r = (1.0000e-05, 1.0000e-05, 1.0000e-05) #[C/cm^2]
 P_s = (2.0000e-05, 2.0000e-05, 2.0000e-05) #[C/cm^2]
 F_c = (2.5000e+04, 2.5000e+04, 2.5000e+04) #[V/cm]

* Relaxation time for the auxiliary field tau_E, relaxation
* time for the polarization tau_P, nonlinear coupling kn.

tau_E = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[s]
tau_P = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[s]
kn = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[cm*s/V]

}

The parameters in this example are the defaults for the material InsulatorX. For all other materials, all default
values are zero. Each of the three numbers given for any of the parameters corresponds to the value for the
respective coordinate axis of the mesh. If a P_s component is zero, the ferroelectric model is disabled along
the corresponding direction. If a P_s component is nonzero, the respective P_r and F_c components must also
be nonzero. Furthermore, the P_r component must be smaller than the P_s component. By default, the
relaxation times are zero, which means that polarization follows the applied electric field instantaneously.

In devices with ferroelectric and semiconductor regions, it is sometimes difficult to obtain an initial solution
of the Poisson equation. In many cases, the LineSearchDamping option can solve these problems. To use this
option, start the simulation like:

coupled (LineSearchDamping=0.01) { Poisson }

See Section 2.9.1 on page 15.55 for details about this parameter.

21.3 Model description
The vector quantity is split into its components along the main axes of the mesh coordinate system. This
results in one to three scalar problems. DESSIS handles each problem separately using the model from [121]
with extensions for transient behavior [122].

First, DESSIS computes an auxiliary field from the electric field :

(15.445)

Here, is a material-specific time constant. For or for quasistationary simulations, .

From the auxiliary field, DESSIS computes the auxiliary polarization . The auxiliary polarization
is an algebraic function of the auxiliary field :

(15.446)

Pr Ps Fc

τE τP kn

P

Faux F

td
d Faux t()

F t() Faux t()–
τE

----------------------------------=

τE τE 0= Faux F=

Paux Paux
Faux

Paux c Ps w Faux Fc±()⋅() Poff+tanh⋅ ⋅=
15.350

PART 15 DESSIS CHAPTER 21 FERROELECTRIC MATERIALS
where is the saturation polarization, is the coercive field, and:

(15.447)

where is the remanent polarization. In (Eq. 15.446), the plus sign applies to the decreasing auxiliary field
and the minus sign applies to the increasing auxiliary field. The different signs reflect the hysteretic behavior
of the material. and in (Eq. 15.446) result from the polarization history of the material, see below.

Finally, from the auxiliary polarization and auxiliary field, DESSIS computes the actual polarization :

(15.448)

Here, and are material-specific constants. For or for quasistationary simulations, .

Upper and lower turning points are points in the - diagram where the sweep direction of the auxiliary
field changes from increasing to decreasing, and from decreasing to increasing, respectively. At each
bias point, the most recent upper and lower turning points, and , must both be on each of the
two curves defined by (Eq. 15.446); this requirement determines and .

DESSIS ‘memorizes’ turning points as they are encountered during a simulation. The memory always
contains as the oldest and as the second oldest turning point. By using (Eq. 15.446), these
two points define a pair of curves with and ; together, the two curves form the saturation loop.
All other pairs of turning points result in and define a pair of curves forming minor loops.

When the auxiliary field leaves the interval defined by and of the two newest turning points, these two
turning points are removed from the memory; this reflects the memory wipeout observed in experiments. The
pair of turning points that are newest in the memory, after this removal, determines the further
relationship.

As the older of the dropped turning points was originally reached by walking on the curve defined by the
turning points that now (after dropping) again determine , the polarization curve remains
continuous. For example, see points e, f, and i in Figure 15.70 on page 15.349. Furthermore, the minor loop
defined by the two dropped turning points is nested inside the minor loop defined by the present turning
points. The nesting of minor loops is also a feature known from experiments on ferroelectrics. Figure 15.70
illustrates this by the loops f-g and i-k, both of which are nested in loop e-h, which in turn is nested in loop c-d.

In small-signal (AC) analysis (see Section 3.8.3 on page 15.117), a very small periodic signal is added to the
DC bias. As a result, the (auxiliary) polarization at each point of the ferroelectric material changes along a
very small minor loop nested in the main loop that stems from the DC variation of the bias voltage. The
average slope of this minor loop is always smaller than the slope of the main loop at the point where the loops
touch. Consequently, even at very low frequencies, the AC response of the system is different from what
would be obtained by taking the derivative of the DC curves.

As an example of how the turning point memory works, see Figure 15.70. The points on the polarization curve
are reached in the sequence a, b, c, d, e, f, g, f, h, i, k, i, e, c. For simplicity, a quasistationary process is assumed
and, therefore, and . Starting the simulation at point a, the newest point in memory is b
(DESSIS initializes it in this way). The second newest point is a negative saturation point (l), and the oldest
point is a positive saturation point (u). This memory state is denoted by [blu]. Therefore, the curve segment
(that is, the coefficients and) from a to b is determined by the points l and b.

Ps Fc

w 1
2Fc

Ps Pr+
Ps Pr–
-----------------log=

Pr

Poff c

P

td
d P t()

Paux Faux t()[] P t()–
τP

--- 1 kn td
d Faux t()+⎝ ⎠

⎛ ⎞=

τP kn τP 0= P Paux=

Paux Faux
Faux

Fu Pu(,) Fl Pl(,)
Poff c

∞ Ps(,) ∞– Ps–(,)
c 1= Poff 0=

c 1<

Fl Fu

Paux Faux()

Paux Faux()

Faux F= Paux P=

c Poff
 15.351

PART 15 DESSISCHAPTER 21 FERROELECTRIC MATERIALS
When crossing b and proceeding to c, b is dropped from the memory. As l is a saturation point, it is retained.
Therefore, the memory becomes [lu]. These two points determine the curve from b to c. Turning at c, c is
added to the memory, giving [clu]. From c to d, use c and l; at d, the memory becomes [dclu]; at point e,
[edclu]; at f, [fedclu]; at g, [gfedclu]. Passing through f, the two newest points, f and g, are dropped and the
memory is [edclu]; at h, [hedclu]; at i, [ihedclu]; at k, [kihedclu]. At i again, i and k are dropped, giving
[hedclu]; at e, e and h are dropped, giving [dclu].

At the beginning of a simulation, the memory contains one turning point chosen such that the point ,
 is on the minor loop so defined (for example, point b in Figure 15.70 on page 15.349). The nature

of the model is such that it is not possible to have a state of the system that is completely symmetric. In
particular, even for a symmetric device and at the very beginning of the simulation, . This
asymmetry is most prominent for the virginal curves (for example, a-b in Figure 15.70) of the ferroelectric,
which are different for different signs of voltage ramping.

Eaux 0=
Paux 0=

P E() P E–()–≠
15.352

PART 15 DESSIS CHAPTER 22 MECHANICAL STRESS EFFECT MODELING
DESSIS

CHAPTER 22 Mechanical stress effect modeling

22.1 Overview
Mechanical distortion of semiconductor microstructures results in a change in the band structure and carrier
mobility. This effect is well known and appropriate computations of the change in the strain-induced band
structure are based on the deformation potential theory [140]. The implementation of the deformation
potential model in DESSIS is based on data and approaches presented in the literature [140]–[143]. Other
approaches [106][182] implemented in DESSIS focus more on the description of piezoresistive effects.

Generally, the stress tensor is symmetric matrices. Therefore, it only has six independent
components. With the index transformation rule, it can be written in a six-component vector notation

 that simplifies tensor expressions.
For example, to compute the strain tensor (which is needed for the deformation potential model), the
generalized Hook’s law for anisotropic materials is applied:

 (15.449)

where is the elasticity modulus (see Section 22.3 on page 15.354). In crystals with cubic symmetry such
as silicon, the number of independent coefficients of the elasticity tensor (as other material property tensors)
reduces to three by rotating the coordinate system parallel to the high-symmetric axes of the crystal [108].
This gives the following elasticity tensor :

(15.450)

where the coefficients , , and correspond to parallel, perpendicular, and shear components,
respectively.

In DESSIS, the stress tensor can be defined in the stress coordinate system . To transfer this tensor
to another coordinate system (for example, the crystal system , which is a common operation), the
following transformation rule between two coordinate systems is applied:

 (15.451)

where is the rotation matrix:

 (15.452)

σ 3 3×

σ11 σ1 σ22 σ2→ σ33 σ3→ σ23 σ4() 2⁄→ σ13 σ5() 2⁄→ σ12 σ6() 2⁄→, , , , ,→
ε

εi Sijσj

j 1=

6

∑=

Sij

S

S

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

=

S11 S12 S44

e1 e2 e3, ,()
e'1 e'2 e'3, ,()

σi j
′ aikajlσkl=

a

aik ei
′ ek,⎝ ⎠

⎛ ⎞ ei
′ ek⎝ ⎠

⎛ ⎞⁄=
 15.353

PART 15 DESSISCHAPTER 22 MECHANICAL STRESS EFFECT MODELING
22.2 Syntax and implementation
To activate any of the stress-dependent models described in this section, the keyword Piezo must be specified
in the Physics section of the input command file. Optionally, it can contain stress component specifications (if
stress is constant over the device or region), and the components OriKddX and OriKddY of the coordinate
system where the stress is defined (see Table 15.134):

Physics {Piezo(
Stress = (XX, YY, ZZ, YZ, XZ, XY)
OriKddX = (1,0,0)
OriKddY = (0,1,0)
)

}

NOTE The stress system is always defined relative to the DESSIS simulation coordinate system (in the
Piezo section of DESSIS input file). The simulation coordinate system is defined relative to the
crystal orientation system by default but, in the DESSIS parameter file (see Section 22.3.1 on
page 15.356), it is possible to define the crystal system relative to the simulation system. The
default orientation of all coordinate systems is <100>.

There are two ways to define position-dependent stress values. In one option, a field of stress values [Pa] (as
obtained by mechanical structure analysis) is read by specifying the Piezo entry in the File section:

File { ...
Piezo = <piezofile>

}

Otherwise, a physical model interface can be used for stress specification. Optional parameters, which depend
on the selected stress model, are described in the following sections.

NOTE Stress values in all these stress specifications should be in Pa (1 Pa = 10 dyn/cm2) and tensile stress
should be positive according to convention.

22.3 Deformation of band structure
In the deformation potential theory, the strains are considered to be relatively small. The change in energy of
each carrier subvalley, caused by the deformation of the lattice, is a linear function of the strain. By default
(for silicon), DESSIS considers three subvalleys for electrons (which are applied to three two-fold subvalleys
in the conduction band) and two subvalleys for holes (which are applied to heavy-hole and light-hole

Table 15.134 General keywords for Piezo

Parameter Description

Stress=(XX, YY, ZZ, YZ, XZ, XY) Specifies uniform stress [Pa] if the Piezo file is not given in the File section.

OriKddX = (1,0,0) Defines Miller indices of the stress system relative to the simulation system.

OriKddY = (0,1,0) Defines Miller indices of the stress system relative to the simulation system.

Model(<options>) Selects stress-dependent models in <options> (see Section 22.3, Section 22.4
on page 15.357, and Section 22.5 on page 15.359).

e1 e2
15.354

PART 15 DESSIS CHAPTER 22 MECHANICAL STRESS EFFECT MODELING
subvalleys in the valence band). The number of carrier subvalleys can be changed in the DESSIS parameter
file (see Section 22.3.1 on page 15.356). The following equation has been proposed [141] for the calculation
of the change in the energy of carrier subvalleys:

 (15.453)

where B can be C or V (conduction or valence subvalleys), ‘i’ corresponds to the carrier subvalley number,
are the deformation potential constants, and are the components of the strain tensor in the crystal
coordinate system (see Section 22.1 on page 15.353 for a description of tensor transformations).

Bir and Pikus [183] proposed another model for the strain-induced change in the energy of carrier subvalleys
in silicon where they ignore the shear strain for electrons and suggest nonlinear dependence for holes:

(15.454)

where are other deformation potentials that correspond to the Bir and Pikus model. The sign +
separates heavy-hole and light-hole subvalleys of silicon in (Eq. 15.454). Both (Eq. 15.453) and (Eq. 15.454)
have the common part () and, therefore, these expressions were combined in one general
expression that gives a flexibility of its definition in the DESSIS parameter file (see Section 22.3.1 on
page 15.356):

(15.455)

where are deformation potentials that correspond to the Bir and Pikus model and is a unitless
constant that defines mainly a sign.

Using the stress tensor from the input file, DESSIS recomputes it from the stress coordinate system to the
tensor in the crystal system by (Eq. 15.451). The strain tensor is a result of applying Hook’s law
(Eq. 15.449) to the stress . Using (Eq. 15.453) or (Eq. 15.454), the energy band change can be computed
for each conduction and valence carrier subvalleys. DESSIS does not modify the effective masses, but uses
the averaged values of conduction and valence bands, and :

 (15.456)

 (15.457)

where and are the number of subvalleys considered in the conduction and valence bands, respectively.

∆EB i, ξi1
B ε11

′ ε22
′ ε33

′+ +() ξi2
B ε11

′ ε33
′–() ξi3

B ε22
′ ε33

′–() ξi4
B ε23

′ ξi5
B ε13

′ ξi6
B ε′

12+ + + + +=

ξij
B

εij′

∆EC i, Ξd ε11
′ ε22

′ ε33
′+ +() Ξuεii

′+=

∆EV i, a– ε11
′ ε22

′ ε33
′+ +() δE±=

δE b
2
--- ε11

′ ε22
′–()

2
ε22

′ ε33
′–()

2
ε11

′ ε33
′–()

2
+ +() d2 ε11

′2 ε22
′2 ε33

′2+ +()+=

Ξd Ξu a b d, , , ,

ε11
′ ε22

′ ε33
′+ +

∆EB i, δE1 δE2 δE3+ +=

δE1 ξi1
B ε11

′ ε22
′ ε33

′+ +() ξi2
B ε11

′ ε33
′–() ξi3

B ε22
′ ε33

′–() ξi4
B ε23

′ ξi5
B ε13

′ ξi6
B ε′

12+ + + + +=

δE2 ξi1
B2ε11

′ ξi2
B2ε22

′ ξi3
B2ε33

′+ +=

δE3 ξi4
B2 ξi5

B2()
2

2
---------------- ε11

′ ε22
′–()

2
ε22

′ ε33
′–()

2
ε11

′ ε33
′–()

2
+ +() ξi6

B2()
2

ε11
′2 ε22

′2 ε33
′2+ +()+=

ξij
B2 ξi4

B2

σ
σ' ε'

σ'

∆EC ∆EV

∆EC
kT300
------------- 1

nC

∆– EC i,
kT300

-----------------⎝ ⎠
⎛ ⎞exp

i 1=

nC

∑log–=

∆EV
kT300
------------- 1

nV

∆EV i,
kT300
--------------⎝ ⎠

⎛ ⎞exp
i 1=

nV

∑log=

nC nV
 15.355

PART 15 DESSISCHAPTER 22 MECHANICAL STRESS EFFECT MODELING
The band gap and affinity can be modified:

 (15.458)

 (15.459)

where the index ‘0’ corresponds to the affinity and band-gap values before stress deformation.

22.3.1 Syntax and implementation

To activate the deformation potential model, the name of the model must be specified in the Piezo section of
the input file, for example:

Physics (Region = "StrainedSilicon") {
Piezo(

Model(DeformationPotential)
)

}

All parameters of the model can be modified in the LatticeParameters section of the parameter file. The
DESSIS simulation coordinate system relative to the crystal orientation system can be defined by the X and Y
vectors in this section. The default is X=[100], Y=[010]. In addition, there is an option to represent the crystal
system relative to the DESSIS simulation system. In this case, the keyword CrystalAxis must be in the
LatticeParameters section, and the X and Y vectors will represent the <100> and <010> axes of the crystal
system in the DESSIS simulation system.

The number of conduction and valence band subvalleys and are defined by NC and NV in the parameter
file; by default, =3, =2. Appropriate deformation potential constants , , , and [eV] are
defined in the fields DC[i], DV[i], DC2[i], and DV2[i]of the parameter file, respectively.

Elasticity modulus [10–12 cm2/dyn] can be specified in the field S[i][j] in the parameter file. If the cubic
crystal system is selected, it is sufficient to specify S11, S12, and S44 . For a hexagonal crystal system, S33 and
S13 must also be specified. In an arbitrary case, all elements of the upper triangle matrix must be specified.
Otherwise, they are set to 0.

As an example, the following section represents silicon LatticeParameters defined for the Bir and Pikus model
in the parameter file:

LatticeParameters{
* Crystal system, elasticity, and deformation potential are defined.
X = (1, 0, 0) #[1]
Y = (0, 1, 0) #[1]
S[1][1] = 0.77 # [1e-12 cm^2/dyn]
S[1][2] = -0.21 # [1e-12 cm^2/dyn]
S[4][4] = 1.25 # [1e-12 cm^2/dyn]
CrystalSystem = 0 # [1]
NC = 3 # [1]
NV = 2 # [1]
DC(1) = -8.6,0,0,0,0,0 DC2(1) = 9.5,0,0,0,0,0
DC(2) = -8.6,0,0,0,0,0 DC2(2) = 0,9.5,0,0,0,0
DC(3) = -8.6,0,0,0,0,0 DC2(3) = 0,0,9.5,0,0,0
DV(1) = -2.1,0,0,0,0,0 DV2(1) = 0,0,0,-1,0.5,4
DV(2) = -2.1,0,0,0,0,0 DV2(2) = 0,0,0,1,0.5,4

}

Eg Eg0 ∆EC ∆EV–+=

χ χ0 ∆EC–=

nC nV
nC nV ξij

C ξij
V ξij

C2 ξij
V2

Sij
15.356

PART 15 DESSIS CHAPTER 22 MECHANICAL STRESS EFFECT MODELING
22.4 Tensor-mesh piezoresistive option
Due to an applied mechanical stress, the mobility can become a tensor. The numeric approximation of the
transport equations with tensor mobility is complicated (see Chapter 20 on page 15.339). However, if the
mesh is a tensor one, the approximation is simpler. For this option, off-diagonal mobility elements are not used
and, therefore, there are no mixed derivatives in the approximation. Such an approximation gives an M-matrix
property for the Jacobian and it permits stable stress simulations. Very often, critical regions are simple and
the mesh constructed in such regions can be close to a tensor one.

NOTE The off-diagonal elements of the mobility tensor appear only if there is a shear stress or the DESSIS
simulation coordinate system is different from the crystal system.

This approach [106][107] focuses on the modeling of the piezoresistive effect. The basic part of the model is
a linear extension of the constitutive current relations for electrons and holes in single-crystalline silicon [107]
for small stresses:

 (15.460)

where is the second rank mobility tensor, denotes the isotropic mobility without stress, is the identity
tensor, is the stress tensor, is the tensor of piezoresistive coefficients that depends on the doping
concentration and temperature distribution, and is the vector of the carrier current without the stress.

The stress tensor and mobility matrix are symmetric matrices. Therefore, they only have six
independent components.

With the index transformation rule (see Section 22.1 on page 15.353), they can be written in a six-component
vector notation. In crystals with cubic symmetry such as silicon, the number of independent coefficients of
the piezoresistance tensor reduces to three by rotating the coordinate system parallel to the high-symmetric
axes of the crystal [108]:

(15.461)

Since the coordinate system of the simulation is not necessarily parallel to the high-symmetric axis of the
crystal, the orientations of the x-axis and y-axis of the crystal system can be specified in the DESSIS
command file (see Section 22.3.1 on page 15.356).

External strain leads to a change in the effective masses and anisotropic scattering. The first effect is described
by an independent constant term , but the second effect, the scattering, can be calculated [109] at room

µα µα
0 1 Π– σ⋅()= α, n p,=

Jα µα
Jα

0

µα
0

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅=

µα µα
0 1

σ Πα

Jα
0

σ µα 3 3×

Π

Π11 Π12 Π12 0 0 0

Π12 Π11 Π12 0 0 0

Π12 Π12 Π11 0 0 0

0 0 0 Π44 0 0

0 0 0 0 Π44 0

0 0 0 0 0 Π44

=

Πij kon,
α

 15.357

PART 15 DESSISCHAPTER 22 MECHANICAL STRESS EFFECT MODELING
temperature for low-doping concentrations () and multiplied by a doping-dependent and temperature-
dependent factor .

Both effects are considered in the piezoresistive coefficients by [109]:

(15.462)

In the case of electrons, the scalar mobility used in the drift-diffusion and hydrodynamic equations is a mean
value averaged over the different conduction band minima. If the symmetry of the crystal is destroyed, for
example by external strain, the conduction band valleys shift and, therefore, yield electron transfers between
the valleys. This redistribution of electrons in the conduction band leads to anisotropic scattering. In the case
of holes, the mobility is an averaged quantity including heavy and light holes. External strain leads to a lift of
the degeneracy at the valence band maximum.

According to the literature [109], the doping-dependent and temperature-dependent factor can be
given by:

(15.463)

where and are the Fermi integrals of the order 1/2 and its first derivative. The Fermi energy
 is equal to for electrons and for holes. They are calculated by using appropriate analytic

approximations [110] where the charge neutrality is assumed between carrier and doping (N), and it gives the
doping dependence of the model. The numeric evaluation of is based on an analytic fit of the Fermi
integrals [111].

The default values of the piezoresistive coefficients for low-doped silicon at 300 K are listed in Table 15.135
and Table 15.136 on page 15.359. They can be changed in the DESSIS command file as described in
Section 22.4.1.

22.4.1 Syntax and implementation

The piezoresistive model is applied in a simulation by including the name of the model in the subsection Model
of the Piezo section of the input command file. With the specification of the piezoresistive coefficients, this
section appears as:

Physics {
Piezo(Model(Mobility(Tensor))

PiezoNkon = (, ,)

PiezoNvar = (, ,)

PiezoPkon = (, ,)

PiezoPvar = (, ,)

)
}

Πij var,
α

Pα N T,()

Πij
α Πij var,

α Pα N T,() Πij kon,
α+=

Pα N T,()

Pα N T,() 300
T

F'1 2⁄

EF α,
kT

------------⎝ ⎠
⎛ ⎞

F1 2⁄
EF α,
kT

------------⎝ ⎠
⎛ ⎞

------------------------------=

F1 2⁄ x() F'1 2⁄ x()
EF Fn EC– EV Fp–

Pα N T,()

Π11 kon,
n Π12 kon,

n Π44 kon,
n

Π11 var,
n Π12 var,

n Π44 var,
n

Π11 kon,
p Π12 kon,

p Π44 kon,
p

Π11 var,
p Π12 var,

p Π44 var,
p

15.358

PART 15 DESSIS CHAPTER 22 MECHANICAL STRESS EFFECT MODELING
The Mobility keyword can have different options: Tensor, eTensor, and hTensor, where ‘e’ or ‘h’ switches on the
stress-dependent mobility model only for electrons or holes, respectively. These options use only the constant
piezoresistivity coefficients where the doping-dependent and temperature-dependent
factor (Eq. 15.463) is equal to 1. To activate the doping and temperature dependence (Eq. 15.462), add the
keyword Kanda, for example, Tensor(Kanda).

NOTE This model can be used only with the keyword TensorGridAniso in the Math section.

To visualize the mobility multiplication tensor in (Eq. 15.460), the tensor can be plotted on the mesh
nodes. This tensor is a symmetric matrix and, therefore, has six independent values. To plot these values
on the mesh nodes for electron and hole mobilities, there are the keywords eMobilityStressFactorXX,
eMobilityStressFactorYY, eMobilityStressFactorZZ, eMobilityStressFactorYZ, eMobilityStressFactorXZ,
eMobilityStressFactorXY, hMobilityStressFactorXX, hMobilityStressFactorYY, hMobilityStressFactorZZ,
hMobilityStressFactorYZ, hMobilityStressFactorXZ, hMobilityStressFactorXY.

22.5 Strain-induced mobility model
Another approach [182] implemented in DESSIS focuses on the modeling of the mobility changes due to the
carrier redistribution between subvalleys in silicon. As a known example, the electron mobility is enhanced
in a strained-Si layer grown on top of a thick, relaxed SiGe. Due to the lattice mismatch (which can be
controlled by the Ge mole fraction), the thin silicon layer appears to be ‘stretched’ (under biaxial tension).

The origin of the electron mobility enhancement can be explained [182] by considering the six-fold
degeneracy in the conduction band. The biaxial tensile strain lowers two perpendicular valleys () with
respect to the four-fold in-plane valleys (). Therefore, electrons are redistributed between valleys and
is occupied more heavily. It is known that the perpendicular effective mass is much lower than the longitudinal
one. Therefore, this carrier redistribution and reduced intervalley scattering enhance the electron mobility.
The hole depends on the strain mainly due to redistribution of holes between light and heavy valleys, and
changes the effective masses in these valleys.

The model consistently accounts for a change of subvalley energy as described in Section 22.3 on
page 15.354, that is, a modification of the deformation potentials in (Eq. 15.455) will affect the strain-Si
mobility model. In the crystal coordinate system, the model gives only the diagonal elements of the electron
mobility matrix but, for holes, the mobility is still isotropic.

Table 15.135 Piezoresistive parameters for holes

Unit

5.1 –2.6 28 1.5 1.5 110

Table 15.136 Piezoresistive parameters for electrons

Unit

0 0 0 –102.6 53.4 –13.6

Π11 kon,
p Π12 kon,

p Π44 kon,
p Π11 var,

p Π12 var,
p Π44 var,

p

1 12–×10 cm2dyn 1–

Π11 kon,
n Π12 kon,

n Π44 kon,
n Π11 var,

n Π12 var,
n Π44 var,

n

1 12–×10 cm2dyn 1–

Πi j
α Πij var,

α Πij kon,
α+=

Π– σ⋅
3 3×

∆2
∆4 ∆2
 15.359

PART 15 DESSISCHAPTER 22 MECHANICAL STRESS EFFECT MODELING
The following expressions have been suggested [182] for the electron and hole mobilities:

(15.464)

where:

 and are electron and hole mobility models without the strain.

 and are the electron longitudinal and transfer masses in the subvalley.

 and are computed by (Eq. 15.455) and (Eq. 15.456), respectively.

The index ‘i’ corresponds to a direction (for example, is the electron mobility in the direction of X-axis
of the crystal system and, therefore, should correspond to the two-fold subvalley along the X-axis).

 is the mobility of light holes without the strain.

 and are the hole light and heavy masses.

 and are computed also by (Eq. 15.455) with the specification of light-hole and heavy-hole
subvalleys numbers in the parameter file (see Section 22.5.1 on page 15.361).

 and are quasi-Fermi levels of electrons and holes.

NOTE The carrier quasi-Fermi levels, as for (Eq. 15.463), are computed assuming the charge neutrality
between carrier and doping, and it gives the doping dependence of the model.

In the case of Boltzmann statistics, (Eq. 15.464) is simplified and the dependence on the carrier (doping)
concentration disappears:

(15.465)

µii
n µn

0 1
1 mnl mnt⁄–

1 2 mnl mnt⁄()+

F1 2⁄
Fn EC– ∆EC i,–

kT
---------------------------------------⎝ ⎠

⎛ ⎞

F1 2⁄
Fn EC– ∆EC–

kT
------------------------------------⎝ ⎠

⎛ ⎞
--- 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

µp µp
0 1

µpl
0

µp
0

------- 1–
⎝ ⎠
⎜ ⎟
⎛ ⎞ mpl mph⁄()1.5

1 mpl mph⁄()1.5+
--

F1 2⁄
EV ∆EV l, Fp–+

kT
---------------------------------------⎝ ⎠

⎛ ⎞

F1 2⁄
EV ∆EV h, Fp–+

kT
--⎝ ⎠

⎛ ⎞
-- 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

µn
0 µp

0

mnl mnt

∆EC i, ∆EC

µ11
n

∆EC 1,

µpl
0

mpl mph

∆EV l, ∆EV h,

Fn Fp

µi i
n µn

0 1
1 mnl mnt⁄–

1 2 mnl mnt⁄()+

∆EC ∆EC i,–
kT

-------------------------------⎝ ⎠
⎛ ⎞exp 1–⎝ ⎠

⎛ ⎞+=

µp µp
0 1

µpl
0

µp
0

------- 1–
⎝ ⎠
⎜ ⎟
⎛ ⎞ mpl mph⁄()1.5

1 mpl mph⁄()1.5+
--

∆EV l, ∆EV h,–
kT

-----------------------------------⎝ ⎠
⎛ ⎞exp 1–⎝ ⎠

⎛ ⎞+=
15.360

PART 15 DESSIS CHAPTER 22 MECHANICAL STRESS EFFECT MODELING
22.5.1 Syntax and implementation

The strain-induced mobility model can be activated regionwise or materialwise with the following keyword
in the Mobility statement of Piezo model:

Physics {
Piezo(Model(Mobility(Subband)))

}

The keyword Subband assumes Boltzmann statistics and, in this case, (Eq. 15.465) is used. To activate the
doping dependence and (Eq. 15.464), the following keywords should be used: Subband(Egley). The prefixes
‘e’ and ‘h’ can be added if it is necessary to activate the model separately for electrons and holes. For example,
it can be eSubband(Egley). The model parameters (see (Eq. 15.464)) can be specified in the DESSIS parameter
file in the section StressMobility as follows:

StressMobility{
me_lt = 4.81 # [1]
elec_100 = 1 # [1]
elec_010 = 2 # [1]
elec_001 = 3 # [1]
mh_lh = 0.32653 # [1]
mobh_l = 2.79 # [1]
hole_light = 1 # [1]
hole_heavy = 2 # [1]

}

where me_lt is the ratio , mh_lh is the ratio , and mobh_l is the ratio . Numbers elec_100,
elec_010, and elec_001 correspond to indexes of deformation potentials in the LatticeParameters section (see
Section 22.3.1 on page 15.356) for two-fold electron subvalleys in the direction [100], [010], and [001],
respectively. The numbers hole_light and hole_heavy correspond to indexes of light-hole and heavy-hole
subvalleys in the same LatticeParameters section.

NOTE The model ignores the off-diagonal elements of the mobility matrix that can appear with a
transformation of this matrix due to a rotation of the coordinate system from the crystal to the
simulation one. This model can be used only with the keyword TensorGridAniso in the Math section.

To visualize the mobility multiplication tensor in (Eq. 15.464), the tensor with the subtracted unit tensor can
be plotted on the mesh nodes. This tensor is a symmetric matrix and, therefore, has six independent
values. To plot these values on the mesh nodes for electron and hole mobilities, there are the keywords
eMobilityStressFactorXX, eMobilityStressFactorYY, eMobilityStressFactorZZ, eMobilityStressFactorYZ,
eMobilityStressFactorXZ, eMobilityStressFactorXY, hMobilityStressFactorXX, hMobilityStressFactorYY,
hMobilityStressFactorZZ, hMobilityStressFactorYZ, hMobilityStressFactorXZ, hMobilityStressFactorXY.

mnl mnt⁄ mpl mph⁄ µpl
0 µp

0⁄

3 3×
 15.361

PART 15 DESSIS CHAPTER 23 GALVANIC TRANSPORT MODEL
DESSIS

CHAPTER 23 Galvanic transport model

23.1 Syntax and implementation
In the Physics section of the DESSIS command file, specify the magnetic field vector using the keyword
MagneticField = (<x>,<y>,<z>). In the following example, a field of 0.1 Tesla is applied parallel to the z-axis:

Physics { ...
MagneticField = (0.0, 0.0, 0.1)

}

In addition, the EdgeMagneticDiscretization option must be specified in the Math section and Newdiscretization
must not be used:

Math { ...
EdgeMagneticDiscretization
-Newdiscretization

}

NOTE The galvanic transport model cannot be combined with the hydrodynamic model or impact
ionization model.

23.2 Model description
For analysis of magnetic field effects in semiconductor devices, the transport equations governing the flow of
electrons and holes in the interior of the device must be set up and solved.

To this end, the commonly used drift-diffusion-based model of the carrier current densities and must
be augmented by magnetic field–dependent terms that account for the action of the transport equations
governing the flow of electrons and holes in the interior of the device Lorentz force on the motion of the
carriers [103]–[105]:

with (15.466)

Here, denotes the electric conductivity of carrier type , is the Hall mobility, is the quasi-Fermi
potential, and is the magnetic induction. With a nonzero magnetic field, the electric conductivities are
tensors of rank 2 with two principal components parallel and perpendicular to the vector . In terms of the
concentrations of electrons and holes (n and p) and the respective drift mobilities (and), the electric
conductivities are given by the relations and . Here, q is the elementary charge. The
perpendicular (transverse) components of Hall and drift mobility are related by and ,
where and denote the Hall scattering factors. In the case of bulk silicon, typical values are and

.

Jn Jp

Jα σα φα∇– σα
1

1 µ*
αB()

2
+

------------------------------ µ*
αB φα∇× µ*

αB µ*
αB φα∇×()×+[]–= α n p,=

σα α µ*
α φα

B
B

µn µp
σn qnµn= σp qpµp=

µ*
n rnµn= µ*

p rpµp=
rn rp rn 1.1=

rp 0.7=
 15.363

PART 15 DESSIS CHAPTER 24 THERMAL PROPERTIES
DESSIS

CHAPTER 24 Thermal properties

24.1 Heat capacity
Table 15.137 lists the values of the heat capacity used in the simulator.

If the user wants a constant lattice heat capacity without touching the parameter file, specify
HeatCapacity(Constant) in the Physics section of the input file.

24.2 Temperature-dependent lattice heat capacity
The temperature dependence of the lattice heat capacity is modeled by the empirical function:

c = cv+cv_b*T+cv_c*T2+cv_d*T3

The equation coefficients can be specified in the parameter file by using the syntax:

LatticeHeatCapacity{
cv = 1.63 # [J/(K cm^3)]
cv_b = 0.0000e+00 # [J/(K^2 cm^3)]
cv_c = 0.0000e+00 # [J/(K^3 cm^3)]
cv_d = 0.0000e+00 # [J/(K^3 cm^3)]

}

By default, DESSIS uses these values from the parameter file. To switch to this default model, specify
HeatCapacity(TempDep).

NOTE All coefficients of the model in the parameter file can be mole dependent for mole-dependent
materials.

Table 15.137 Values of heat capacity c for various materials

Material c [J/K cm3] Reference

Silicon 1.63 [92]

Ceramic 2.78 [42]

SiO2 1.67 [42]

Poly Si 1.63 ≈ Si
 15.365

PART 15 DESSISCHAPTER 24 THERMAL PROPERTIES
24.3 Thermal conductivity
DESSIS uses the following temperature-dependent thermal conductivity in silicon [93]:

(15.467)

where a = 0.03 cm K/W, b = 1.56x10–3 cm/W, and c = 1.65x10–6 cm/WK. The range of validity is 200 K ≤ T
to well above 600 K. A graphical representation of κ for silicon is given in Figure 15.71. Values of the thermal
conductivity for further materials are given in Table 15.138.

Figure 15.71 Thermal conductivity κ of silicon versus temperature

24.4 Temperature-dependent thermal conductivity
As additional options to the standard specification of the thermal conductivity model, there are two different
expressions to define either thermal resistivity or thermal conductivity for any material. This is
performed by using Formula in the parameter file or special keywords in the input file.

For Formula=0 (thermal resistivity specification), DESSIS uses:

 = 1/kappa+1/kappa_b*T+1/kappa_c*T2

For Formula=1 (thermal conductivity specification), it is:

 = kappa+kappa_b*T+kappa_c*T2

Table 15.138 Values of thermal conductivity κ of silicon versus temperature

Material κ [W/(cm K)] Reference

Silicon (Eq. 15.467) [93]

Ceramic 0.167 [94]

SiO2 0.014 [92]

Poly Si 1.5 ≈ Si

κ

κ T() 1
a bT cT2+ +
-------------------------------=

250 300 350 400 450 500
Temperature [K]

0.75

1.00

1.25

1.50

1.75

2.00

Th
er

m
al

 C
on

du
ct

iv
ity

 [W
/c

m
K]

χ 1 k⁄=

χ

k

15.366

PART 15 DESSIS CHAPTER 24 THERMAL PROPERTIES
Using the following syntax in the parameter file, the expressions can be switched coefficients specified:

Kappa{
Formula = 0

1/kappa = 0.03 # [K cm/W]
1/kappa_b = 1.5600e-03 # [cm/W]
1/kappa_c = 1.6500e-06 # [cm/(W K)]
kappa = 1.5 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm))]

}

The Physics section of the input file provides more flexibility to switch these expressions by using the
keywords:

ThermalConductivity{
TempDep Conductivity (Formula = 1)
Constant Conductivity (Formula = 1 without temperature dependence)
TempDep Resistivity (Formula = 0)
Constant Resistivity (Formula = 0 without temperature dependence)

}

By default, DESSIS uses Formula specified in the parameter file.

NOTE All these coefficients in the parameter file can be mole dependent for mole-dependent materials.

24.5 Thermoelectric power (TEP)
Theoretically, the electron and hole absolute thermoelectric powers and for nondegenerate
semiconductors can be written as [95][96]:

(15.468)

(15.469)

To use these expressions, specify AnalyticTEP in the Physics section of the DESSIS command file. The
coefficients in these equations are available in the TEPower parameter set in the DESSIS parameter file (see
Table 15.139).

Table 15.139 Coefficients for thermoelectric power

Symbol Parameter name Default

scale_n 1

scale_p 1

s_n 1

s_p 1

Pn Pp

Pn κ m
kB
q

------ 5
2
--- sn–⎝ ⎠

⎛ ⎞ NC
n

-------⎝ ⎠
⎛ ⎞ln+–=

Pp κp
kB
q
------ 5

2
--- sp–⎝ ⎠

⎛ ⎞ NV
p

-------⎝ ⎠
⎛ ⎞ln+=

κn

κp

sn

sp
 15.367

PART 15 DESSISCHAPTER 24 THERMAL PROPERTIES
Without the keyword AnalyticTEP, DESSIS uses a table of experimental values of the TEPs for silicon
published by Geballe and Hull [97] as a function of temperature and carrier concentration. DESSIS
extrapolates PnT and PpT linearly for temperatures between 360 K and 500 K, thus preserving the 1/T
dependence of data presented at higher temperatures by Fulkerson et al. [98], which holds up to near the
intrinsic temperature.

Pn and Pp are shown in Figure 15.72 as a function of temperature and carrier concentration as used in DESSIS.

Figure 15.72 TEPs Pn (left) and Pp (right) as a function of temperature and carrier concentration
15.368

Part III Physics of Lasers and Light-
Emitting Diodes
This part of the DESSIS manual contains the following chapters:

CHAPTER 25 INTRODUCTION TO LASERS AND LEDS ON PAGE 15.371

CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION ON
PAGE 15.385

CHAPTER 27 OPTICS ON PAGE 15.399

CHAPTER 28 QUANTUM WELL MODELING ON PAGE 15.439

CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION ON PAGE 15.471

CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS ON PAGE 15.489

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
DESSIS

CHAPTER 25 Introduction to lasers and LEDs

DESSIS includes optional models for the comprehensive simulation of semiconductor lasers and light-
emitting diodes (LEDs). Both edge-emitting lasers and vertical-cavity surface-emitting lasers (VCSELs) are
supported. Drift-diffusion or hydrodynamic transport equations for the carriers, the Schrödinger equation for
quantum well gain, modal optical rate equations, and the Helmholtz equation are solved self-consistently in
the quasistationary and transient modes.

Spontaneous and stimulated optical recombinations are calculated in the active and bulk regions according to
Fermi’s golden rule. They are added as carrier recombination mechanisms in the continuity equations and as
modal gain and spontaneous emission in the photon rate equations. Different line-width broadening models
are available for gain broadening.

Both bulk and quantum well (QW) lasers can be simulated. In the case of QW lasers, the optical polarization
dependence of the optical matrix element is automatically taken into account. The QW subbands are
calculated as the solution of the single-band Schrödinger equation in the effective mass approximation,
assuming a box-shaped potential or by a multiple-bands k.p method. Both zinc-blende and wurtzite crystal
structures can be treated. Strain effects can also be taken into account. The distribution of carriers in the well
is determined according to the quantum mechanical wavefunctions and QW density of states.

In the unquantized direction, drift-diffusion transport applies to the carriers. In the quantized direction, two
transport models are available. The simple transport model assumes thermionic emission at the
heterointerfaces, which form the quantum well. The advanced transport model separates the QW carrier
distributions into a bound and continuum distribution. The fraction of bound and continuum carriers is then
self-consistently computed by additional scattering equations, mainly contributed by carrier-carrier and
carrier-optical phonon scatterings.

The next section is a short introduction on how to set up a laser simulation with single and dual grids, and
which type of output can be extracted from the simulation. The theoretical foundations of the laser simulator
with detailed equations are discussed, followed by a description of other useful features of the laser and LED
simulator. Finally, there is a discussion on how to simulate different types of lasers and LED.

25.1 Overview
A laser simulation is different from a silicon device simulation in three aspects:

The Helmholtz equation must be solved to determine the optics of the device.

A photon rate equation must be included to couple the electronics to the optics.

The carrier-scattering processes at the quantum well must be treated differently because it is no longer in
the drift-diffusion regime. In this case, a new syntax must be introduced to activate the laser simulation
within the DESSIS framework. These new syntaxes are highlighted as the anatomy of the command file
used for laser or LED simulations is examined in the next sections.
 15.371

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
The procedure for performing a laser simulation is similar to that for a silicon device simulation. Figure 15.73
illustrates the procedure.

Figure 15.73 Flow of tasks in a single laser simulation run

First, the structure and doping profile are drawn in the graphics editor, MDRAW or DEVISE (refer to the
MDRAW and DEVISE manuals). Second, MDRAW or DEVISE generates the mesh and the doping
information on the mesh, and saves them in the grid file (with extension .grd) and doping file (with extension
.dat), respectively. Instead of drawing the structure laboriously, the user has the option to write a script to
construct the structure, and build the mesh and doping automatically. In this way, it is possible to parameterize
any device dimension, material composition, and doping profile easily. This feature is used by GENESISe to
control batch jobs and automatically optimize user-specified performance benchmarks through parameter
variation.

Next, the user can use any editor to edit the DESSIS command file and parameter file. The parameter file
contains a complete list of default material parameter models such as band gap, thermal conductivities,
recombination parameters, traps parameters, effective masses, and mobilities. The user can edit any of these
material parameters. The DESSIS command file contains instructions to run the simulation. If the user runs a
1D, 2D, or 3D simulation, only the grid and doping files will change. The DESSIS command file and
parameter file are unchanged.

Tool: MDRAW or DEVISE

Purpose: Draws structure,
specifies doping, builds mesh

Products: Grid file (.grd), doping
file (.dat)

Tool: Text editor

Purpose: Edits DESSIS command
file, parameter file

Tool: DESSIS

Purpose: Simulates with DESSIS
command, parameter, grid, and
doping files

Products: Current file (.plt), plot file
(.dat)

Tool: INSPECT or Tecplot-ISE

Purpose: Views the simulation results
in the current file (.plt) or plot file (.dat)

GENESISe
15.372

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
After the simulation is completed, DESSIS saves the final results in the current file (with extension .plt) and
the plot file (with extension .dat). These results can be viewed and plotted in INSPECT and Tecplot-ISE,
respectively. If users specify some other feature such as far-field computation, additional files are produced
that can be viewed in INSPECT or Tecplot-ISE, depending on the file type.

All the abovementioned steps can be controlled from GENESISe, which can also schedule jobs over the
network and extract specified results of the simulation. In this manner, automation can be achieved for device
optimization. Refer to the GENESISe manual for more information.

25.2 Command file syntax
The DESSIS command file permits full control of how a simulation will run. This includes choosing the type
of numeric solver, the physics to be included, and the equations to couple. This fundamental framework
provides a platform with unlimited expansion possibilities for new features, new models, and new devices.
The fastest way to understand the command file syntax is to look at a generic example that users can copy and
modify for their specific needs. Two generic examples are presented for typical laser and LED simulations.

NOTE The character ‘#’ in the DESSIS command file means that any text proceeding from ‘#’ is treated
as a remark or as a preprocessor directive.

25.2.1 Single-grid edge-emitting laser simulation

This generic example uses the same grid for both the optical and electrical problems. The optical problem is
defined by the optics solver and the electrical problem is defined by the semiconductor transport equations.

----- Dessis command file for laser simulation -----

----- Specify initial bias conditions of the contacts -----
Electrode {
 { Name="p_Contact" voltage=0.8 AreaFactor = 200}
 { Name="n_Contact" voltage=0.0 AreaFactor = 200}
}

----- Tell Dessis where to read/save the parameters/results -----
File {
 # ----- Specify grid and doping files -----
 Grid = "mesh_mdr.grd"
 Doping = "mesh_mdr.dat"

 # ----- Specify the material parameter file -----
 Parameters = "des_las.par"

 # ----- Specify where to output various results. The presence
 # of these keywords also activates the particular save option -----
 Current = "current"
 Output = "log"
 Plot = "multiqw_plot"

 # ----- Option to save gain curves -----
ModeGain = "gain"

 # ----- Option to save optics -----
SaveOptField = "laserfield"
 15.373

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
VCSELNearField = "vcselfield" # for VCSELs
OptFarField = "farfield" # Activate farfield computation

 # ----- Option to load in externally generated optical field -----
OptField0 = "external_mode_0"
OptField1 = "external_mode_1"
}

------- Can extract virtually any variable of the simulation ------
Plot {
 # ----- Normal dessis variables -----
 Doping
 xMoleFraction yMoleFraction
 DonorConcentration AcceptorConcentration
 ElectronAffinity
 BandGap
 ConductionBandEnergy ValenceBandEnergy
 EffectiveIntrinsicDensity
 eDensity hDensity
 eMobility hMobility
 eQuasiFermi hQuasiFermi
 eGradQuasiFermi hGradQuasiFermi
 eCurrent hCurrent TotalCurrent
 eCurrent/vector hCurrent/vector TotalCurrent/vector
 ElectricField
 Potential SpaceCharge
 SRH Auger
 RefractiveIndex
 Dielectric/Element
 # ----- Extra variables for laser simulation -----
 QWeDensity QWhDensity
 QWeQuasiFermi QWhQuasiFermi
 MatGain
 LaserIntensity
 OpticalIntensityMode0
 OpticalIntensityMode1
 OpticalPolarizationAngleMode0
 OpticalPolarizationAngleMode1
}

Physics {
AreaFactor = 2 # for symmetric simulation
------ Keyword Laser activates the laser simulation ------
Laser(

----- Specify the optical solver to use -----
Optics(

----- Finite element vectorial solver -----
The scalar solver is activated using FEScalar
FEVectorial(EquationType = Waveguide # or Cavity

Symmetry = Symmetric # or NonSymmetric or Periodic
LasingWavelength = 800 # [nm]
TargetEffectiveIndex = (3.4 3.34) # initial guess
#Polarization = (TE TM) # for scalar solver only
#AzimuthalExpansion = (0 1) # for VCSELs
Boundary = ("Type2" "Type1") # choose boundary conditions
ModeNumber = 2 # up to 10 modes

)
)

VCSEL(NearField(10.0 0 50)) # for VCSELs
 TransverseModes # for edge emitter simulation
 CavityLength = 900 # [micron]
 lFacetReflectivity = 0.9 # Left facet power reflectivity
15.374

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
 rFacetReflectivity = 0.4 # Right facet power reflectivity
 OpticalLoss = 10.0 # [1/cm]
 WaveguideLoss # activate feedback of loss from Optics

 # ------- Choice of Gain broadening functions, choose only one -------
Broadening (Type=Landsberg Gamma=0.010) # Gamma in [eV]
Broadening (Type=CosHyper Gamma=0.010)
 Broadening (Type=Lorentzian Gamma=0.010)

 # ----- Nonlinear Gain saturation model -----
Broadening(Type = LorentzianSat
Gamma = 4.39e-4 # Broadening [eV]
eIntrabandRelTime = 1e-13 # electron relaxation time
hIntrabandRelTime = 1e-13 # hole relaxation time
PolarizationRelTime = 3e-12 # polarization relaxation time
)

 # ----- Specify Quantum Well physics -----
 qwTransport
 qwExtension = AutoDetect # auto read of QW widths
 qwScatmodel
 QWeScatTime = 8e-13 # [s]
 QWhScatTime = 4e-13 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]

 # ----- Include QW Strain effects -----
 Strain

 # ----- Can scale stim and spon gain independently -----
 StimScaling = 1.0
 SponScaling = 1.0

 # ----- Specify dependency of refractive index ----
 RefractiveIndex(TemperatureDep CarrierDep)
)

 # ----- User specified physics of transport -----
 Thermionic # thermionic emission over interfaces
 HeteroInterfaces # allow discontinuous bandgap & quasi-Fermi level
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi

 # ------ Option to turn on temperature simulation ------
Thermodynamic
Hydrodynamic
RecGenHeat
}

----- Can specify the physics of each region separately -----
Physics (region="pbulk") { MoleFraction(xfraction=0.28) }
Physics (region="nbulk") { MoleFraction(xfraction=0.28) }
Physics (region="psch") { MoleFraction(xfraction=0.09) }
Physics (region="nsch") { MoleFraction(xfraction=0.09) }
Physics (region="barr") { MoleFraction(xfraction=0.09) }

----- Quantum Wells -----

Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active # keyword to indicate active region
 15.375

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
}

Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
}

----- Choice and control of numerical methods -----
Math {
 Digits = 5
 Extrapolate

Method = pardiso # pardiso is a parallel sparse solver
 ErReff(electron) = 1.e3
 ErReff(hole) = 1.e3
 Iterations = 30
 Notdamped = 50

RelErrControl
 ElementEdgeCurrent
Cylindrical # in case of cylindrical symmetry

}

----- Solver part, specify what to couple and solve -----
Solve {
 # ----- Get initial guesses, coupled means Newton’s iteration -----
 Poisson
 coupled {Hole Electron QWhScatter QWeScatter Poisson }
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate}

 # ----- Ramping the voltage -----
 quasistationary (
 # ----- Specify ratio step size of voltage ramp -----
 InitialStep = 0.001
 MaxStep = 0.05
 Minstep = 1e-5

 # ----- Save plot variables at intervals of simulation -----
Plot { range=(0,1) intervals=1}

 # --- Plotting the gain vs photon energy ---
PlotGain { range=(0,1) intervals=5}
PlotGainPara{range=(1.22,1.32) intervals=150}

 # --- Plotting the VCSEL transverse nearfield ---
VCSELNearField { range=(0,1) intervals=1}

 # --- Plotting the far field -----
 PlotFarField{range=(0,1) intervals=1}
 PlotFarFieldPara{range=(40,60) intervals=40 Scalar1D Scalar2D Vector2D}

 # --- Save the optical field ---
SaveOptField { range=(0,1) intervals=1}

 # ----- Specify the final voltage ramp goal -----
 Goal {name="p_Contact" voltage=1.8})
 {
 # ----- Gummel iterations for self-consistency of Optics -----
 Plugin(BreakOnFailure){
 # --- Newton iterations for coupled equations -----

Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate }

Optics
Wavelength
15.376

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
}
 }

 # ----- At 1.8V, perform transient simulation -----
 transient (
 InitialTime = 0.0
 FinalTime = 1.0e-6 # [s]
 InitialStep = 1e-5
 MaxStep = 1e-3
 MinStep = 1e-8)
 {
 Plugin(BreakOnFailure){
 Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate }
Optics
Wavelength
 }
 }
}

To elaborate on some remarks in this example of code:

The general skeleton for the command file contains the Electrode, File, Plot, Math, Physics, and Solve
sections. Within each section, additional subsections can be defined and, therefore, provide an object-
oriented approach for defining the various parameters of the device and simulation.

In the Electrode section, AreaFactor gives the scaling factor to account for the device width in the
longitudinal direction (1 micron by default).

In the File section, the keyword of a specific option must be included to activate that option. For example,
DESSIS will only save the optical field if SaveOptField is included.

In the Plot section, a more complete list of the standard DESSIS variables can be found in Section 2.6 on
page 15.52. The laser simulation–specific plot variables are listed in the following sections.

In the Physics-Laser section, Laser and LED simulations share these common options. The main difference
between the different types of laser simulation is the choice of optical solver. In this example, the
FEVectorial (finite element vectorial) solver is used. Other optical solver choices include FEScalar,
RayTrace, TMM1D, and EffectiveIndex. The different types of optical solver are described in Chapter 27 on
page 15.399.

In the Physics-Laser section, users can select different gain-broadening functions. The gain-broadening
functions, nonlinear gain saturation model, and quantum well parameters are described in Chapter 28 on
page 15.439.

In the Physics section, there are options to switch on the thermodynamic or hydrodynamic systems. To
solve for the temperatures, it is necessary to define the thermode and couple the relevant equation in the
command file. (This is not shown in this example.) Details of how to do this are in Section 29.7 on
page 15.481.

In the Math section, there is a selection of numeric engines including pardiso, ils, super, umf, slip. Users
are encouraged to use different engines to find out which is the fastest and most accurate for their
applications (see Section 2.10 on page 15.73).

In the Solve-quasistationary section, the step size is expressed as a number between 0 and 1, which is
mapped to the actual voltage ramping goal. In this case, the device was initially at 0.8 V and the goal was
set to 1.6 V. Therefore, the unitless step of [0,1] maps to [0.8,1.6] V in the voltage ramp.
 15.377

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
In the Solve-quasistationary section, the keyword Coupled ensures that the listed equations are solved
using Newton iterations. To enforce self-consistency of other systems (in this case, the Wavelength and
Optics) in a Gummel-type iteration scheme, the Plugin feature was used. If it is not expected that the
wavelength or optics will change as a function of the bias, they can be commented out in a similar way
to what is done in the Transient statement.

25.2.2 Dual-grid edge-emitting laser simulation

In some cases, users may require different mesh sizes for the optical and electrical problems. As a general
rule, the discretization for the optical mesh should be at least 20 points per wavelength for an accurate
solution, but such fine discretization may not be necessary for the electrical problem. In this case, the dual-
grid capability is invoked. This capability is derived from the circuit mixed-mode feature of DESSIS where
the coupling of a few devices can be simulated in a self-consistent manner. The syntax of how this is
performed is:

----- Dessis command file for dual grid laser simulation -----
File {
 Output = "dual_log"
}

----- Choice and control of the numerical method for the mixed-mode circuit -----
Math {
 # ----- Differences in a dual grid -----
 NoAutomaticCircuitContact
 DirectCurrentComputation
 Method = blocked
 Submethod = pardiso
 # ----- The rest are the same as the single grid -----
 Digits = 5
 Extrapolate

ErReff(electron) = 1.e3
 ErReff(hole) = 1.e3
 Iterations = 30
 Notdamped = 50

RelErrControl
 ElementEdgeCurrent
}

===== Define the Optical grid =====
----- Use keyword OpticalDevice -----
OpticalDevice optgrid {

 File {
 # ----- Read in the optical mesh -----
 Grid = "optmesh_mdr.grd"
 Doping = "optmesh_mdr.dat"
 Parameters = "des_las.par"
 }
 Plot {
 LaserIntensity
 OpticalIntensityMode0
 }
 # ----- Material region physics -----
 Physics (region="pbulk") { MoleFraction(xfraction=0.28) }
 Physics (region="nbulk") { MoleFraction(xfraction=0.28) }
 Physics (region="psch") { MoleFraction(xfraction=0.09) }
 Physics (region="nsch") { MoleFraction(xfraction=0.09) }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }
15.378

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

}
===== End of Optical grid definition =====

===== Define the electrical grid and solver info =====
----- Use keyword Dessis -----
Dessis electricaldev {

 Electrode {
 {Name="p_Contact" voltage=0.8 AreaFactor = 200}
 {Name="n_Contact" voltage=0.0 AreaFactor = 200}
 }
 File {
 # ----- Read in electrical grid mesh -----
 Grid = "elecmesh_mdr.grd"
 Doping = "elecmesh_mdr.dat"
 Parameters = "des_las.par"

 Current = "elec_current"
 Plot = "elec_plot"
 SaveOptField = "laserfield"
 ModeGain = "gain"
 }
 Plot {
 # ----- Similar to single grid, can include a long list -----
 LaserIntensity
 OpticalIntensityMode0
 }
 Physics {

AreaFactor = 2 # takes device symmetry into account
------ Laser definition, similar to single grid ------
Laser(

Optics(
FEVectorial(EquationType = Waveguide

Symmetry = Symmetric
LasingWavelength = 800
TargetEffectiveIndex = (3.4 3.32)
Boundary = ("Type2" "Type1")
ModeNumber = 2

)
)

 TransverseModes
 CavityLength = 900 # [micron]
 lFacetReflectivity = 0.9 # Left facet power reflectivity
 rFacetReflectivity = 0.4 # Right facet power reflectivity
 OpticalLoss = 10.0 # [1/cm]
 WaveguideLoss # activate feedback of loss from Optics
 # ----- Choose Gain broadening, similar to single grid -----
 Broadening (Type=Lorentzian Gamma=0.10) # [eV]

 # ----- Specify QW parameters, similar to single grid -----
 qwTransport
 qwExtension = AutoDetect # auto read QW widths
 qwScatmodel
 15.379

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
 QWeScatTime = 8e-13 # [s]
 QWhScatTime = 4e-13 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]
 # ----- QW Strain effects -----
 Strain
 # ----- Can scale stim and spon gain independently -----
 StimScaling = 1.0
 SponScaling = 1.0
 # ----- Specify dependency of refractive index ----
 RefractiveIndex(TemperatureDep CarrierDep)
)
 # ----- Specify transport physics, similar to single grid -----
 Thermionic
 HeteroInterfaces
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi
 }
 # ----- Material region physics -----
 Physics (region="pbulk") { MoleFraction(xfraction=0.28) }
 Physics (region="nbulk") { MoleFraction(xfraction=0.28) }
 Physics (region="psch") { MoleFraction(xfraction=0.09) }
 Physics (region="nsch") { MoleFraction(xfraction=0.09) }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }

 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

}
===== End of electrical grid definition =====

===== Define the circuit mixed-mode system =====
System {
 # ----- Define opt1 of type optgrid -----
 optgrid opt1 ()
 # ----- Define d1 of type electricaldev, and coupled to opt1 -----
 electricaldev d1 (p_Contact=vdd n_Contact=gnd) {Physics{OptSolver="opt1"}}
 # ----- Set the initial bias voltage to circuit contacts -----
 Vsource_pset drive(vdd gnd){ dc=0.8 }
 Set (gnd = 0.0)
}

===== Solver part, slightly different from single grid =====
Solve {
 Poisson
 # ----- Addition of Contact & Circuit, different from single grid -----
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit }
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit PhotonRate }

 quasistationary (
 # ----- Define ratio step size, similar to single grid -----
 InitialStep = 0.001
 MaxStep = 0.05
 Minstep = 1e-5
15.380

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
 # ----- Plot various quantities, similar to single grid -----
 Plot { Range=(0,1) Intervals=1 }
 PlotGain { range=(0,1) intervals=5 }
 PlotGainPara { range=(1.22,1.32) intervals=150 }
 SaveOptField { Range=(0,1) Intervals=1 }
 # ----- Specify final voltage, syntax different from single grid -----
 Goal { Parameter=drive.dc Value=1.6 })
 {
 # ----- Gummel iterations, similar to single grid -----
 Plugin (BreakOnFailure) {
 Coupled { Electron Hole Poisson Contact Circuit
 QWeScatter QWhScatter PhotonRate }
 Optics
 Wavelength
 }
 }
}

This example uses the same device structure as in Section 25.2.1 on page 15.373, so that users can compare
the single-grid and dual-grid simulations more clearly. Some important differences and similarities are:

The optical and electrical grids may have different material-region physics, but the structural shape
should be the same. This is to ensure that the interpolating of parameters and variables between the two
grids is accurate. In this example, the electrical and optical devices have the same material regions, but
the meshing resolutions are different, leading to two different grids.

The control of the laser physics is encompassed in the definition of the electrical grid or device. The
keyword to define the electrical grid or device is Dessis; OpticalDevice defines the optical grid.

In the System section, opt1 is defined as a device instance of type optgrid and d1 is defined as a device
instance of type electricaldev. The optical device instance opt1 is then coupled as a circuit element to the
electrical device instance d1 by specifying OptSolver="opt1". In addition, p_Contact and n_Contact of the
electrical device are given the new names of vdd and gnd, respectively, in this coupled circuit (see
Section 3.4 on page 15.106 for more information about the System command).

In the Solve section, the keywords Contact and Circuit in the coupled statement ensure that self-
consistency between the optical and electrical devices in the circuit is imposed.

25.2.3 Default output from laser or LED simulation

If the option Current = "current" is specified in the File section of the command file, DESSIS produces the
current file at the end of the simulation. The current file (current_des.plt) contains laser-specific result
variables as a function of bias. These result variables are:

Time [s]

p_Contact – OuterVoltage [V], InnerVoltage [V], DisplacementCurrent, eCurrent, hCurrent, Charge, and
TotalCurrent [A]

n_Contact – Same set of result variables as p_Contact

Mode0 – TotalPower [W], PowerLeft, PowerRight, OpticalGain [1/cm], OpticalLoss [1/cm], SpontEmission
[1/cm], Wavelength [nm], EffectiveIndex, OptConfinementFactor

LEDWavelength [nm] – Average wavelength of an LED emission
 15.381

PART 15 DESSISCHAPTER 25 INTRODUCTION TO LASERS AND LEDS
LEDEfficiency – Extraction efficiency from an LED simulation

LEDOutput [W] – Output power from an LED simulation

These result variables can be plotted using INSPECT. For example, by assigning p_Contact->TotalCurrent to
the x-axis, Mode0->TotalPower to the left y-axis, and p_Contact->OuterVoltage to the right y-axis, the L–I–V
curves for the laser diode are obtained as shown in Figure 15.74.

Figure 15.74 INSPECT plot of optical output power versus drive current

Scripts to automatically extract the threshold current, the slope efficiency, and so on are available. Users can
refer to the ISE TCAD library or contact ISE Technical Support to obtain these scripts.

25.2.4 Plot variables specific to laser or LED simulations

If the option Plot = "plot" is specified in the File section of the command file, DESSIS creates the plot file at
the end of the simulation. The plot file (plot_des.dat) contains the plot variables that the user has specified in
the Plot statement, and these plot variables are given in DF–ISE format on the vertices of the mesh. The plot
variable names are usually meaningful to make it easier to identify what they represent. Apart from the list of
standard plot variables from a DESSIS simulation (see Appendix E on page 15.619), the Laser option
introduces an additional set of plot variables:

LaserIntensity Combined laser intensity for multimode lasing

Dielectric Dielectric profile

RefractiveIndex Refractive index profile

MatGain Local material gain

QWeDensity, QWhDensity Quantum well electron and hole bound states densities

QWeQuasiFermi, QWhQuasiFermi Quantum well electron and hole quasi-Fermi levels

OpticalIntensityMode0...9 Optical intensity of each mode from mode0 to mode9

OpticalPolarizationAngleMode0...9 Polarization of the optical field vector from mode0 to mode9
15.382

PART 15 DESSIS CHAPTER 25 INTRODUCTION TO LASERS AND LEDS
By inputting the grid file and plot file into Tecplot-ISE, users can visualize the results. For example,
Figure 15.75 shows the LaserIntensity from an edge-emitting laser simulation.

Figure 15.75 Two-dimensional contour plot of laser intensity

In addition, there is a list of options that users can switch on to obtain specific output files. These options are
discussed in the next sections. Some options were included in the example in Section 25.2.1 on page 15.373,
so that users understand how to activate these options. A summary of these options is:

Gain curves – Gain versus energy at different biases

Band structure plots – Results of k.p band structure and wavefunction calculations in quantum well
regions

Far-field plots – Far-field patterns at different biases

Optical field vector and intensity – Optical intensities at different biases

VCSEL near field – Transverse VCSEL near field at different biases

LED radiation – Far zone radiation of an LED emission at different biases and different wavelengths
 15.383

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
DESSIS

CHAPTER 26 Theoretical foundations of laser or
LED simulation

26.1 Overview
Simulating a laser diode is one of the most complex problems in device simulation. The fundamental set of
equations used in a laser simulation is:

Poisson equation

Carrier continuity equations

Lattice temperature equation and hydrodynamic equations

Quantum well scattering equations (for QW carrier capture)

Quantum well gain calculations (Schrödinger equation)

Photon rate equation

Helmholtz equation

The first three equations are semiconductor transport equations for the drift-diffusion regime (see Section 4.2
on page 15.127). Other than the semiconductor transport equations, which solve the electrical drift-diffusion
problem for holes and electrons, the carrier capture in the quantum well (QW) and the gain calculations are
specific to the laser problem, and they link the electronics and optics. The QW carrier capture and gain
calculations are discussed in Chapter 28 on page 15.439. The solution of the Helmholtz equation provides the
optical modes and other optical quantities, and this is presented in Chapter 27 on page 15.399. Finally, the
‘moderator’ between the electronics and optics is the photon rate equation, which solves for the total number
of photons. In the next section, the relationship between all these equations is shown and how to achieve self-
consistency between all these equations is explained.
 15.385

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
26.2 Coupling between optics and electronics
The coupling between the different equations in the laser simulation is illustrated in Figure 15.76.

Figure 15.76 Coupling between the semiconductor transport and optics equations

The complexity of the laser problem is apparent from this relational chart. The key quantities exchanged
between different equations are placed alongside the directional flows between the equation blocks. The
optical problem must be separated from the electrical problem. The optical problem solves the Helmholtz
equation and feeds the mode and photon lifetimes back to the set of active vertices. As a result, the coupling
between the optics and electronics becomes nonlocal, and this leads to convergence problems if the Newton
method is used to couple these two problems. Therefore, a Gummel iteration method (instead of a coupled
Newton iteration) is required to couple the electrical and optical problems self-consistently.

The solution of the electrical problem provides the required refractive index changes and absorption to the
optical solver, which solves for the modes. In the case of the Fabry–Perot edge-emitting laser, the wavelength
is computed from the peak of the gain curve and fed into the optical problem. In VCSELs and distributed
Bragg reflector (DBR) lasers, the wavelength is computed inside the optical resonance problem and is an input
to the electrical problem instead.

The gain calculations involve the solution of the Schrödinger equation for the subband energy levels and
wavefunctions. These quantities are used with the active-region carrier statistics to compute the optical matrix
element in the material gain. The formulation of the material gain is based on Fermi’s golden rule. For more
details about the gain calculations, see Chapter 28 on page 15.439.

The photon rate equation takes the material gain and mode information to compute the modal gain and,
subsequently, the stimulated and spontaneous recombination rates. These optical recombinations increase the
photon population but reduce the carrier population. Therefore, these recombination rates must be added to
the carrier continuity equations to ensure the conservation of particles (see Section 26.3 on page 15.388).

Electrical Problem

Poisson equation

Carrier continuity equations

Temperature/Hydrodynamic
equations

QW scattering equations

Optical Problem

Helmholtz equation

Gain Calculations

Schrödinger equation

Photon rate equation

Active region
carrier densities

Material gain

Mode, photon lifetime

Refractive index,
absorption

Stimulated and
spontaneous
emissions

Wavelength
15.386

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
26.2.1 Algorithm for coupling electrical and optical problems

Figure 15.77 Algorithm flowchart for the self-consistent solution of laser equations

The Newton iteration is performed in DESSIS using the Coupled keyword, while the Gummel iteration is
activated using the keyword Plugin. Figure 15.77 shows the algorithm flowchart for the laser simulation. In
addition, refer to the Solve section in Section 25.2.1 on page 15.373 to see how the syntax is written.

The statement Coupled {Electron Hole Poisson QWeScatter QWhScatter PhotonRate} activates the Newton
iterations for the electron and hole continuity equations, the Poisson equation, the QW carrier capture
equations, and the photon rate equation. This is indicated by the Newton iteration block in Figure 15.77.

After the convergence of the Newton iterations, the updated refractive index profile (if it changes with
temperature and carrier densities) is passed to the optical solver to solve for the eigen optical modes. At this
instance, the band structures are also computed. In the case of VCSELs and DBR lasers, the resonant (or
lasing) wavelength is also computed by the optical solver. The keyword Plugin ensures that the electrical and
optical solutions are iterated self-consistently, that is, a Gummel-type iteration. Through this self-consistency,

Guess
Initial Solution

Convergence?

Convergence?

Convergence?

Increase Bias

Inner
Loop

Increase Bias

Increment OK?

Convergence?

Input
Device Structure

Newton Iteration

Optical Eigenmodes

Final
Bias Reached?

Final Solution

Convergence?
Overall

Band Structure

Lasing Wavelength

Simulation Failed

Reset Solution

Bias Increment
Reduce

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

no

yes
 15.387

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
all the physics should be satisfied. DESSIS automatically handles the flow of the result variables between the
electrical and optical solvers. There are also additional checkpoints to restrict the solution of each part from
diverging during the Gummel iteration, as shown in Figure 15.77 on page 15.387.

When convergence is attained for the Gummel iteration (Plugin), the solution set for this bias is used as the
initial guess for the next bias. In this way, the continuous wave operation of the laser diodes can be simulated.

26.3 Photon rate equation
The origin of the photon rate equation can be traced to the famous work of Henry [134] on the theory of
spontaneous emission noise in open resonators. The cavity of an edge-emitting Fabry–Perot laser is
considered an open electromagnetic resonator, and the modes are driven by the radiative recombination
processes.

From the Maxwell equations, the wave equation for the electric field is derived as:

(15.470)

where is the electric field, is the conductivity, and is the relative permittivity. The source term can
be identified as the polarization due to the spontaneous recombination of electron–hole pairs. For the electric
field, the following separation ansatz is made:

(15.471)

where cc denotes the complex conjugate. The optical field, , is complex; while the photon density, ,
and phase factor, , are real quantities. is normalized according to:

(15.472)

Inserting (Eq. 15.471) into (Eq. 15.470) results in the Helmholtz equation for :

(15.473)

which is discussed in Chapter 27 on page 15.399; a phase rate equation:

(15.474)

which is not included in DESSIS and, finally, the photon rate equation for :

(15.475)

where is the spontaneous emission factor that can be defined by the user (using keyword SponEmiss) and its
default value is 1. The photon rate equation contains the modal gain, , the optical loss, , and the
modal spontaneous emission, .

ε∇×∇× µ0– σ
t∂

∂ε
⎝
⎜
⎛

ε0εr t2

2

d

d ε
t2

2

d

d P
⎠
⎟
⎞

+ +=

ε σ εr P

ε x y z t, , ,() Ψ x y t;,() S t()eiϕ t()ei ω0t κ0z–()
cc+=

Ψ S t()
ϕ Ψ

Ψ 2 xd yd∫∫ 1=

Ψ x y,()

x2

2

∂

∂

y2

2

∂

∂+
⎝ ⎠
⎜ ⎟
⎛ ⎞

Ψ k+ 0
2 n2 x y,() εeff–()Ψ 0=

t∂

∂ϕ ω0ε
re

2εr
---------------ϕ+ 0=

S t()

t∂

∂S G ω() L–()S– c
εr
----βTsp ω()=

β
G ω() Lopt

Tsp ω()
15.388

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
These parameters are defined as:

(15.476)

(15.477)

(15.478)

The stimulated emission coefficient and the spontaneous emission coefficient are
computed locally at each active vertex from Fermi’s golden rule, and their values are taken at the lasing energy

. These radiative emission coefficients are discussed in Chapter 28 on page 15.439. The local optical
intensity is solved from the Helmholtz equation. In the simulation, the spatial integrations are
performed in the active regions of the laser only.

The total optical loss contains the loss due to local free carrier absorption , the cavity loss
, the background optical loss , and the waveguide loss . The free carrier loss is

described in detail in Section 29.1 on page 15.471. The user specifies the background loss. The waveguide
loss (imaginary part of propagation constant) is fed back from the optical solver to the photon rate equation,
and this includes the losses due to leakage waves from the waveguide.

The cavity loss for a Fabry–Perot cavity mainly contains the mirror loss and is given by:

(15.479)

where L is the cavity length and are the facet power reflectivities. This formula is used mainly in the
simulation of edge-emitting lasers. For VCSELs, the cavity loss is more complicated due to scattering and
diffraction effects, and can only be accurately computed by a vectorial cavity solution. In this case, the net
loss in the VCSEL photon rate equation, , must be solved from the optics equation when gain-
guiding effects are included. This is elaborated in Section 26.5 on page 15.392.

Each optical mode corresponds to a distinct photon rate equation. For example, if a user specifies up to ten
modes in a laser simulation, DESSIS automatically solves up to ten photon rate equations. The stimulated and
spontaneous emissions from each photon rate equation are then summed to give a total radiative emission rate.
This total rate is then added to the carrier continuity equation as a radiative recombination to ensure the
conservation of electron–hole pair recombination and photon emission.

At lasing threshold, the modal gain of the laser saturates to the value of the optical losses, which results in a
singularity in the steady-state photon rate:

(15.480)

A small fluctuation of the QW carrier densities and, therefore, gain during Newton iterations leads to large
changes in the photon rate. In cases where the gain exceeds the loss, the photon rate suddenly becomes
negative, which is nonphysical and pushes the entire Newton iteration towards divergence. To solve this
problem, a slack variable, , is introduced to constrain to be always positive:

(15.481)

G ω() rst x y Eω, ,() Ψ x y,() 2 xd yd∫∫=

Tsp ω() rsp x y Eω, ,() Ψ x y,() 2 xd yd∫∫=

Lopt α x y,() Ψ x y,() 2 xd yd∫∫ Lossbg Losscavity Losswaveguide+ + +=

rst x y Eω, ,() rsp x y Eω, ,()

Eω
Ψ x y,() 2

Lopt α x y,()
Losscavity Lossbg Losswaveguide

Losscavity
1

2L
------ 1

ror1

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln=

ror1

Lopt G ω()–()

S
εr
c
----⎝ ⎠

⎛ ⎞ βTsp ω()
Lopt G ω()–
-----------------------------⋅=

λslack Lopt G ω()–()

λslack
2 Lopt G ω()–=
 15.389

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
so that the photon rate will always be positive. This important numeric technique to laser simulation was first
proposed by Smith [184] and, in DESSIS, it is called the photon stabilization equation. When the photon rate
equation is activated, DESSIS automatically activates the photon stabilization equation as well.

26.4 Waveguide optical modes and Fabry–Perot cavity
In an edge-emitting laser with a Fabry–Perot type cavity, the longitudinal direction is invariant. In this case,
the optical propagation in the longitudinal z-direction can always be described by forward and backward
traveling waves with characteristic , where is the longitudinal propagation constant.

Figure 15.78 Waveguide problem in Fabry–Perot cavity assuming longitudinal invariance in z-direction

Therefore, the vector wave equation reduces to the Helmholtz equation:

(15.482)

Table 15.140 Keywords for photon rate equation

Feature Keyword Example syntax

Photon rate equation PhotonRate Solve {...
 Coupled {PhotonRate ...}
}

Spontaneous emission factor SponEmiss=<float> Physics {...
 Laser (...
 SponEmiss = 1.0

)
}

Cavity length [microns] CavityLength=<float> Physics {...
 Laser (...
 Cavitylength = 500
 lFacetReflectivity = 0.3
 rFacetReflectivity = 0.99
 OpticalLoss = 10.0
 WaveguideLoss

)
}

Left-facet power reflectivity lFacetReflectivity=<float>

Right-facet power reflectivity rFacetReflectivity=<float>

Background optical loss [1/cm] OpticalLoss=<float>

Activates the feedback of waveguide
loss from optical solver to the photon
rate equation. Default is no feedback.

WaveguideLoss

jβz±()exp β

z Cavity Length, L

Power Reflectivity, r0

Power Reflectivity, r1

∇t ∇t ×× ∇t ε 1– ∇t ε⋅()– ω2µ0ε x y,() β2–()+() Et x y,()⋅ 0=
15.390

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
where is the transverse vectorial electric field, ω is the angular frequency, is the permittivity,
is the complex propagation constant, and is the transverse gradient operator. The optical eigenmodes are
the waveguide modes, which are characterized by the mode profile and propagation constant, .

In a weakly guiding waveguide where the refractive index inhomogeneity, , is small, the
vector Helmholtz equation reduces to its scalar form:

(15.483)

where the scalar wavefunction describes either the TE-polarized or TM-polarized optical field
component, and is the effective dielectric constant. DESSIS solves the vectorial and scalar Helmholtz
equations by the finite element method [135].

In the waveguide problem, the input parameters are:

Wavelength (encompassed in)

Refractive index profile

Boundary conditions

The output is:

Optical field profile

Effective index (real part of propagation constant,)

Net optical loss (imaginary part of propagation constant)

The optical intensity is the square of the optical field, and it is normalized for use in the photon rate equation
to compute the modal gain, spontaneous emission, and absorption loss (see (Eq. 15.476)–(Eq. 15.478)).

NOTE The imaginary part of the propagation constant is only given to the photon rate equation if the
keyword WaveguideLoss is specified in the Laser statement.

26.4.1 Lasing wavelength in Fabry–Perot cavity

In a Fabry–Perot edge-emitting laser cavity, the wavelength is computed in the electronic solution and then
passed to the Helmholtz equation solver. The physics is briefly outlined here. A Fabry–Perot cavity has
eigenfrequencies:

(15.484)

where is an integer containing the number of wavelengths that fit into the longitudinal cavity and is the
cavity length. In a Fabry–Perot cavity (typically a few millimeters), is usually a very large number and the
longitudinal mode spacing is very narrow (a few nanometers). The modal gain has a bandwidth of the order
of 10 nm. Therefore, the lasing wavelength is computed as the cavity mode that has maximum modal gain

 by varying . Changing the wavelength changes the radiative recombination in the continuity
equations. The default setting updates the lasing wavelength after each Newton iteration. This is a good

Et x y,() ε β
∇t

β

∇t ε 1– ∇t ε⋅()Et x y,()

x2

2

∂

∂

y2

2

∂

∂+
⎝ ⎠
⎜ ⎟
⎛ ⎞

Ψ k+ 0
2 n2 x y,() εeff–()Ψ 0=

Ψ x y,()
εeff

λ 2πc() ω⁄=

Re β() neff
2π
λ

------⋅=

ωp
πc

εr L⋅
------------------p=

p L
p

G ω() p
 15.391

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
approximation as long as the coupling between the electronic properties and the choice of wavelength is weak.
Alternatively, a self-consistent coupling is possible by including the keyword Wavelength in the Plugin
statement:

Solve {...
quasistationary (...

Goal {name="p_Contact" voltage=1.6})
{

Plugin(BreakOnFailure){
Coupled {Electron Hole Poisson QWeScatter QWhScatter

PhotonRate}
Wavelength

}
}

}

26.4.2 Specifying a fixed optical confinement factor

The Helmholtz equation is not solved if the keyword optconfin=<float> is specified:

Physics {...
Laser (...

Optics (...
optconfin = 0.9

)
)

}

In this case, the spatial optical intensity is assumed to be constant over the cavity, that is, the local mode
gain and spontaneous emission at each active vertex are multiplied by the constant optconfin=<float> factor.

26.4.3 Output power

The output power at the facet 0 of the Fabry–Perot cavity is obtained by integrating the power flow (Poynting
vector) in the z-direction over the facet surface [134]. This gives:

(15.485)

The power output from the two facets is given in the current file at the end of the simulation. The keywords
for specifying the cavity length and facet power reflectivities are in Table 15.140 on page 15.390.

26.5 Cavity optical modes in VCSELs
The cavity eigenproblem deals with resonance in a cavity and is a difficult problem to handle for an arbitrary
geometry and inhomogeneous cavity. Cavity resonance is defined as the condition whereby a wave can
sustain itself in harmony inside the cavity. This means that even after undergoing multiple internal reflections
inside the cavity, the optical waves at every point in the cavity are in phase with each other. If the cavity is
leaky, some waves leak and the resonance decreases in amplitude and eventually diminishes. However, in a
laser cavity, when stimulated emission of photons into the resonant mode is greater than the leakage, the
resonance is sustained.

Ψ

P0 S hωc

2 εrL
--------------- 1

r0r1
----------⎝ ⎠

⎛ ⎞ r1 1 r0–()

r0 r1+() 1 r0r1–()
--ln=
15.392

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
The cavity eigenproblem is then a statement of how to find these resonant modes (resonant wavelength) and
the required gain within the active region that will balance the leakage (optical loss) to sustain resonance, that
is, laser action. Therefore, the cavity eigenproblem is different from the waveguide problem. In summary, the
input is:

Refractive index profile

Boundary conditions

The required output for the cavity eigenproblem is:

Resonant wavelength

Resonant optical field profile

Net optical loss

The detailed treatment of the cavity vectorial eigensolver for VCSELs in DESSIS has been published [185]
and only a summary of key ideas is presented here. The treatment essentially follows the original idea of
Henry [134], which has been extended to a nonadiabatic form [186]. First, there is the time-dependent vector
wave equation:

(15.486)

where is a source term caused by spontaneous emission that contributes to the electric field density.
The term in the brackets is a time convolution of the dielectric function with the electric field. The electric
field is expanded (spectrally decomposed) into a discrete set of orthogonal modes,

(15.487)

where are vectorial modes, are complex values, and are the complex conjugate terms.
is the frequency of the mode, a real value function. By substituting (Eq. 15.487) into (Eq. 15.486) and taking
only the first-order terms of the time derivatives, a set of inhomogeneous equations is obtained:

(15.488)

where:

(15.489)

In this case, the frequency dispersion of the dielectric function has been taken into account in (Eq. 15.489).
To solve the above set of inhomogeneous equations, the auxiliary homogeneous equation is introduced:

(15.490)

∇ ∇ E r t,()×() 1
c2
----- ∂2

∂t2
-------+× εr r t τ, ,() E r t τ–,()⊗[] µ0

∂2

∂t2
-------K r t,()–=

K r t,()

E r t,() av t()e
ω'v τ() τd

0

 t

∫
Ψv r ω,() cc+

v
∑=

Ψv r ω,() av t() cc ω'v

e
ω'v τ() τd

0

 t

∫
∇ ∇ Ψv×()×

ω'v
2

c2
-------εrΨv–

⎝ ⎠
⎜ ⎟
⎛ ⎞

av t()⋅ ε̃rΨv a· v t()⋅+⋅
v
∑ µ0

∂2

∂t2
-------K r t,()–=

ε̃r
2iω'v

c2

ω'v
2

------- ∂
∂ω'v
----------εr εr+⎝ ⎠

⎛ ⎞=

∇ ∇ ×()×
ω'v

2

c2
-------εr– Ψv⋅ ωv''ε̃rΨv=
 15.393

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
where is defined to be the eigenvalue and the orthogonality relation is:

(15.491)

At resonance, must be purely real [185] and this forms the basis for finding the solution to the cavity
eigenproblem. The frequency is varied and (Eq. 15.490) is solved repeatedly for . As approaches
the resonance value, the imaginary part of approaches zero in an approximately linear manner. This gives
users an advantage in accelerating the solution-hunting. Therefore, it is important that a ‘close enough’ target
eigenvalue is provided to benefit from this advantage.

Next, to derive the photon rate equation for each cavity mode , (Eq. 15.490) is substituted into (Eq. 15.488)
and the orthogonality relation, (Eq. 15.491), is applied. After some manipulation, the cavity photon rate
equation evaluates to the familiar form:

(15.492)

where is the spontaneous emission rate. It transpires that the eigenvalue of (Eq. 15.490), , is the net
loss rate. The material gain and absorption enter the photon rate equation indirectly through the dielectric
function of the active region:

(15.493)

 is the stimulated emission coefficient and is discussed in Section 28.3 on page 15.443. This
approach ensures that the material gain and absorption is coupled rigorously between the electronics and
optics. Therefore, the total cavity loss (or gain) is computed accurately. With the capability to model rapid
changes in material gain, this cavity solver allows users to handle gain-guided VCSELs as well.

The photon rate equation is coupled to the Poisson, carrier continuity, and temperature (and hydrodynamic)
equations using the Newton method, so the derivatives of with respect to a host of quantities for the
Jacobian matrix entries are required.

 can be identified as the relative change of the average electromagnetic energy stored in mode :

(15.494)

where is the energy density of the electromagnetic field of mode derived from the Poynting vector.
Assuming that the optical mode does not change greatly, the derivatives of can be computed from the
derivatives of the dielectric function, .

26.5.1 VCSEL output power

When the vectorial optical solver is used, perfectly matched layers (PMLs) are used to surround the simulation
structure. The PMLs act as wave absorbers to prevent reflections and artificially simulate the radiative
boundary condition (see Section 27.5 on page 15.410). The output power emitted from the top surface is the
time averaged dissipation of the optical power in the top PML.

ωv''

Ψu ε̃rΨv⋅ rd
volume

∫ δuv=

ωv''
ω'v ωv'' ω'v

ωv''

v

d
dt
-----Sv 2ωv''Sv– Rv

sp+=

Rv
sp 2ωv''

εr active, r ω'v,() n r ω'v,() c2

4ω'v
2

-----------rst r hω'v,()2–
⎝ ⎠
⎜ ⎟
⎛ ⎞

i
n r ω'v,()c

ω'v
------------------------rst r hω'v,()+=

rst r hω'v,()

2ωv''

2ωv'' v

2ωv''
1

Wv〈 〉 rd
volume

∫

∂Wv
∂t

----------〈 〉 rd
volume

∫⋅=

Wv v
2ωv''

εr r t τ, ,()
15.394

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
The emitted power for mode is, therefore, computed by the integral:

(15.495)

and takes into account the material absorption of the top PML.

26.5.2 Cylindrical symmetry

Discretizing the VCSEL structure in 3D results in a prohibitively huge mesh size. Therefore, cylindrical
geometry is assumed to reduce the size of the problem. By considering cylindrical symmetry in a body-of-
revolution (BOR) about the symmetry axis, the cavity modes of the VCSEL can be further decomposed into
cylindrical harmonics:

(15.496)

It is well known that the cylindrical harmonics are orthogonal and, hence, the vectorial resonant optical field
 is solved for each cylindrical order, , in 2D space. In the DESSIS command file, the cylindrical

harmonic order is input using the keyword AzimuthalExpansion. (More about the syntax is discussed in
Section 27.3.1 on page 15.401.)

Using experience from optical fiber modeling, the fundamental mode of an optical fiber is HE11, followed by
its immediate higher order modes, TE01, TM01, and so on. This means that the fundamental mode has
cylindrical harmonic order of , and the next two higher order modes have orders . Users are
encouraged to use different cylindrical harmonic orders to verify which one contains the fundamental
resonant mode of the VCSEL cavity.

26.5.3 Approximate methods for VCSEL cavity problem

Apart from the rigorous vectorial treatment of VCSEL cavity optics, DESSIS also contains two approximate
methods to compute the resonant modes in VCSEL cavities:

Transfer matrix method for multilayers with a Gaussian transverse mode profile

Effective index method

Both methods are scalar in nature and fast, and have low memory requirements. In particular, the transfer
matrix method is suitable for users who want to look at how the transverse mode shape affects the different
lasing characteristics of a VCSEL. The effective index method is best suited for index-guided VCSELs and
it has been shown to compute accurate resonant wavelengths for many index-guided VCSEL structures
including oxide-confined ones. When these approximate methods are used, DESSIS uses the same photon rate
equation as for edge-emitting lasers.

v

PTopEmit v,
∂Wv
∂t

----------〈 〉 rd
vol TopPML–

∫=

Ψv ρ φ z, ,() Ψv
m() ρ z,() eimφ⋅

m
∑=

Ψv
m() ρ z,() m

m

m 1= m 0=
 15.395

PART 15 DESSISCHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
26.6 Modeling light-emitting diodes
A light-emitting diode (LED) and a laser share the same physics of carrier transport. Therefore, the theory
presented for quantum-well modeling in Chapter 28 on page 15.439 is applicable to LED simulations as well.
The key difference between an LED and a laser is a resonant cavity design for lasers that enhances the
coherent stimulated emission at a single frequency (for each mode). An LED emits with a spectrum of
wavelengths based on spontaneous emission of photons in the active region. However, a new design for LEDs
with a resonant cavity – the resonant cavity LED (RCLED) – uses the resonance characteristics to cause an
amplified spontaneous emission in a narrower spectrum to allow for superbright emissions.

The simulation of LEDs presents many challenges. The large dimension of typical LED structures, in the
range of millimeters, forbids the use of standard time-domain electromagnetic methods such as finite
difference and finite element. These methods require at least 10 points per wavelength and typical emissions
are at 1 µm. A quick estimate gives a necessary mesh size in the order of 10 million mesh points for a 2D
geometry. Alternatively, the use of the raytracing method approximates the optical intensity inside the device
as well as the amount of light that can be extracted from the device. In many cases, a 2D simulation is not
sufficient and a 3D simulation is required to give an accurate account of the physical effects associated with
the geometric design of the LED.

Innovative designs such as inverted pyramid structures, chamfering of various corners, and drilling holes are
performed in an attempt to extract the maximum amount of light from the device. The ISE device editor
DEVISE is well equipped to create complex 3D devices and provides great versatility in exploring different
realistic LED designs.

26.6.1 Coupling between electronics and optics in an LED
simulation

Similar to a laser simulation, an LED simulation solves the Poisson equation, carrier continuity equations,
temperature equation, and Schrödinger equation self-consistently. The flowchart in Figure 15.79 illustrates
the coupling of the various equation systems in an LED simulation.

Figure 15.79 Flowchart of the coupling between the electronics and optics for an LED simulation

Electrical Problem

Poisson equation
Carrier continuity equations
Temperature/hydrodynamic equations
Quantum-well scattering equations

Optical Problem

Raytracing (far field, extraction efficiency)

Gain Calculations

Schrödinger equation

Active region carrier densities

Spontaneous emission
power density at each
active vertex

Refractive index,
absorption, wavelength

Spontaneous emission rate
15.396

PART 15 DESSIS CHAPTER 26 THEORETICAL FOUNDATIONS OF LASER OR LED SIMULATION
26.6.2 Discussion of LED physics

Many physical effects are manifested in an LED structure. Current spreading is important to ensure that the
current is channelled to supply the spontaneous emission sources at strategic locations that will provide the
optimal extraction efficiency. When quantum wells are involved, DESSIS computes a net carrier capture into
the quantum wells based on scattering processes. In some cases, the LED structure gives a preferred
polarization in the optical field and the spontaneous emissions in the active region can become anisotropic.
DESSIS has a new feature to allow users to select the shape of the anisotropy for spontaneous emission.

The geometric shape of the LED is changed to extract more light from the structure. In most cases, the major
part of the light produced is trapped within the structure through total internal reflection. As a result, the
photon recycling effect becomes important. The photon recycling effect contains two parts: amplified
spontaneous emission (ASE) and absorption re-emission processes. A new physical model for photon
recycling has been formulated and will be introduced in DESSIS in ISE TCAD Release 11.0. Another area
under development is a physical model for RCLEDs.

Important aspects of LED design are easily simulated by DESSIS. These include current spreading flow,
geometric design, physics of quantum well transport, and extraction efficiency. A new feature allows users to
look at the wavelength spectrum of the far-zone radiation. This is especially useful in the design of white
LEDs.
 15.397

PART 15 DESSIS CHAPTER 27 OPTICS
DESSIS

CHAPTER 27 Optics

27.1 Overview
In a laser simulation, the optics problem is challenging. The refractive index distribution in a laser structure
changes with temperature and carrier density (plasma effect). In DESSIS, the refractive index is taken from a
corresponding parameter file and wavelength dispersion of the refractive indices can also be taken into
consideration (see Section 29.5 on page 15.477). In order to handle such inhomogeneous refractive index
geometries, the finite element method was selected as the core method to discretize and solve the optics
problem. In addition, there are other approximate methods such as the effective index method, transfer matrix
method, and raytracing. These additional methods allow users to run the simulation faster, but with some loss
of accuracy. They are described in detail in the following sections.

The resulting quantities of interest from the optics solution are the optical mode profiles, optical loss, and
resonant wavelength. In a Fabry–Perot cavity for an edge-emitting laser, the wavelength is determined by the
peak of the material gain from the electrical simulation. In other cases such as DFB lasers, DBR lasers, and
VCSELs, the wavelength is determined by the shape and design of the cavity structure.

The optics problem can be iterated self-consistently with the electrical problem by Gummel iteration.
Referring to Section 25.2.1 on page 15.373, the self-consistent coupling is activated by using the keyword
Optics in the Plugin statement:

Solve {...
quasistationary (...

Goal {name="p_Contact" voltage=1.6})
{

Plugin(BreakOnFailure){
Coupled { Electron Hole Poisson QWeScatter QWhScatter

PhotonRate }
Optics
Wavelength

}
}

}

If the coupling between the optics and electronics is weak, for example, in an isothermal simulation and at
low-current injection conditions, it is not necessary to iterate the optics problem with the electrical problem
since the optical eigenmode is not expected to change greatly. In such a case, remove the Optics keyword from
the Plugin statement, and the optical eigenmode is computed only once at the beginning of the simulation.

There are two types of optical problem in laser simulations: the waveguide problem for edge-emitting lasers
and the resonant cavity problem, for example, in VCSELs. In the waveguide problem, essentially, the
Helmholtz equation is solved, while the cavity problem solves the wave equation directly. These two types of
problem are discussed in the next sections.
 15.399

PART 15 DESSISCHAPTER 27 OPTICS
27.2 Finite element (FE) formulation
The finite element method is a standard variational approach for solving the electromagnetic wave
equations [187]. The Ritz procedure is used to evaluate the functional:

(15.497)

where is the linear operator and is a trial function. The governing differential equation is . The
wave equations in the waveguide and cavity problems are both of the form of the governing differential
equation and, therefore, are well suited to the finite element method.

For example, use the scalar Helmholtz equation for the waveguide problem to trace the formulation of the
finite element method. The Ritz procedure is applied to the scalar Helmholtz equation and gives the
variational functional:

(15.498)

The edge-emitting laser structure is discretized into finite elements, and the trial function is constructed by
assuming weighted, linear basis functions on each edge of the finite element. These basis functions are
commonly referred to as shape functions. The variables, in this case, are the coefficients (weights) of the linear
basis function on each edge. By the method of variation, the minimization of the functional gives the
optimal solution, , for the finite element discretization of the scalar Helmholtz equation. Therefore, the
resolution of the discretization is important to determine the accuracy of the solution. As a general rule,
20 points per wavelength will provide an accurate solution for most structures.

To find the minimization of the functional , take the first derivative of with respect to the weights
of the linear basis function, , and set the derivative to zero. This yields a set of linear equations that can
be cast into an algebraic, generalized, eigenvalue problem:

(15.499)

with:

(15.500)

(15.501)

where are the linear shape functions. The relative dielectric constant remains constant across the
element , and the integration occurs over the area of the element, .

The sparse matrices and are derived from the assembly process. They are complex symmetric but
nonhermitian. As the system is nonhermitian, it causes the eigenvalues to be complex. is the column
vector of the unknown weights. After the weights, , have been solved, they are substituted back into the
linear shape functions to recover the electric fields on the nodes of the grid.

F Ψ() 1
2
--- ℑΨ Ψ,〈 〉 Ψ f,〈 〉– f Ψ,〈 〉–=

ℑ Ψ ℑΦ f=

F Ψ() 1
2
--- Ψx∂()2 Ψy∂()2 k0

2εrΨ
2–+() Ωd∫∫=

Ψ

F Ψ()
Ψ

F Ψ() F Ψ()
Φ{ }

A[] Φ{ } εeff B[] Φ{ }=

A[] k0
2εr e, L{ } L{ }T⋅ Ωe Lt∇{ } Lt∇{ }T⋅ Ωed

Ωe
∫∫–d

Ωe
∫∫⎝ ⎠

⎜ ⎟
⎛ ⎞

allElements
∑=

B[] L{ } L{ }T⋅ Ωed

Ωe
∫∫

allElements
∑=

L{ } εr
e Ωe

A[] B[]
εeff Φ{ }

Φ{ }
15.400

PART 15 DESSIS CHAPTER 27 OPTICS
The Jacobi–Davidson QZ algorithm is applied [136][137] to solve the sparse matrix generalized eigenvalue
problem. This is an iterative solver, so an initial guess for the eigenvalue is required. The better the initial
guess, the faster the solution will be found. In addition, the numeric solver has also been parallelized.

27.3 Syntax of FE scalar and FE vectorial optical
solvers

The finite element (FE) scalar solver caters only to the waveguide problem, while the FE vectorial solver
handles both waveguide and cavity problems. The choice of FE scalar or FE vectorial solvers is determined
in the Optics statement. The default is the FE scalar solver for waveguide modes.

27.3.1 FE scalar solver

The FEscalar solver for the waveguide problem is activated in the Physics-Laser-Optics statement in the
command file:

Physics {...
Laser (...

Optics(
FEScalar(EquationType = Waveguide

Symmetry = Symmetric
LasingWavelength = 800 # [nm]
TargetEffectiveIndex = 3.4 # initial guess
TargetLoss = 10.0 # initial guess [1/cm]
Polarization = TE
Boundary = "Type1"
ModeNumber = 1

)
)

)
}

This example shows how to activate the FE scalar solver to solve for one waveguide mode. As discussed in
Section 27.2 on page 15.400, an iterative method is used to solve for the modes. Therefore, specifying a good
TargetEffectiveIndex is important to speed up the computation of the solution. For multimodes, increase
ModeNumber and specify multiple entries for TargetEffectiveIndex, TargetLoss, and so on (see Section 27.3.3 on
page 15.405). Only Cartesian coordinates and waveguide modes are associated with the FE scalar solver. For
scalar cavity solvers for VCSELs, the user is referred to the transfer matrix method and effective index
method.

In DESSIS, there is an option to run only the optical solver without activating the laser simulation. This is
called the optics stand-alone option (see Section 29.8 on page 15.484). In this case, users must specify the
keyword Boundary in the FEScalar statement if Symmetric or Periodic is chosen. In a laser simulation, the default
values of Boundary listed in Table 15.147 on page 15.407 are used unless users select the boundary types
explicitly. A detailed discussion of the Boundary keyword is in Section 27.4 on page 15.406.
 15.401

PART 15 DESSISCHAPTER 27 OPTICS
Table 15.141 and Table 15.142 describe all of the possible arguments that can be used inside the FEScalar
statement. A brief explanation of some keywords follows.

There are three types of symmetry entry: Symmetric is symmetry about the y-axis at x = 0, Nonsymmetric is
nonsymmetry, and Periodic means the left and right boundaries of the Neumann type. The default boundary
conditions for the different symmetry types are listed in Table 15.147 on page 15.407. The LasingWavelength
entered is solely for the initial computation of the optical mode and the way the lasing wavelength is computed
is discussed in Section 26.4 on page 15.390. TargetEffectiveIndex is the initial guess for the eigenvalue of the
waveguide problem and is a necessary input to ensure that the required mode is computed.

27.3.2 FE vectorial solver

The FE vectorial solver handles both waveguide and cavity-type problems. The syntax of both problems is
described separately.

Table 15.141 Arguments for the FEScalar statement

Feature keyword Parameter keyword/Description Default value

EquationType=<parameter> Waveguide Waveguide

Symmetry=<parameter> Symmetric
NonSymmetric
Periodic

Symmetric

LasingWavelength=<float> Lasing wavelength [nm] –1.0

TargetEffectiveIndex=<float> Initial guess for effective refractive index –1.0

TargetLoss=<float> Initial guess for propagation loss [1/cm] 0.0

Polarization=<parameter> TE
TM

TE

ModeNumber=<int> Number of modes to solve 1

Boundary="<parameter>" Type1
Type2

No default

Absorption(ODB) Allows user to specify the material loss in the optical
database section of the material parameter file

No default

Table 15.142 Dependences of keywords for FEScalar optical mode solver

Keyword Dependencies

EquationType Waveguide

Coordinates Not used; Cartesian is always assumed for FEScalar.

Symmetry Symmetric NonSymmetric Periodic

Boundary Type1 Type2 Not valid Type1 Type2

LasingWavelength <float>

TargetEffectiveIndex <float>

TargetLoss <float>
15.402

PART 15 DESSIS CHAPTER 27 OPTICS
27.3.2.1 FE vectorial solver for waveguides

The syntax for using the vectorial FE solver for waveguides is:

Physics {...
Laser (...

Optics(
FEVectorial(EquationType = Waveguide

Symmetry = Symmetric
Coordinates = Cartesian
LasingWavelength = 800 # [nm]
TargetEffectiveIndex = 3.4 # initial guess
TargetLoss = 10.0 # initial guess [1/cm]
Boundary = "Type1"
ModeNumber = 1

)
)

)
}

The argument list for FEVectorial statement for the waveguide problem is similar to that of the FEScalar
statement.

27.3.2.2 FE vectorial solver for VCSEL cavity

The syntax for using the FE vectorial solver for a VCSEL cavity is:

Physics {...
Laser (...

Optics(
FEVectorial(EquationType = Cavity

Coordinates = Cylindrical
TargetWavelength = 777 # initial guess [nm]
TargetLifeTime = 1.4 # initial guess [ps]
AzimuthalExpansion = 1 # cylindrical harmonic order
ModeNumber = 1

)
)
VCSEL() # specify this is a VCSEL simulation

)
}

The syntax for the VCSEL cavity problem is very different from that of the waveguide problem. The keyword
VCSEL must be included in the Laser statement to indicate that this is a VCSEL simulation. An initial guess for
the resonant wavelength must be specified by TargetWavelength.

Cylindrical symmetry has been specified by Coordinates=Cylindrical, so the modes contain the angular
dependence of . The cylindrical harmonic order, , can be changed by the keyword AzimuthalExpansion.

NOTE Unless stated specifically, the argument should apply to both cavity and waveguide problems.

eimφ m
 15.403

PART 15 DESSISCHAPTER 27 OPTICS
Table 15.143 describes the arguments that can be used with the FEVectorial keyword. Table 15.144 and
Table 15.145 on page 15.405 group the keywords for the waveguide and cavity problems, respectively.

Table 15.143 Arguments for the FEVectorial statement

Feature keyword Parameter keyword/Description Default value

EquationType=<parameter> Cavity
Solves the cavity problem

No default

Waveguide
Solves the waveguide problem

Symmetry=<parameter> Symmetric
Periodic
NonSymmetric

Symmetric

Boundary="<parameter>" Type1
Type2

No default

LasingWavelength=<float> Lasing wavelength [nm] (for Waveguide only) –1.0

TargetEffectiveIndex=<float> Initial guess for effective refractive index
(for Waveguide problems only)

–1.0

TargetLoss=<float> Initial guess for propagation loss [1/cm]
(for Waveguide problems only)

0.0

Coordinates=<parameter>
(for cavity problems only)

Cartesian
Cylindrical

No default

TargetWavelength=<float> Target value for lasing wavelength [nm]
(for cavity problems only)

–1.0

TargetLifetime=<float> Target value for photon lifetime [ps]
(for cavity problems only)

1e99

LongitudinalWavevector=<float> Longitudinal wavevector (=) [1/m]
(for Cartesian cavity problems only)

–1.0

AzimuthalExpansion=<int> Cylindrical harmonic order, in
(for cylindrical cavity problems only)

–1.0

Modenumber=<int> Number of modes to be calculated 1

Absorption(ODB) Allows users to specify material loss in the optical
database section of the material parameter file

No default

Table 15.144 Dependencies of keywords for EquationType=Waveguide in FEVectorial optical solver

Keyword Dependencies

EquationType Waveguide

Coordinates Not valid

Symmetry Symmetric NonSymmetric Periodic

Boundary Type1 Type2 Not valid Type1 Type2

TargetWavelength Not valid

TargetLifetime Not valid

2π λz⁄

m eimφ
15.404

PART 15 DESSIS CHAPTER 27 OPTICS
27.3.3 Specifying multiple entries for parameters in FEScalar
and FEVectorial

When multimodes are needed, ModeNumber is used to specify the number of modes required. In this case, users
may want to specify different initial guesses for the effective index (for waveguide modes), resonant
wavelength (for cavity modes), and so on. This is accomplished by extending the syntax for these initial guess
parameters. The following is an example for waveguide modes and one for VCSEL cavity modes.

27.3.3.1 Multiple waveguide modes

The syntax extension of FEScalar for multiple waveguide modes is shown here. FEVectorial for multiple
waveguide modes has the same syntax extension. The boundary type is specified explicitly in this example.
If the Boundary keyword is omitted, the default values in Table 15.147 on page 15.407 are taken:

Physics {...
Laser (...

Optics(
FEScalar(EquationType = Waveguide

Symmetry = Symmetric

LongitudinalWavevector Not valid

AzimuthalExpansion Not valid

LasingWavelength <float>

TargetEffectiveIndex <float>

TargetLoss <float>

Table 15.145 Dependencies of keywords for EquationType=Cavity in FEVectorial optical solver

Keyword Dependencies

EquationType Cavity

Coordinates Cartesian Cylindrical

Symmetry Symmetric NonSymmetric Not valid

Boundary Type1 Type2 Not valid

TargetWavelength <float>

TargetLifetime <float>

LongitudinalWavevector <float> Not valid

AzimuthalExpansion Not valid <int>

LasingWavelength Not valid

TargetEffectiveIndex Not valid

TargetLoss Not valid

Table 15.144 Dependencies of keywords for EquationType=Waveguide in FEVectorial optical solver

Keyword Dependencies
 15.405

PART 15 DESSISCHAPTER 27 OPTICS
LasingWavelength = 780
TargetEffectiveIndex = (3.54 3.47 3.5 3.33 3.4)
TargetLoss = (5.0 6.0 8.0 7.0 10.0)
Polarization = (TE TE TM TE TM)
ModeNumber = 5
Boundary = ("Type1" "Type2" "Type1" "Type1" "Type2")

)
)

)
}

27.3.3.2 Multiple cavity modes

The syntax extension of FEVectorial for multiple cavity modes is:

Physics {...
Laser (...

Optics(
FEVectorial(EquationType = Cavity

Coordinates = Cylindrical
TargetWavelength = (777 762 760 753 751)
TargetLifeTime = (1.5 1.3 1.22 1.16 1.1)
AzimuthalExpansion = (1 0 0 2 2)
ModeNumber = 5

)
)
VCSEL()

)
}

27.4 Boundary conditions and symmetry for optical
solvers

There are three main types of boundary condition for the optical problem:

Dirichlet boundary condition

Neumann boundary condition

Radiative boundary condition

These boundary conditions can be controlled to some extent with the Symmetry keyword in the FEScalar and
FEVectorial statements. In the DESSIS optical solvers, the external boundaries of the optical simulation space
are assumed (by default) to satisfy the Dirichlet boundary condition, that is, the optical fields on this outer
boundary are set to zero. By specifying different types of symmetry, the Neumann boundary condition can be
imposed on different external boundaries.
15.406

PART 15 DESSIS CHAPTER 27 OPTICS
Table 15.146 summarizes the symmetry types (appearing in the FEScalar and FEVectorial statements) and lists
the associated boundary conditions.

If Symmetry=Symmetric and the optics stand-alone option is used, the argument keyword Boundary must be
specified. In laser simulations, Boundary is chosen automatically unless explicitly specified. The argument
Boundary dictates the boundary condition at the symmetry y-axis and is specific only for Cartesian coordinates
because odd and even modes require different types of boundary condition at the symmetry y-axis. A
summary of the default boundary conditions used in different cases is presented in Table 15.147. The
following examples explain the different cases.

NOTE The boundary condition for every mode can be explicitly specified by the keyword Boundary =
("Type2" "Type1" ...).

27.4.1 Symmetric FEScalar waveguide mode in Cartesian
coordinates

In this example, the FEScalar optical mode solver is applied to a symmetric edge-emitting laser to obtain the
even and odd modes. The top row of Figure 15.80 on page 15.408 shows the even modes. They are calculated
when the keyword Boundary = "Type1" is set. The bottom row shows the odd modes. They are computed when
the keyword Boundary = "Type2" is set. The fundamental mode is obtained if the keyword Boundary = "Type1"
is set while the first-order mode is calculated for Boundary = "Type2".

Table 15.146 Symmetry types in FEScalar and FEVectorial statements and their associated optical
boundary conditions

Symmetry type Boundary condition

NonSymmetric Dirichlet boundary condition on all external boundaries, that is, the optical field is set to zero
at the boundaries.

Periodic Neumann or Dirichlet boundary conditions on all vertical boundaries, and Dirichlet boundary
condition on all horizontal boundaries.

Symmetric Neumann or Dirichlet boundary condition for even or odd on the symmetry axis, and
Dirichlet boundary condition elsewhere. The symmetry axis is defined as the y-axis at x = 0.

Table 15.147 Default boundary conditions for the optical solvers

Case Periodic Symmetric NonSymmetric

FEScalar Boundary = "Type1" for first n/2 modes and
Boundary = "Type2" for the rest of the modes.

Boundary not used.

FEVectorial, Waveguide Boundary = "Type2" for first n/2 modes and
Boundary = "Type1" for the rest of the modes.

FEVectorial, Cavity Boundary chosen automatically.
 15.407

PART 15 DESSISCHAPTER 27 OPTICS
Figure 15.80 Scalar mode patterns of a symmetric edge-emitter structure

27.4.2 Symmetric FEVectorial waveguide modes in Cartesian
coordinates

In this example, the FEVectorial optical mode solver is applied to a symmetric edge-emitting laser to find the
horizontally and vertically polarized modes. The top row of Figure 15.81 shows the calculated modes when
the keyword Boundary = "Type1" is set. The bottom row shows the modes that are calculated when the argument
Boundary = "Type2" is set. The horizontally polarized fundamental mode is obtained for Boundary = "Type2".

Figure 15.81 Vectorial mode patterns of a symmetric edge-emitter structure

3.454 3.4493 3.4404

3.4522 3.4453 3.4347

0

Boundary = Type1

Boundary = Type2

Boundary = Type1 Boundary = Type1

Boundary = Type2 Boundary = Type2

3.4540 3.4515 3.4492

3.4534 3.4522 3.4487

Boundary = Type1

Boundary = Type2

Boundary = Type1 Boundary = Type1

Boundary = Type2 Boundary = Type2
15.408

PART 15 DESSIS CHAPTER 27 OPTICS
27.4.3 Symmetric FEVectorial VCSEL cavity modes in
Cartesian coordinates

In addition to cylindrical symmetry, the FEVectorial optical mode solver can also be applied to a symmetric
VCSEL in Cartesian coordinates to find the modes that are polarized in-plane or perpendicular to the plane.
The top row of Figure 15.82 shows the modes when the keyword Boundary = "Type1" is set. The bottom row
shows the modes that are computed when the keyword Boundary = "Type2" is set. The in-plane polarized
fundamental mode is obtained for Boundary = "Type2", while the perpendicularly polarized fundamental mode
is computed for Boundary = "Type1".

Figure 15.82 Vectorial mode patterns of a VCSEL in Cartesian coordinates

27.4.4 Symmetric FEVectorial VCSEL cavity modes in
cylindrical coordinates

The argument AzimuthalExpansion in the FEVectorial optical mode solver is used to calculate different types of
mode in a cylindrical VCSEL. The left column of Figure 15.83 on page 15.410 shows the computed modes
for the argument AzimuthalExpansion=0. The middle column shows the modes that are calculated when
AzimuthalExpansion=1 is set. The right column shows the mode pattern for AzimuthalExpansion=2. For example,
the fundamental mode HE11 is obtained by setting the argument AzimuthalExpansion=1.

744.94nm / 2.69ps 744.51nm / 2.35ps 742.48nm / 0.85ps

745.37nm / 3.12ps 744.03nm / 1.94ps 743.04nm / 1.22ps

Boundary = Type1

Boundary = Type2

Boundary = Type1

Boundary = Type2

Boundary = Type1

Boundary = Type2
 15.409

PART 15 DESSISCHAPTER 27 OPTICS
Figure 15.83 Vectorial mode patterns of a VCSEL in cylindrical coordinates

27.5 Perfectly matched layers
Apart from Dirichlet and Neumann boundary conditions, DESSIS–Laser can simulate the radiative boundary
condition artificially using the concept of a perfectly matched layer (PML).

The PML in DESSIS is implemented by using a tensorial permeability quantity [185], which can be
interpreted as a uniaxial anisotropic medium. This can be proven to be the same as coordinate stretching for
the curl, divergence, and gradient operators [189]. (Further information is available from the literature: the
original PML work [188], PML interpreted as a coordinate-stretching concept [189], and the generalization
of the PML concept to various coordinate systems and general anisotropic and dispersive media [190][191].)
A mathematical presentation of the PML is beyond the scope of this manual. Therefore, only the physical
concept behind the method is discussed.

NOTE Perfectly matched layers should only be added when using the vectorial (FEVectorial) optical
solver.

The Dirichlet boundary condition is assumed at the outer boundaries of the simulation space. In many cases,
the optical field may radiative outwards, for example, waves from the lasing region leak into the substrate
because the substrate has about the same refractive index as the guiding layers. In this case, the solution
obtained using the Dirichlet boundary condition will include reflections of these radiative waves from the
boundaries, which are nonphysical. To solve this problem, the boundaries of the structure can be coated with
PMLs to reduce and eliminate unwanted reflections from the Dirichlet boundary condition in a truncated
simulation space. This enables the artificial simulation of the radiative boundary condition.

AzimuthalExpansion=0 AzimuthalExpansion=1 AzimuthalExpansion=2

AzimuthalExpansion=0 AzimuthalExpansion=1 AzimuthalExpansion=2

TE01: 743.7nm / 1.96ps

TM01: 743.6nm / 1.40ps

HE11: 744.8nm / 2.23ps

EH11: 742.3nm / 1.00ps

HE21: 743.7nm/1.57ps

EH21: 740nm / 0.82ps
15.410

PART 15 DESSIS CHAPTER 27 OPTICS
The structure is terminated by an inner boundary Γi (see Figure 15.84), and the PML is placed between the
inner boundary Γi and outer boundary Γo. A gradually increasing loss is introduced in the PML from the inner
boundary Γi towards the outer boundary Γo. Therefore, upon first impact of the wave into the PML at the inner
boundary Γi, negligible reflection occurs. As the wave propagates deeper into the PML, it is absorbed more
and more. Any reflected waves within the PML also suffer from absorption. Ultimately, it appears that the
propagating wave in the PML is totally absorbed and, therefore, this is how the PML simulates the radiative
boundary condition. The loss profile in the PML has been set automatically in DESSIS.

Figure 15.84 PML coating the structure

PMLs are indicated by special keywords appended to the beginning of the region names when the optical
device is drawn. The region names of PMLs at the top, bottom, left, and right of the structure start with TPML,
BPML, LPML, and RPML, respectively, as shown in Figure 15.85.

Figure 15.85 Naming of PML regions

This naming convention is required to impose the correct boundary condition in the optical solver. These
special PML regions are declared in the same way as other regions in the DESSIS command file. A Tcl-based
script can be used to add automatically PML regions to the outer boundaries of the structure. This script can
be obtained from ISE Technical Support.

27.6 Transfer matrix method for VCSELs
The 1D transfer matrix method (TMM) is a simplified scalar solver for the VCSEL cavity problem. It
computes the spatial optical intensity and the corresponding characteristics of the fundamental mode in a
cylindrically symmetric VCSEL structure. The scalar wave equation in the axial direction is:

(15.502)

where denotes the wave component in the axial direction.

Γo

ΓiPML

RPML_Oxide_1

TPML_Gas_1

BPML_Substrate_GaAs

LPML_AlGaAs_098_012_1

z2

2

∂

∂ kz
2+

⎝ ⎠
⎜ ⎟
⎛ ⎞

φz 0=

φz
 15.411

PART 15 DESSISCHAPTER 27 OPTICS
The TMM is applied at the symmetry axis in the vertical direction (see Figure 15.86).

Figure 15.86 Transfer matrix method applied to a symmetric VCSEL structure

The solution to the axial wave equation in each layer i can be expressed as the sum of a forward-propagating
and backward-propagating wave:

(15.503)

The TMM relates the two waves at the interfaces i and i+1 by:

(15.504)

The transfer matrix for an index step is:

(15.505)

with and .

For a homogeneous medium of length d, the transfer matrix becomes:

(15.506)

With these basic transfer matrix blocks, a final transfer matrix can be set up that relates the forward-
propagating and backward-propagating waves at the top (Atop, Btop) of the device to the wave at the bottom
(Abottom, Bbottom) of the device:

(15.507)

Btop Atop

AbottomBbottom

z

φz A zi()e
ikziz()

B zi()e
ikziz–()

+=

A zi()

B zi()

T11 T12

T21 T22 i

A zi 1+()

B zi 1+()
⋅=

n1 n2→

T1 2→
1

t12
------ 1 r12

r12 1
=

r12 r– 21
n1 n2–
n1 n2+
-----------------= = t12 t21

2n1
n1 n2+
-----------------= =

Td
eikd 0

0 e ikd–
=

Btop

Atop

T11 T12

T21 T22 0

…
T11 T12

T21 T22 2n 1+

Bbottom

Abottom
⋅ ⋅ ⋅

T11 tot, T12 tot,

T21 tot, T22 tot,

Bbottom

Abottom
⋅= =
15.412

PART 15 DESSIS CHAPTER 27 OPTICS
where n denotes the number of layers of the structure. Resonance is achieved only if the outward-propagating
waves are established at the top and bottom of the device (Atop= 0 and Bbottom= 0). This condition is found by
varying the frequency ω and the gain in the quantum wells. The corresponding characteristics of this instance
are the resonant wavelength and quantum well gain. At sustained resonance, the threshold gain in the quantum
wells must balance the radiation losses from the device.

Since the 1D TMM only provides the change of field in the axial direction, a Gaussian variation is assumed
for the optical intensity in the transverse direction:

(15.508)

where x is the distance in the transverse direction from the symmetry axis and σ is the width of the Gaussian
shape.

The activation syntax for the TMM for VCSEL cavity problems in the command file is:

Physics {...
 Laser (...
 Optics(
 TMM1D(SigmaGauss=4.0 # width of Gaussian, [micron]
 TargetWavelength=800 # initial guess [nm]
)
)
 VCSEL() # specify this is a VCSEL simulation
)
}

The solution of the resonant wavelength is solved iteratively, so users must specify an initial guess in
TargetWavelength. The default and only symmetry type supported by TMM1D is Symmetric; only the fundamental
mode is computed. The rest of the entries in the Physics and Laser statements are similar to that in
Section 25.2.1 on page 15.373. Table 15.148 lists the arguments of TMM1D.

27.7 Effective index method for VCSELs
The effective index method (EIM) is a fast scalar solver and well suited to computing fairly accurate resonant
wavelength and optical intensity for index-guided VCSELs. However, the EIM cannot compute the scattering
losses accurately for very small aperture (less than 2 µm radius) VCSELs. Nevertheless, the EIM is an option
in DESSIS to cater to the rapid design of index-guided VCSELs, including oxide-confined VCSELs.

Table 15.148 Arguments for the TMM1D statement

Argument keyword Description

Absorption(ODB) Allows users to specify the material loss in the optical database section of the
material parameter file.

SigmaGauss=<float> Width of the Gaussian distribution [µm].

TargetWavelength=<float> Target value for lasing wavelength [nm]. Only one value can be input because
TMM1D solves the fundamental mode only.

Gauss x() 1
2πσ

--------------e

x2

2σ
2

----------–

=

 15.413

PART 15 DESSISCHAPTER 27 OPTICS
Figure 15.87 shows a typical VCSEL geometry suitable for the EIM. The structure is divided into two regions:
the core and the cladding. Within each core and cladding region, multiple homogeneous layers of
semiconductor are allowed.

Figure 15.87 VCSEL partitioned into the core and cladding regions for the EIM

NOTE In DESSIS, the EIM is only applicable to the VCSEL cavity problem, not the waveguide problem.

27.7.1 Formulation of effective index method

The EIM solves the scalar Helmholtz equation:

(15.509)

by assuming that the wavefunction is separable, that is:

(15.510)

where the subscripts t and z refer to the transverse and z components. Substituting (Eq. 15.510) into
(Eq. 15.509) gives two independent equations: the axial wave equation:

(15.511)

and the transverse wave equation:

(15.512)

The transverse and axial wave equations are coupled using the dispersion relation:

(15.513)

where the free space wavenumber is .

ni,claddingni+1,core

core cladding

∇2Ψ k2Ψ+ 0=

Ψ

Ψ φt x y,() φz z()⋅=

∂2

∂z2
-------- kz

2+ φz⋅ 0=

∇t
2 n r() 2π

λ0
------⋅

2
β2–+ φt⋅ 0=

k2 kt
2 kz

2+ n2 k0
2⋅= =

k0
2π
λ0
------=
15.414

PART 15 DESSIS CHAPTER 27 OPTICS
The solution strategy of the EIM for VCSELs is best illustrated by the flowchart in Figure 15.88.

Figure 15.88 Solving the axial and transverse wave equations self-consistently in the EIM

First, the axial wave equation is solved by the transfer matrix method. The required output is the resonant
wavelength , the net cavity loss , and the z-resonant field .

Next, is used to compute the effective indices in the core () and the cladding () regions
by the following averaging relation:

(15.514)

The refractive index of each layer is weighted by the z-resonant optical intensity, and the effective index
can be viewed as an average of these weighted refractive indices.

 and are subsequently used in the transverse wave equation to formulate an optical fiber or
waveguide-type problem. Solving the transverse wave equation yields the propagation constant , which is
then used to update of the axial wave equation using the relations:

(15.515)

and:

(15.516)

This is performed so that the concept of phase-matching is enforced at the tangential boundaries of all the
layers. The entire process is iterated until convergence is achieved.

Effective Index

Waveguide Problem

1D TMM Solver

Update k zi

Start k t=0

λ0, α, φz

ncore, ncladding

β, φt

λ0 α φz z()

φz z() ncore ncladding

n2
core clad,

ni core cla id ngd⁄,
2 φz

2⋅ zd()

zi

zi 1+

∫
i

∑

φz
2 zd∫

---=

i

ncore ncladding
β

kzi

ncore
2π
λ0
------⋅⎝ ⎠

⎛ ⎞ 2
kt

2 β2+=

kzi

2 ni
2π
λ0
------⋅⎝ ⎠

⎛ ⎞ 2
kt

2–=
 15.415

PART 15 DESSISCHAPTER 27 OPTICS
27.7.2 Transverse mode pattern of VCSELs

The transverse wave equation ((Eq. 15.512)) in the EIM can be solved in two different coordinate systems:
Cartesian and cylindrical coordinates. The core and cladding effective indices form a symmetric three-layer
waveguide problem. In Cartesian coordinates, this is equivalent to the classic step-index planar waveguide
problem. In cylindrical coordinates, this becomes an optical fiber problem. Both problems can be solved by
a semianalytic approach, and the range of effective index in this waveguide problem is:

(15.517)

where the propagation constant . This ensures that the transverse mode is a guided mode.

The step-index planar waveguide in Cartesian coordinates is an approximation to solving the transverse mode
profile in square aperture VCSELs. It is assumed that the square aperture VCSEL is symmetric to a plane, as
shown in Figure 15.89. The core and cladding indices form the step-index layers of the waveguide, and the
TE modal field component, , varies as or in the core region and as
in the cladding region.

Figure 15.89 Transverse mode in square aperture VCSEL is treated as a step-index planar waveguide problem

In a circular aperture VCSEL (see Figure 15.90), the optical fiber problem is solved. The modal field
components, , vary as (Bessel function) in the core region and as (modified Bessel
function) in the cladding region. The parameter denotes the cylindrical harmonic order, . The modes
in an optical fiber are commonly classified as HEmn, EHmn, TE0n, and TM0n, and this convention is followed
in the command file syntax. Generally, the fundamental mode is HE11, followed by the higher order modes
TE01, TM01, and so on.

Figure 15.90 Transverse mode in circular aperture VCSEL is treated as an optical fiber problem

ncladding neff ncore< <

β neff k0⋅=

φt x y,() φy x()= x()sin x()cos x–()exp

ncladdingncore
ncladding

z y

x

d

φt r ϕ,() Jm 1– r() Km 1– r()
m eimϕ

ncore R

r
z
ϕ

ncladding
15.416

PART 15 DESSIS CHAPTER 27 OPTICS
27.7.3 Syntax for the effective index method

The EIM solver can be activated by specifying the keyword EffectiveIndex in the Physics-Laser-Optics part of
the command file.

Cylindrical modes
Physics {...
 Laser (...
 Optics (
 EffectiveIndex (
 TargetWavelength = (780.0 750.0 775.0 770.0) # [nm]
 CoreWidth = 4.0 # [micron]
 ModeType = (HEmn EHmn TE0n TM0n) # choose mode type
 mModeIndex = (1 1 0 0) # m in HEmn, EHmn
 nModeIndex = (1 2 2 1) # n in HEmn, EHmn, TE0n, TM0n
 Coordinates = Cylindrical
 Absorption(ODB)
 DiffractionLoss = (5.0 8.0 6.0 7.0) # [1/cm]
 ModeNumber = 4 # solve for 4 modes
)
)
 VCSEL()
)
}

Cartesian modes
Physics {...
 Laser (...
 Optics (
 EffectiveIndex (
 TargetWavelength = (780.0 750.0 775.0 770.0) # [nm]
 CoreWidth = 4.0 # [micron]
 ModeType = (TE0n TE0n TE0n TE0n) # only TE0n allowed for Cartesian
 nModeIndex = (1 2 3 4) # n in TE0n
 Coordinates = Cartesian
 Absorption(ODB)
 DiffractionLoss = (5.0 8.0 6.0 7.0) # [1/cm]
 ModeNumber = 4 # solve for 4 modes
)
)
 VCSEL()
)
}

This example shows the activation of the EIM for multiple cylindrical and Cartesian modes. The more notable
aspects of the syntax are:

The CoreWidth is the radius of the circular aperture in Cylindrical coordinates or the half-length of the
square aperture in Cartesian coordinates.

The keywords HEmn, EHmn, TE0n, and TM0n refer to the common optical fiber modes in the cylindrical modes.
For the Cartesian modes, only TE0n modes are handled.

The keywords ModeType, mModeIndex, and nModeIndex are used to specify the required modes.
 15.417

PART 15 DESSISCHAPTER 27 OPTICS
The keyword VCSEL must be included in the Laser statement to specify that this is a VCSEL simulation.

The number of modes to solve is four in this example, and the parameters corresponding to each mode
are specified as shown.

Table 15.149 lists the full range of keywords for the EIM solver.

A sample output from the EIM solver is shown in Figure 15.91. The peak of the z-resonant mode aligns with
the active quantum well region. Two vectorial transverse modes, HE11 and HE21, computed from the optical
fiber problem are also shown.

Figure 15.91 Transverse and longitudinal resonant modes of cylindrically symmetric VCSEL computed by EIM

Table 15.149 Arguments for the EffectiveIndex statement

Feature keyword Parameter/Description Default value

Coordinates=<parameter> Cartesian No default

Cylindrical

ModeType=<parameter> HEmn
EHmn
TE0n
TM0n

No default

mModeIndex=<int> Index m of the parameter specified with ModeType
(m = cylindrical harmonic order if Coordinates=Cylindrical)

0

nModeIndex=<int> Index n of the parameter specified with ModeType 0

TargetWavelength=<float> Target value for lasing wavelength [nm] –1.0

CoreWidth=<float> Specifies the square aperture half-width d
(for Coordinates=Cartesian) or the circular aperture radius R
(for Coordinates=Cylindrical) respectively [µm]

–1.0

DiffractionLoss=<float> Specifies the diffraction loss [1/cm] 0

Absorption(ODB) Allows users to specify the material loss in the optical database
section of the material parameter file

No default

ModeNumber=<int> Number of modes to be calculated 1

...

HE11HE21

z

φz(z)

rϕ

r
ϕ

φt(r,ϕ)
15.418

PART 15 DESSIS CHAPTER 27 OPTICS
27.8 LED raytracing
Raytracing is used to compute the intensity of light inside a light-emitting diode (LED), as well as the rays
that escape from the LED cavity to give the signature radiation pattern for the LED output. The basic theory
of raytracing is presented in Section 13.3 on page 15.249.

Due to the random nature of spontaneous emission, the self-consistent solution between the raytracing optics
and electronic solver is not possible in LED simulations. Both 2D and 3D LED simulations are possible with
DESSIS. The LED simulation uses raytracing mainly to compute the extraction efficiency of the LED, that
is, the ratio of light power that escapes from the LED cavity and the total spontaneous emission power.

27.8.1 Isotropic starting rays from spontaneous emission
sources

The source of radiation from an LED is mainly from spontaneous emissions in the active region (this is further
discussed in Section 28.3.5 on page 15.445). The spontaneous emission in the active region of the LED is
assumed to be an isotropic source of radiation and can be conveniently represented by uniform rays emitting
from each active vertex, as shown in Figure 15.92.

Figure 15.92 Uniform rays radiating isotropically from an active vertex source in 2D (left) and 3D (right) space:
only one-eighth of spherical space is shown for the 3D case

Isotropy requires that the surface area associated with each ray must be the same. The isotropy of the rays in
2D space is apparent. In 3D space, achieving isotropy is not as simple as dividing the angles uniformly. The
elemental surface area of a sphere is , so uniformly angular-distributed rays are weighted by

 and, therefore, do not signify isotropy.

To overcome this problem in 3D, a geodesic dome is used. Rays are directed at the vertices of the geodesic
dome such that the surface area associated with each ray is the same. The algorithm starts by constructing an
octahedron and, then, recursively splits each triangular face of the octahedron into four smaller triangles. The
first stage of this splitting process is shown in Figure 15.92 (right), where rays are directed at the vertices of
each triangle. The minimum number of rays is six, that is, one directed along each positive and negative
direction of the axes. If the first stage of recursive splitting is applied, a few more rays are constructed as
shown in Figure 15.92, and the number of starting rays become 18. The second stage of recursive splitting
gives 68 rays and so on. Therefore, the user is constrained to selecting a fixed set of starting rays in the 3D
case.

2D
3D

r2 θ θd() φd()sin
θsin
 15.419

PART 15 DESSISCHAPTER 27 OPTICS
27.8.2 Anisotropic starting rays from spontaneous emission
sources

In some LED designs, the geometry governs the polarization of the optical field in the device. The
spontaneous gain is dependent on the direction of this polarization. Consequently, this will lead to an
anisotropic spontaneous-emission pattern at the source.

The anisotropic emission pattern will be described by the following parametric equations:

(15.518)

(15.519)

(15.520)

where the intensity is given by:

(15.521)

The bases of sine and cosine are chosen based on the fact that the optical matrix element has such a functional
form when polarization is considered (see Section 28.8 on page 15.453). By changing the values of d1 to d6,
different emission shapes can be orientated in different directions. Raytracing does not give polarization
information, and this feature allows users to modify the anisotropy of the spontaneous emission.

The syntax required to activate the anisotropic spontaneous emission feature is:

Physics {...
LED (...

Optics(...
RayTrace(...

EmissionType(
#Isotropic # default
Anisotropic(

Sine(d1 d2 d3)
Cosine(d4 d5 d6)

)
)

)
)

)
}

27.8.3 Randomization of starting rays

Spontaneous emission is a random process. In order to take into account the random nature of this process and
still ensure that the emission of the starting rays from each active vertex source is isotropic, a randomized shift
of the entire isotropic ray emission is introduced. This is best illustrated in Figure 15.93 on page 15.421 where
only four starting rays are used for clarity. For each active vertex, a random angle is generated to determine
the random shift of the distribution of the isotropic starting rays. The same concept is also used for the 3D
case, and this gives a simple randomization strategy for using raytracing to model the spontaneous emissions.

Ex d1 φ()sin⋅ d4 φ()cos⋅+=

Ey d2 φ()sin⋅ d5 φ()cos⋅+=

Ez d3 θ()sin⋅ d6 θ()cos⋅+=

I Ex
2 Ey

2 Ez
2+ +=
15.420

PART 15 DESSIS CHAPTER 27 OPTICS
Figure 15.93 Shifting the distribution of entire isotropic starting rays by an angle

NOTE Randomization of the starting rays is activated by the keyword RaysRandomOffset in the RayTrace
statement. The default is a fixed angular shift, which is determined by the active vertex number.

27.8.4 Syntax for LED raytracing

The raytracing option is activated by the keyword RayTrace in the Physics-LED-Optics section of the command
file. The other sections (Electrode, File, Plot, Physics, Math, and Solve) of the command file for an LED
simulation are similar to that of a laser simulation (see Section 25.2.1 on page 15.373 and Section 25.2.2 on
page 15.378). Both single-grid and dual-grid LED simulations are possible. The only part that is different is
in the definition of the Physics-LED section of the command file, as highlighted by this example syntax:

Physics {
 AreaFactor = 2 # for symmetric devices
 # ----- Activate LED simulation -----
 LED (
 Optics (
 # ----- Choose ray tracing to compute extraction efficiency -----
 RayTrace(
 # ----- Info about LED structure -----
 Symmetry = Symmetric # or NonSymmetric
 Coordinates = Cartesian # or Cylindrical
 # ----- Specify absorption and refractive index models -----
 SemAbsorption (model = ODB)
 RefractiveIndex(model = ODB)
 # ----- Specify Starting rays parameters -----
 RaysPerVertex = 40 # Number of starting rays per active vertex source
 RaysRandomOffset # Randomize starting ray angle
 # ----- Specify ray trace terminating conditions -----
 DepthLimit = 10 # finish after ray crosses 10 material boundaries
 MinIntensity = 1e-7 # finish if ray intensity is less than 1e-7

 LEDRadiationPara(1000.0,180) # (<radius-microns>, Npoints)
 # ----- Auxiliary features of LED ray tracing -----
Disable # disable ray tracing but still run the LED simulation
Print # print out all the rays in a grid file
)
)

 # ----- Other parameters of the LED structure -----
 Cavitylength = 200 # for 2D simulation [microns]

 # ----- Choice of spontaneous gain broadening -----

α
Shift by angle α

α

 15.421

PART 15 DESSISCHAPTER 27 OPTICS
 Broadening (Type=Lorentzian Gamma=0.10)
Broadening (Type=Landsberg Gamma=0.10) # Gamma in [eV]
Broadening (Type=CosHyper Gamma=0.10)

 # ----- Specify QW Physics -----
 QWTransport
 QWExtension = AutoDetect # auto read QW widths
 QWScatModel
 QWeScatTime = 1e-13 # [s]
 QWhScatTime = 2e-14 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]
 # ----- QW strain effects -----
 Strain
 SplitOff = 0.34 # [eV]
 # ----- Can scale spon gain independently -----
 SponScaling = 1.0
)

 # ----- User specified physics of transport -----
 Thermionic # thermionic emission over interfaces
 HeteroInterfaces # allow discontinuous bandgap & quasi-Fermi levels
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi

 # ------ Option to turn on temperature simulation ------
Thermodynamic
Hydrodynamic
RecGenHeat
}

The LED keyword replaces the Laser keyword. The arguments for the LED statement are generally the same as
that for the Laser statement (compare this with the Physics-Laser section of Section 25.2.1 on page 15.373).

The other notable differences in the LED syntax are:

The RayTrace keyword can only be activated in an LED simulation.

Two types of symmetry are possible: Symmetric and NonSymmetric. If Symmetry=Symmetric is chosen, the user
must specify AreaFactor=2 to account for the correct scaling (see Section 29.3 on page 15.474). If
Coordinates=Cylindrical is chosen, a Symmetric simulation is assumed. The symmetry axis is the y-axis at
x = 0.

The absorption and refractive indices of the material can be specified by the SemAbsorption and
RefractiveIndex keywords. Three choices of model exist: parameter, ODB and "pmi_model_name" as explained
in Table 15.150 on page 15.423.

The keyword LEDRadiationPara is associated with the plotting of the LED radiation pattern (see
Section 27.8.5 on page 15.423).

The Print keyword outputs all the rays as a grid file. However, if the number of starting rays is large, the
output file will be huge, and the high density of rays inside the device will appear as totally black.

NOTE Raytracing can be disabled in an LED simulation by using the keyword Disable in the RayTrace
statement if the user does not require the computing of the extraction efficiency and radiation
pattern.
15.422

PART 15 DESSIS CHAPTER 27 OPTICS
Table 15.150 lists all arguments for the RayTrace option and their default values.

27.8.5 LED radiation pattern

Raytracing does not contain phase information, so it is not possible to compute the far-field pattern for an LED
structure. Instead, the outgoing rays from the LED raytracing are used to produce the radiation pattern. In 2D
space, this is equivalent to moving a detector in a circle around the LED as shown in Figure 15.94 on
page 15.424. In 3D space, the detector is moved around on a sphere. The circle and sphere have centers that

Table 15.150 Arguments for RayTrace statement in LED simulation

Feature keyword Parameter/Description Default value

SemAbsorption (model=<parameter>) parameter (read directly from parameter file) parameter

ODB (use table of values in parameter file)

"pmi_model_name" (use PMI to input model)

RefractiveIndex(model=<parameter>) parameter parameter

ODB

"pmi_model_name"

depthlimit=<int> Number of material boundaries that a ray crosses before
the trace is terminated

5

minIntensity=<float> Rays are traced until their intensity is less than this number. 1e-5

RaysPerVertex=<int> Number of starting rays from each active source vertex.
For 3D, the number of starting rays are constrained by 6,
18, 68, and so on. The number in the sequence is chosen
such that RaysPerVertex is slightly larger or equal to it.

10

Print Activates the output of all traced rays to a grid file. Not activated

Symmetry=<parameter> Symmetric
NonSymmetric

NonSymmetric

Coordinates=<parameter> Cartesian
Cylindrical

Cartesian

RaysRandomOffset Activates the randomization of the angular shift of the
starting rays.

Not activated

Disable Disables raytracing but still runs LED simulation. Not disabled

LEDRadiationPara(<float>,<int>) The <float> specifies the observation radius and <int>
specifies the discretization of the observation circle or
sphere.

No default

EmissionType(<parameter>) Isotropic Isotropic

Anisotropic(Sine(<float> <float> <float>)
Cosine(<float> <float> <float>))

LEDSpectrum(<float> <float> <int>) The <float>s give the starting and ending energy range in
[eV] respectively. The <int> gives the number of
discretizations between in that energy range.

no default
 15.423

PART 15 DESSISCHAPTER 27 OPTICS
correspond to the center of the device. DESSIS automatically determines the center of the device to be the
midpoint of the device on each axis.

To examine the optical intensity inside the LED, the user can use either OpticalIntensityMode0 in the Plot
statement or the SaveOptField option in the File statement (see Section 29.2 on page 15.472).

Figure 15.94 Measuring the radiation pattern in a circular path around LED at observation radius, R

The syntax required to activate and plot the LED radiation pattern is located in the File, Physics-LED-Optics-
RayTrace, and Solve-quasistationary sections of the command file:

File {...
 # ----- Activate LED radiation pattern and save -----
 LEDRadiation = "rad"

}
...
Physics {...
 LED (...
 Optics (...
 RayTrace(...
 LEDRadiationPara(1000.0,180) # (<radius-microns>, Npoints)
)
)
)
}
...
Solve {...

 # ----- Specify quasistationary -----
 quasistationary (...

 PlotLEDRadiation { range=(0,1) intervals=3 }

 Goal {name="p_Contact" voltage=1.8})
 {...}
}

The LED radiation plot syntax works in the same way as the GainPlot (see Section 29.4 on page 15.475) and
the OptFarField plot (see Section 27.9 on page 15.427) in the Quasistationary statement.

LED
φ 0=

R

15.424

PART 15 DESSIS CHAPTER 27 OPTICS
An explanation of this example is:

The base file name, "rad", of the LED radiation pattern files is specified by LEDRadiation in the File
section. The keyword LEDRadiation also activates the LED radiation plot.

The parameters for the LED radiation plot are specified by the keyword LEDRadiationPara in the Physics-
Optics-RayTrace section. The user must specify the observation radius (in microns) and the discretization
of the observation circle (2D) or sphere (3D).

The LED radiation pattern can only be computed and plotted within the Quasistationary statement. The
keyword PlotLEDRadiation controls the number of LED radiation plots to produce.

The argument range=(0,1) in the PlotLEDRadiation keyword is mapped to the initial and final bias
conditions. In this example, the initial and final (goal) p_Contact voltages are 0 V and 1.8 V, respectively.
The number of intervals=3, which gives a total of four (= 3+1) LED radiation plots at 0 V, 0.6 V, 1.2 V,
and 1.8 V. In general, specifying intervals=n will produce (n+1) plots.

If the LED structure is symmetric, the LED radiation is only computed on a semicircle.

The following briefly describes the files that are produced in the LED radiation plot, for the 2D and 3D cases.

Two-dimensional LED radiation pattern and output files

Activating the LED radiation plot for a 2D LED simulation produces four different files (using the base name
"rad"):

rad.grd Discretized grid of a circle with polar coordinates in DF–ISE format.

rad_000000_LEDRad.dat Data file containing the normalized radiation pattern in DF–ISE format to be used in
conjunction with rad.grd.

rad_000000_LEDRad.plt The normalized radiation pattern versus observation angle, which can be viewed in
INSPECT.

rad_000000_LEDRad_Polar.grd

The normalized radiation pattern projected onto a grid file and can be viewed in
Tecplot-ISE. Run Tecplot-ISE and load the file rad_000000_LEDRad_Polar.grd. Select
Data > Alter > Transform Coordinates, and select the transformation Polar to
Rectangular. Assign Source Theta = Y and Source R = X. Click Compute and click
Close. The polar plot of the LED radiation pattern is shown.

A sample output of the radiation plot of a 2D nonsymmetric LED structure is shown in Figure 15.95. The
lower-left image corresponds to the file rad_000000_LEDRad.plt plotted by INSPECT, and the right image is the
product of the file rad_000000_LEDRad_Polar.grd plotted by Tecplot-ISE.

Figure 15.95 LED internal optical intensity (upper left), normalized radiation intensity versus observation
angle (lower left), and polar radiation plot (right) computed by DESSIS in 2D LED simulation

r φ,()

Polar Plot
Observation Angle [degrees]

LE
D

 N
or

m
al

iz
ed

 R
ad

ia
tio

n

0 100 200 300

0.2

0.4

0.6

0.8

1

 15.425

PART 15 DESSISCHAPTER 27 OPTICS
Three-dimensional LED radiation pattern and output files

There are only two output files for the radiation pattern in the case of a 3D LED simulation:

rad.grd Discretized grid of a sphere with spherical coordinates in DF–ISE format.

rad_000000_LEDRad.dat Data file containing the normalized radiation pattern in DF–ISE format to be used in
conjunction with rad.grd. As Tecplot-ISE treats all grid input and displays the output
as Cartesian coordinates, it is necessary to transform the data so that the spherical
coordinates data can be viewed. This is performed with the same steps as in the 2D
case: Run Tecplot-ISE and load the files rad.grd and rad_000000_LEDRad.dat. Select
Data > Alter > Transform Coordinates. Select the transformation Spherical to
Rectangular. Assign Source Theta=Z, Source R=X, and Source Psi=Y. Click Compute
and click Close. The spherical plot of the 3D LED radiation pattern is shown. A
sample of the radiation pattern of a 3D LED simulation is in Figure 15.96.

Figure 15.96 LED internal optical intensity (left) and normalized radiation intensity projected on a sphere (right) of 3D
LED simulation

27.8.5.1 Spectrum-dependent LED radiation pattern

Unlike a laser beam with single-frequency emissions, rays emitting from an LED carry a spectrum of
frequencies (or energies). DESSIS monitors the spectrum of each ray as it undergoes the process of raytracing
in and out of the device. The resultant spectrum of the LED radiation pattern can then be plotted.

To activate this feature, users must include the keyword LEDSpectrum in the command file:

Physics {...
LED (...

Optics (...
RayTrace(...

LEDSpectrum(<startenergy> <endenergy> <numpoints>)
)

)
)

}

This feature must be used in conjunction with the LEDRadiation feature so that the file names of the LED
radiation plots and the observation angles can be specified. Other notable aspects of the syntax are:

<startenergy> and <endenergy> give the energy range of the spectrum to be monitored. These parameters
are floating-point entries with units of eV.

<numpoints> is an integer determining the number of discretized points in the specified energy range.

r φ θ, ,()

Radiation on a Sphere xx

y y
15.426

PART 15 DESSIS CHAPTER 27 OPTICS
27.9 Far field
The far field is important to determine the beam divergence of the laser diode emission. From antenna theory,
the far field is defined for observation distance:

(15.522)

where D is the largest dimension of the near-field shape and is the free space wavelength. For example,
given a near-field shape of dimension µm and a wavelength of 1 µm, the far field occurs at the
observation distance µm.

Figure 15.97 Origin is conveniently placed at center of laser end facet so that z’=0; distance
between the observation point and a source point on laser end facet is

Figure 15.97 is referred to for the coordinate used in the following derivation of the vectorial far field. The
optical electric field at the observation distance r [132] is:

(15.523)

where is the dyadic Green operator and is an equivalent magnetic source representing the near field,
, of the laser mode:

(15.524)

In the far field, it is assumed that the radiation becomes plane waves, and the curl of the dyadic Green operator
can be simplified to:

(15.525)

where the unit vector:

(15.526)

In addition, the following approximations are assumed for far-field calculations:

 for amplitude

 for phase

With these assumptions, formulas for the vectorial and scalar far-field calculations can be derived.

r 2D2

λ
----------≥

λ
2 2×

r 8≥

Observation
 Point

x

y

r

|r - r'| r'

r r′–

E r() G r r′,() M r′()•∇×[] r′d∫–=

G M
Enear r′()

M r′() 2 ẑ Enear× r′()–=

G r r′,()∇× ikr̂ G r r′,()×=

r̂ x̂ θ φ ŷ θ φsinsin ẑ θcos+ +cossin=

r r′– r≈

r r′– r r̂ r′•–≈
 15.427

PART 15 DESSISCHAPTER 27 OPTICS
In the vectorial case, simplifying the dyadic Green operator with the scalar Green function and setting ,
the vectorial far field can be derived as:

(15.527)

where and are the x and y components of the near field, respectively.

Using the transformations:

(15.528)

(15.529)

users can derive from (Eq. 15.527) the commonly used expression for the constant radius, relative far-field
intensity:

(15.530)

In (Eq. 15.530), it is clear that the scalar near field, , can represent either (TE mode) or
(TM mode) in (Eq. 15.527).

NOTE If the square root of the optical intensity is used to compute the far field, the phase information will
be lost and the far field will be incorrect. Therefore, it is important to ensure the scalar or vectorial
near fields are used in the far-field calculations.

27.9.1 Far-field observation angle

The mapped far-field observation angles, , refer to the angles measured from the z-axis along the x-
axis and y-axis, respectively. The laser end facet (location of the near field) is assumed to be at the origin,
facing the direction of positive z (see Figure 15.98 on page 15.429).

The far-field observation distance is fixed at a constant radius from the origin where the device is, that is, the
observation space is a hemisphere. As a result, constraints must be imposed on because the aim is to
map a rectangular space onto a hemisphere. The best way to visualize this constraint is
to think of placing a square piece of fishnet over a hemisphere. The corner regions of the net will exceed the
boundary of the hemisphere and, hence, do not contribute to the description of the hemisphere. These are the
invalid zones of the observation space.

NOTE In the far-field calculation, the origin is aligned with the peak intensity of the fundamental mode
of the edge-emitting laser, and the observation angles are defined with respect to this origin.

z′ 0=

E r θ φ, ,() ikeikr

4πr
------------- x̂2 θ Enear x() x′ y′,()e ikr̂ r ′•– x′d y′

ŷ2 θ Enear y() x′ y′,()e ikr̂ r ′•– x′d y′

ẑ2 θ Enear x() x′ y′,() φcos Enear y() x′ y′,() φsin+[]e ikr̂ r ′•– x′d y′d∫∫sin–

d∫∫cos+

d∫∫cos
⎩

⎭

⎨

⎬

⎧

⎫

–=

Enear x() Enear y()

Θxsin θsin φcos⋅=

Θysin θsin φsin⋅=

Ifar Θx Θy,() 1 Θx
2sin Θy

2sin+()–() Φ x y,()e
ik0 x Θxsin y Θysin+()

xd yd∫∫
2

=

Φ Enear x() Enear y()

Θx Θy,()

Θx Θy,()
Θx Θy,() π 2⁄– π 2⁄,[]
15.428

PART 15 DESSIS CHAPTER 27 OPTICS
Figure 15.98 Defining the observation angles for far field

27.9.2 Syntax of far field

The optical far field is computed and plotted if the keyword OptFarField is specified in the File section of the
command file:

File {...
 # ----- Activate farfield computation and save -----
 OptFarField = "far"

}
...
Solve {...

 # ----- Farfield plot parameters must be specified inside quasistationary -----
 quasistationary (...

 PlotFarField{range=(0,1) intervals=3}
 PlotFarFieldPara{range=(40,60) intervals=40 Scalar1D Scalar2D Vector2D}

 Goal {name="p_Contact" voltage=1.8})
 {...}
}

See Section 25.2.1 on page 15.373 for a clearer picture of the placement of the far-field syntax inside the
command file. The far field syntax works in the same way as the GainPlot (see Section 29.4 on page 15.475)
and Plot options in the Quasistationary statement. The more notable features of the syntax are:

The base file name "far" of the far-field files is specified by OptFarField in the File statement. The
keyword OptFarField also activates the far-field plot.

The far field can only be computed and plotted within the Quasistationary statement. The keywords
PlotFarField and PlotFarFieldPara control the number and type of far field plots to produce.

The argument range=(0,1) in the PlotFarField keyword is mapped to the initial and final bias conditions.
In this example, the initial and final (goal) p_Contact voltages are 0 V and 1.8 V, respectively. The number
of intervals=3, which gives a total of four (= 3+1) far-field plots at 0 V, 0.6 V, 1.2 V, and 1.8 V. In general,
specifying intervals=n will produce (n+1) plots.

Θx

Θy

x

y

z

Observation
Point
 15.429

PART 15 DESSISCHAPTER 27 OPTICS
The argument range=(40,60) in the PlotFarFieldPara keyword is the range for the observation angles. In
this example, and were chosen. The number of discretized points in
each range of the observation angles is given by intervals=40.

Users can select any one or a combination of the three types of far-field plot: Scalar1D, Scalar2D, and
Vector2D. These keywords correspond to the scalar one-dimensional far field, scalar two-dimensional far
field, and vectorial two-dimensional far field, respectively. The different types of far-field plot will
generate different types of output files.

Table 15.151 and Table 15.152 summarize the activating syntaxes for the far field and the naming convention
for the output files for different far-field plots.

27.9.3 Far-field output files

Activating different types of far-field plot produces different output files. Referring to the example syntax
listed in Section 27.9.2 on page 15.429, where the far-field base name has been specified by
OptFarField="far", output examples where different far-field types are selected are shown.

Scalar1D far field

The scalar 1D far field is activated by the keyword Scalar1D. Two lines per mode are produced for the 1D far-
field plot. One is the far-field intensity measured along with ; the other, along with .
These far field results are output in the files far_ff_000000_des.plt, far_ff_000001_des.plt, and so on at the
requested bias intervals specified in the argument of PlotFarField. These files can be viewed in INSPECT and
an example of the plot is shown in Figure 15.99 on page 15.431.

Table 15.151 Specifying far-field base name in File statement and naming convention for far-field output files

Feature keyword Description

optfarfield ="<string>" <string> is used as the file prefix for various output files:
<string>_ff_<number>_des.plt for 1D plots.
<string>_ff_des.grd for 2D observation angle grid.
<string>_ff_des_<number>_Scalar.dat for 2D scalar far-field data file.
<string>_ff_des_<number>_Vector.dat for 2D vector far-field data file.

Table 15.152 Arguments for plotting far field in Quasistationary statement

Feature keyword Description

plotfarfield{range=(0, 1) interval=<int>} Notes the number of times far-field plots are made during the
quasistationary solve process.

plotfarfieldpara{range=(h_angle, v_angle)
interval=<int> Scalar1D | Scalar2D | Vector2D}

(h_angle, v_angle) are the horizontal and vertical angle
ranges. <int> specifies the number of points per axis. The type
of far field plot is chosen by Scalar1D, Scalar2D, and Vector2D.
If no type is chosen, the default Scalar1D is used.

Θx 20° 20°,–[]= Θy 30° 30°,–[]=

Θx Θy 0= Θy Θx 0=
15.430

PART 15 DESSIS CHAPTER 27 OPTICS
Figure 15.99 Scalar 1D far-field patterns showing vertical (dashed line) and horizontal (solid line) variations

Scalar2D and Vector2D far fields

The 2D scalar and vectorial far fields are activated by the keywords Scalar2D and Vector2D, respectively. An
observation angle grid, far_ff_des.grd, is created if either keyword is detected. The vectorial far field can only
be activated if the vectorial optical solver has been chosen or a vectorial mode is input from a file.

The data file for the scalar 2D far field contains the normalized far-field pattern of each mode, and the file
names are far_ff_des_000000_Scalar.dat, and so on. Each file contains as many far-field patterns as the number
of modes in the simulation. If a vectorial optical solver has been chosen, DESSIS automatically selects the
strongest field component (either or) for its scalar far-field computation.

The data file for the vectorial 2D far field contains the normalized far-field pattern for the x, y, and z
components and the total far field for each mode. These data files are named as far_ff_des_000000_Vector.dat,
and so on. The 2D scalar and vectorial far fields can be viewed in Tecplot-ISE like any other .grd and .dat
files. Examples of these far-field patterns are shown in Figure 15.100 and Figure 15.101 on page 15.432.

Farfield_ver_Mode0

Farfield_hor_Mode0

Observation Angle

40 20 0

Fa
r-

Fi
el

d
R

el
at

iv
e

In
te

ns
ity

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

20 40

Ex Ey
 15.431

PART 15 DESSISCHAPTER 27 OPTICS
Figure 15.100 Near field (left) and scalar 2D far field (right) of edge-emitting laser

Figure 15.101 The x (upper left), y (upper right), z (lower left) components, and total absolute value (lower right) of
vectorial 2D far fields of edge-emitting laser; x component is a few orders of magnitude stronger
than y and z components, so the absolute of the vectorial far field resembles that of x component

27.9.4 Far field from loaded optical field file

Far fields can be computed from the optical mode loaded into DESSIS (see Section 29.2 on page 15.472). To
compute the far field correctly, the scalar or vectorial optical near field must be loaded. The optical intensity
does not contain phase information and will give an incorrect far-field pattern.

X

Y

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

FFscalar2D0
1.0e+00

8.0e-01

6.0e-01

4.0e-01

2.0e-01

5.1e-07

ff_ff_des .grd - ff_ff_des_000000_S calar.dat

X

Y

-6 -4 -2 0

-1

0

1

2

3

4

5

6

7

8

9

10

11

OpticalIntensity
6.7e+08

5.3e+08

4.0e+08

2.7e+08

1.3e+08

0.0e+00

multiqw_mdr.grd - multiqw_plot_des.dat

X

Y

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

ff_ff_des .grd - ff_ff_des_000000_V ector.dat

X

Y

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

ff_ff_des .grd - ff_ff_des_000000_Vector.dat

X

Y

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

ff_ff_des .grd - ff_ff_des_000000_V ector.dat
X

Y

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

ff_ff_des.grd - ff_ff_des_000000_V ector.dat
15.432

PART 15 DESSIS CHAPTER 27 OPTICS
27.10 VCSEL near field and far field
While the near field of an edge emitter is apparent, the location of the near field of a VCSEL is not
automatically detected in DESSIS. Different VCSELs have different geometric designs and the entire top
surface may not be the emitting surface. Therefore, in the case of VCSELs, the user must specify the location
of the near field that will be used to compute the far field.

The activating syntaxes for the VCSEL near field are in the File, Physics-Laser, and Solve-quasistationary
sections of the command file:

File {...
 VCSELNearField = "vcselnf"
}
...
Physics {...
 Laser (...
 Optics (...
 FEVectorial(...)
)
 VCSEL (...
 NearField(10.0 0.0 100) # (<radius> <z> Npoints) [microns]
)
)
}
...
Solve {...
 # ----- VCSEL near field parameters must be specified inside quasistationary -----
 quasistationary (...
 VCSELNearField { range=(0,1) intervals=3 }
 Goal({name="p_Contact" voltage=1.8})
 {...}
}

An analysis of the syntax is:

In the File section, the VCSEL near field is activated by the keyword VCSELNearField, and the value
assigned to it, "vcselnf" in this case, is the base name for the output files of the near field.

In the Physics-Laser-VCSEL section, the location and discretization mesh of the near field is defined by the
keyword NearField(<radius> <z> Npoints). In VCSELs where cylindrical geometry has been assumed,
<radius> and <z> (in microns) define the location of the near field, that is, the near field is taken from
(0,<z>) to (<radius>,<z>). Npoints defines the number of points on each side of the square mesh where the
near field will be plotted.

In the Solve-quasistationary section, the argument range=(0,1) in the VCSELNearField keyword is mapped
to the initial and final bias conditions. In this example, the initial and final (goal) p_Contact voltages are
0 V and 1.8 V, respectively. The number of intervals=3, which gives a total of four (= 3+1) near field
plots at 0 V, 0.6 V, 1.2 V, and 1.8 V. In general, specifying intervals=n will produce (n+1) plots.

The square mesh grid file for the near field will be named vcselnf.grd. At each requested bias output, four
files will be created for each mode: vcselnf_00000n_mode0_int_even.dat, vcselnf_00000n_mode0_int_odd.dat,
vcselnf_00000n_mode0_real.dat, and vcselnf_00000n_mode0_imag.dat. The near fields can be viewed in
Tecplot-ISE by loading, for example, tecplot_ise vcselnf.grd vcselnf_000000_mode0_int_even.dat.
 15.433

PART 15 DESSISCHAPTER 27 OPTICS
Cylindrical symmetry has been assumed so that the optical fields decompose into cylindrical harmonics,
, where is the cylindrical harmonic order defined by the keyword AzimuthalExpansion in a VCSEL

simulation. The near-field intensity is divided into the even part (multiplied by) and the odd part
(multiplied by). For the real and imaginary vectorial fields, the cylindrical harmonic is
multiplied by the complex optical field, and the real and imaginary parts of the resultant field are saved.

When the VCSEL near field is computed, the activation of the far-field calculations is similar to that of other
laser simulations.

NOTE In the case of VCSELs, the far field is not computed unless the near field is specified.

27.11 Automatic optical mode searching
The cavity and waveguide mode solvers in DESSIS require the user to choose an initial guess so that a sparse
matrix solver can be used to find the correct optical mode. It is not always easy to estimate a good initial guess.
To circumvent this problem, a model has been developed to help identify the probability of physical modes
through a mode density calculation. The concept is simple: A Hertzian dipole is placed in the cavity or
waveguide, and the deterministic equations:

(15.531)

are solved for the cylindrically symmetric cavity resonance problem and:

(15.532)

are solved for the waveguide problem. The source dipole is placed strategically in the cavity (see
Figure 15.102) or waveguide (see Figure 15.103 on page 15.435).

Figure 15.102 Dipole source in a cylindrically symmetric cavity
problem can be radially or azimuthally defined

eimφ m
mφ()cos

mφ()sin eimφ

E∇×() ω2

c2
------εrE–∇× iωµ jsrc r ω,()⋅–=

E∇×() ω2

c2
------εr x y,() E x y,()⋅– γ2 E x y,()⋅+∇× iωµ jsrc r ω,()⋅–=

jsrc r ω,()

Z

ρϕ

jsrc
15.434

PART 15 DESSIS CHAPTER 27 OPTICS
Figure 15.103 Dipole source in a waveguide problem can be orientated
in x or y direction to excite TE and TM modes

The source dipole will excite a plethora of modes containing guided, resonating, and leaky modes. By
sweeping through the wavelengths for the cavity problem or the effective indices for the waveguide problem,
the change of energy in the cavity or waveguide at each frequency or effective index can be computed. This
energy change is most sensitive near a resonating or guided mode and, therefore, provides the key to
identifying the physical resonating or guided modes. The total energy contained in the system is given by:

(15.533)

The real part gives the physically dissipated energy of the system and the imaginary part gives the energy
stored in the system. In any system containing resonances, it is well known that the energy dissipation at the
resonance point reduces sharply to a minimum. Therefore, by tracking the changes in dissipated energy, it is
possible to estimate the resonant wavelength or effective index of the required mode.

There are remote possibilities that the dipole source is placed at the null of the required mode. In this case, the
mode will not be excited and will not show up in the plot of the change in dissipation energy. Users can place
the dipole source at alternative positions to ensure that the required mode is excited.

27.11.1 Syntax for automatic mode searching

There are some differences in the syntax for the automatic mode search for the cavity and waveguide
problems.

27.11.1.1 Searching for cavity resonances

Cylindrical symmetry is assumed for the cavity problem. This is applicable to the case of cylindrically
symmetric VCSEL structures. The syntax for setting up the deterministic search for cavity resonances is:

File {
...
SaveOptSpectrum = "spectrum"

}
...
Physic {

Laser (
Optics (

DeterministicProblem (
EquationType = Cavity

y
z

x

jsrc

S Ad⋅()
surf
∫∫

1
2
--- σE E∗⋅ iω µH H∗⋅ εE E∗⋅+()+{ } Vd∫

V
∫∫–=
 15.435

PART 15 DESSISCHAPTER 27 OPTICS
Coordinates = Cylindrical
AzimuthalExpansion = 1
SourcePosition (0.25 0.5) # [um]
SourcePolarization = rhoDirection
Sweep (740.0 760.0 80) # [nm]

)
)
VCSEL()

)
...

}
....
Solve { Optics }

The SourcePolarization of the dipole can be chosen to be in different directions. A summary of these directions
is given in Table 15.153 on page 15.437. The range of wavelengths to search is given in units of nanometers.
An example of the output plot is shown in Figure 15.104. As expected, the resonances occur at locations with
sharp energy changes.

Figure 15.104 Energy changes plotted as a function of wavelength for the cavity problem;
resonances of the different modes are clearly identified

27.11.1.2 Searching for waveguide modes

Searching for waveguide modes requires sweeping through the effective indices, and the syntax for this is:

File {
 SaveOptSpectrum = "spectrum"

}
...
Physics {

Laser (
Optics (

DeterministicProblem (
EquationType = Waveguide
Symmetry = Symmetric
Boundary = Type1
Coordinates = Cartesian

m = 2, rhopolarized

m = 1, rhopolarized

m = 0, rhopolarized

m = 0, phipolarized

Wavelength [nm]

741 742 743 744 745

E
n
e
r
g
y

C
h
a
n
g
e

[
a
.
u
.
]

1e-14

1e-13

1e-12

1e-11

1e-10

1e-9

HE11

TE01

TM01

HE21
15.436

PART 15 DESSIS CHAPTER 27 OPTICS
LasingWavelength = 530 # [nm]
SourcePosition (1.0 1.533)
SourcePolarization = xDirection
Sweep (3.391 3.401 100)

)
)

)
}
...
Solve { Optics }

An example of the output is shown in Figure 15.105.

Figure 15.105 Energy changes plotted as a function of the effective index;
guided modes of the waveguide are clearly identified

27.11.1.3 Summary of keywords

Table 15.153 summarizes the keywords for the DeterministicProblem section.

Table 15.153 Keywords for DeterministicProblem section

Keyword Parameter/Description

EquationType = <parameter> Cavity

Waveguide

Coordinates = <parameter> Cylindrical (for cavity only)

Cartesian (for waveguide only)

AzimuthalExpansion = <int> Specifies order of the cylindrical harmonics, (for cavity only)

LasingWavelength = <float> Lasing wavelength [nm] (for waveguide only)

Boundary=Type2, ypolarized

Boundary=Type2, xpolarized

Boundary=Type2, ypolarized

Boundary=Type1, xpolarized

Effective Index

3.395 3.396 3.397

E
n
e
r
g
y

C
h
a
n
g
e

[
a
.
u
.
]

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

TE0TE1

TM1 TM0

mϕ()cos
 15.437

PART 15 DESSISCHAPTER 27 OPTICS
Symmetry = <parameter>
(for waveguide only)

Symmetric

Periodic

NonSymmetric

Boundary = <parameter>
(for waveguide only)

Type1

Type2

SourcePosition(<float> <float>) Coordinates of the source dipole (x-coordinate, y-coordinate)

SourcePolarization = <parameter> rhoDirection (for cavity only)

phiDirection (for cavity only)

zDirection

xDirection (for waveguide only)

yDirection (for waveguide only)

Sweep(<float> <float> <int>) (<start-wavelength> <end-wavelength> <Npoints>) [nm] (for cavity)

(<start-eff-index> <end-eff-index> <Npoints>) [1] (for waveguide)

Table 15.153 Keywords for DeterministicProblem section

Keyword Parameter/Description
15.438

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
DESSIS

CHAPTER 28 Quantum well modeling

28.1 Overview
The drift-diffusion transport phenomena contained in the continuity and hydrodynamic equations are not
suitable for modeling the transport across the quantum well (QW) because the feature size of the quantum
well is much smaller than the inelastic mean free path of the carrier.

In this section, the focus is on three aspects of modeling the quantum well:

Carrier capture into the quantum well

Radiative recombination processes important in a quantum well

Gain calculations

The QW carrier capture process is treated with a ballistic approach. A few types of recombination processes
are important in the quantum well:

Auger and Shockley–Read–Hall (SRH) recombinations deplete the QW carriers, and they form the dark
current.

Radiative recombination contains the stimulated and spontaneous recombination processes, which are
important processes in lasers and LEDs.

These recombinations must be added to the carrier continuity equations to ensure the conservation of
particles.

The gain calculation is based on Fermi’s golden rule and describes quantitatively the radiative emissions in
the form of the stimulated and spontaneous emission coefficients. These coefficients contain the optical
matrix element , which describes the probability of the radiative recombination processes. In the
quantum well, computing the optical matrix element requires knowledge of the QW subbands and QW
wavefunctions.

DESSIS offers three options for computing the gain spectrum:

A simple finite well model with analytic solutions. In addition, strain effects and polarization dependence
of the optical matrix element are handled separately.

The k.p method, which includes strain and many-body effects with its , , or Hamiltonian
matrix.

User-specified gain routines in C++ language can be coupled self-consistently with DESSIS using the
physical model interface (PMI).

Mij
2

4 4× 6 6× 8 8×
 15.439

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
28.2 Carrier capture in quantum wells
A ballistic transport approach is used to handle the carrier capture or escape into or out of a quantum well. It
follows the treatment of Grupen and Hess [133]. This approach is illustrated in Figure 15.106.

Figure 15.106 Discretization of quantum well to handle the physics of quantum well transport

The transport perpendicular to the QW plane is treated as follows. The QW is treated as a point source of
recombination, which contains separate continuum and bound states. In this case, the continuum and bound
states are assumed to have different quasi-Fermi levels that lead to separate continuity equations for the
continuum and bound states. Transport of carriers from the regions outside the QW to the QW continuum
states is by thermionic emission. The transition from the QW continuum to the bound states is computed by
a scattering rate that includes carrier–carrier scattering. The bound states are solved from the Schrödinger
equation.

Within the quantum well in the direction parallel to the QW plane, drift-diffusion transport is assumed to be
valid.

28.2.1 Special meshing requirements for quantum wells

As a result of the transport in Figure 15.106, the spatial discretization of the mesh at the quantum well must
be treated specially. The discretization is based on a ‘three-point’ model in the direction perpendicular to the
QW plane. Only one vertex is placed in the quantum well and one vertex is at each quantum well–bulk
interface (see Figure 15.107). In the quantum well, only rectangular elements are allowed. This must be
ensured when building the mesh.

Figure 15.107 Discretization of quantum well

NOTE The discretization constraint for the quantum well can be chosen by creating a refinement region
at the quantum well in the mesh generator.

QW Bound
States

TE

TE

SC

QW Continuum
States

TE: Thermionic Emission

SC: Carrier scattering
15.440

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
28.2.2 Thermionic emission

Thermionic emission is used at the quantum well interface to handle the large momentum changes caused by
the band-edge discontinuity. If thermionic emission is used only, without the QW scattering model, all the
carriers are assumed to be totally captured in the quantum well.

The default setting uses thermionic emission at the quantum well interfaces. This is activated by default if the
keyword QWTransport is used in the Physics-Laser section of the command file:

Physics {...
 Laser (...
 Optics (...)
 # ----- Specify QW model and physics -----
 QWTransport
 QWExtension = AutoDetect# QW widths auto detection
)
}

The QW region must be identified by the keyword Active (see Section 25.2.1 on page 15.373) and must be
discretized according to the constraints of the special ‘three-point’ QW model. The keyword QWTransport
informs DESSIS to use the ‘three-point’ QW model to treat the Active quantum well region.

It is possible to use the thermionic emission QW model without the QW scattering model for isothermal
quasistationary simulations, in which case, all carriers are assumed to be totally captured in the quantum well.
However, excluding the QW scattering model in nonisothermal simulations (that is, when the hydrodynamic
or thermodynamic temperature equations are included) will lead to convergence problems.

28.2.3 QW scattering model

A physically intuitive model is used to handle the physics of carrier scattering at the quantum well. The carrier
populations are separated into bound and continuum states, and separate continuity equations are applied to
both populations. The QW scattering model accounts for the net capture rate, that is, not all of the carriers will
be scattered into the bound states of the quantum well.

The electron capture rate from the continuum (subscript 3) to the bound (subscript 2) states is:

(15.534)

where is the density of states, is the scattering probability, and is the Fermi–Dirac
distribution. The reverse process gives the electron emission rate from the bound to continuum states:

(15.535)

Therefore, the net capture rate is [133]:

(15.536)

R E3 E2 g3 E3()g2 E2()S E2 E3,()f3 E3() 1 f2 E2()–()⋅d
Ewell

∞

∫d
EC

∞

∫=

g E() S E2 E3,() f E()

M E3 E2 g3 E3()g2 E2()S E3 E2,()f2 E2() 1 f3 E3()–()⋅d
Ewell

∞

∫d
EC

∞

∫=

C R M– 1 e–
η2 η3–

() 1
n2
N2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞ n3

τ
-----= =
 15.441

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
where:

(15.537)

 and contain the quasi-Fermi level information and is the
capture time. The capture time is representative of the carrier–carrier and carrier-optical phonon scattering
processes when the carriers are scattered into the quantum well.

This capture rate is added to the continuity equations as a recombination term. The treatment for holes is
similar. It is apparent that separate capture times must be given for the electrons and holes accordingly, and
these can be specified by the keywords QWeScatTime and QWhScatTime in the Physics-Laser section of the
command file.

For shallow quantum wells, the energy transfer during scattering can only occur in a limited range. In the limit
of elastic scattering, the net capture rate for shallow quantum wells is:

(15.538)

where is the Fermi integral of the order of m. The shallow quantum well model is especially suitable for
InGaAsP-type quantum wells that have smaller conduction and valence band offsets compared to InGaAs and
GaAs wells. It is activated by the keyword QWShallow.

The activating syntax for the QW scattering model is located in the Physics-Laser and Solve sections of the
command file:

Physics {...
 Laser (...
 Optics (...)
 # ---- Use 3-point QW model ----
 QWTransport
 QWExtension = AutoDetect
 # ---- Activate QW scattering model ----
 QWScatModel
 QWeScatTime = 8e-13 # [s]
 QWhScatTime = 4e-13 # [s]
 eQWMobility = 1450 # [cm^2/Vs]
 hQWMobility = 370 # [cm^2/Vs]
QWShallow # for shallow QWs only
)
}
...
Solve {
 Coupled {Poisson}
 Coupled {Poisson Electron Hole}
 Coupled {Poisson Electron Hole QWeScatter QWhScatter}
 Coupled {Poisson Electron Hole QWeScatter QWhScatter PhotonRate}
...
}

Some comments about the syntax are:

Switching on the QW scattering model with QWScatModel requires that the keyword QWTransport is included
to set up the ‘three-point’ QW model.

N2 E2g2 E2()d
EW

Ec

∫=

η2 qΦ2– EC–() kBT⁄= η3 qΦ3– EC–() kBT⁄= τ

C
F3 2⁄ η3()
F1 2⁄ η3()

F3 2⁄ η2()
F1 2⁄ η3()
-----------------------–⎝ ⎠

⎛ ⎞ η3
τ

------=

Fm
15.442

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
The keyword QWExtension=AutoDetect activates the automatic extraction of quantum-well thickness
according to the keyword Active in the material region Physics section. This is the default behavior. If all
quantum wells have the same thickness, the extracted values can be overridden by specifying
QWExtension=<float> (in nanometers).

QWShallow should only be activated for shallow quantum wells.

In the Solve section, equation systems are added consecutively. Each Coupled solution provides the initial
guesses for the next Coupled problem containing more equation systems. In this case, Coupled {Poisson

Electron Hole} solves the quantum well transport with thermionic emission only. The solution provides a
good initial guess for the next Coupled problem when the QW scattering models are added.

The QW scattering model creates the continuity equations for the bound carriers, so the user must input
the QW bound carrier mobilities with the keywords eQWMobility and hQWMobility.

28.3 Radiative recombination and gain coefficients
After the carriers are captured in the active region, they experience either dark recombination processes (such
as Auger and SRH) or radiative recombination processes (such as stimulated and spontaneous emissions), or
escape from the active region. This section describes how stimulated and spontaneous emissions are
computed in DESSIS.

28.3.1 Stimulated and spontaneous emission coefficients

In the active region of the laser, radiative recombination is treated locally at each active vertex. The stimulated
and spontaneous emissions are computed using Fermi’s golden rule. At each active vertex of the quantum
wells, the local stimulated emission coefficient is:

(15.539)

and the local spontaneous emission coefficient is:

(15.540)

where:

(15.541)

(15.542)

(15.543)

rst hω() ECo kst Mi j,
2D E()d∫

i j,
∑ fi

C E() fj
V E() 1–+()× L E()=

rsp hω() ECo ksp Mi j,
2d∫

i j,
∑ D E()fi

C E()fj
V E()L E()=

C0
πe2

ngcε0m0
2ω

-------------------------=

Mi j,
2 Pij Oi j,

2 m0
me
------ 1–⎝ ⎠

⎛ ⎞ m0Eg Eg ∆+()

12 Eg
2
3
---∆+⎝ ⎠

⎛ ⎞
----------------------------------=

Oi j, dxζi x()ζ∗j x()

∞–

∞

∫=
 15.443

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
(15.544)

(15.545)

(15.546)

(15.547)

 is the gain-broadening function. The electron, light-hole, and heavy-hole subbands are denoted by the
indices i and j. and are the local Fermi–Dirac distributions for the conduction and valence bands,

 is the reduced density of states, is the overlap integral of the quantum mechanical wavefunctions,
and is the polarization-dependent factor of the momentum (optical) matrix element . The spin-orbit
split-off energy is and is the band-gap energy. The anisotropic polarization-dependent factor in the
optical matrix element is discussed in Section 28.8 on page 15.453. These emission coefficients determine the
rate of production of photons when given the number of available quantum well carriers at the active vertex.

 and are scaling factors for the optical matrix element of the stimulated and spontaneous
emissions, respectively. They have been introduced to allow users to tune the stimulated and spontaneous gain
curves. Consequently, these parameters can change the threshold current. The activating keywords are
StimScaling and SponScaling in the Physics-Laser section of the command file:

Physics {...
 Laser (...
 Optics (...)
 # ---- Scale stimulated & spontaneous gain ----
 StimScaling = 1.0 # default value is 1.0
 SponScaling = 1.0 # default value is 1.0
)
}

28.3.2 Active bulk material gain

The stimulated and spontaneous emission coefficients discussed are derived for the quantum well. However,
these coefficients can apply to bulk materials with slight modifications. In bulk active materials, it is assumed
that the optical matrix element is isotropic. The sum over the subbands is reduced to one electron, and one
heavy-hole and one light-hole level, because there is no quantum-mechanical confinement in bulk material.
In addition, the subband energies are set to , and the following coefficients are modified:

(15.548)

(15.549)

f i Φn E, ,()
C 1

EC Ei qΦn
mr
me
------E+ + +

kBT
--

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–

=

f j Φp E, ,()
V 1

EV Ej– qΦp
mr
mh
------E–+

kBT
--

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–

=

D E()
r mr

πh2Lx
---------------=

mr
1

me
------ 1

mh
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

=

L E()
fi E()
C fj E()

V

D E()
r Oi j,

2

Pij Mi j,
2

∆ Eg Pij

kst ksp Mi j,
2

Ei 0=

Oi j, 1=

Dr E() 1
2π2

2mr

h2

⎝ ⎠
⎜ ⎟
⎛ ⎞ 3 2⁄

E1 2⁄=
15.444

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
(15.550)

All other expressions remain the same.

28.3.3 Stimulated recombination rate

The radiative emissions contribute to the production of photons but they also deplete the carrier population in
the active region. At each active vertex, the stimulated recombination rate of the carriers must be equal to the
sum of the photon production rate of every lasing mode so that conservation of particles is ensured. The
stimulated recombination rate for each active vertex is:

(15.551)

where the sum is taken over all lasing modes. The stimulated emission coefficient is computed locally at this
active vertex and its value is taken at the lasing energy, , of mode . is the photon rate of mode , solved
from the corresponding photon rate equation of mode , and is the local optical field intensity of
mode at this active vertex. This stimulated recombination rate is entered in the continuity equations to
account for the correct depletion of carriers by stimulated emissions.

28.3.4 Spontaneous recombination rate

Spontaneous emissions also deplete the carrier population in the active region and must be taken into
consideration. The spontaneous recombination rate at each active vertex is:

(15.552)

where the optical mode density is:

(15.553)

The spontaneous recombination rate is an integral over energy space, and this rate is entered into the carrier
continuity equations.

28.3.5 Spontaneous emission power for LEDs

The total spontaneous emission power density at each active vertex (units of Js–1m–3) is:

(15.554)

where has been defined in (Eq. 15.553). This equation is similar to (Eq. 15.552), except that an
additional energy term, , is included in the integrand to account for the energy spectrum of the

Pi j, 1=

Rst x y,() rst hωi()Si Ψi x y,() 2

i
∑=

hωi i Si i
i Ψi x y,() 2

i

Rtot
sp x y z, ,() rsp E()ρopt E() Ed

0

∞

∫=

ρopt E()
ng

2E2

π2h3c
2

-----------------=

∆Psp x y z, ,() rsp E()ρopt E() hω() Ed⋅

0

∞

∫=

ρopt E()
E hω=
 15.445

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
spontaneous emission. The total spontaneous emission power is simply the volume integral of the power
density over all the active vertices:

(15.555)

This is the total spontaneous emission power that is computed and output in an LED simulation.

28.4 Gain-broadening models
Three different line-shape broadening models are available: Lorentzian, Landsberg, and hyperbolic-cosine.
These line-shape functions, , are embedded in the radiative emission coefficients in (Eq. 15.539) and
(Eq. 15.540) to account for broadening of the gain spectrum.

28.4.1 Lorentzian broadening

Lorentzian broadening assumes that the probability of finding an electron or a hole in a given state decays
exponentially in time [131]. The line-shape function is:

(15.556)

28.4.2 Landsberg broadening

The Landsberg model gives a narrower, asymmetric line-shape broadening, and its line-shape function is:

(15.557)

where:

(15.558)

and is the quasi-Fermi level separation.

The coefficients are:

(15.559)

Ptotal
sp ∆Psp x y z, ,() Vd

active region–()
∫=

L E()

L E() Γ 2π()⁄

Eg hω– E+()2 Γ 2⁄()2+
---=

L E() Γ E()() 2π()⁄

Eg hω– E+()2 Γ E() 2⁄()2+
--=

Γ E() Γ ak
E

qΨp qΨn–
---------------------------⎝ ⎠

⎛ ⎞ k

k 0=

3

∑=

qΨp qΨn–

ak

a0 1=

a1 2.229–=

a2 1.458=

a3 0.229–=
15.446

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
28.4.3 Hyperbolic-cosine broadening

The hyperbolic-cosine function has a broader tail on the low-energy side compared to Lorentzian broadening,
and the line-shape function is:

(15.560)

28.4.4 Syntax to activate broadening

The user can select only one line-shape function for gain broadening. This is activated by the keyword
Broadening in the Physics-Laser section of the command file:

Physics {...
 Laser (...
 Optics (...)
 # --- Lineshape broadening functions, choose one only ----
 Broadening (Type=Lorentzian Gamma=0.01)
Broadening (Type=Landsberg Gamma=0.01) # Gamma in [eV]
Broadening (Type=CosHyper Gamma=0.01)
)
}

Gamma is the line width , which must be defined in units of eV. If no Broadening keyword is detected, DESSIS
assumes the gain is unbroadened and does not perform the energy integral in (Eq. 15.539) and (Eq. 15.540).

28.5 Nonlinear gain saturation effects
Nonlinear gain saturation is caused by the interaction of increasing light intensity with the optical matrix
element, and this effect is important in the study of modulation response. An infinite order perturbation
approach is used in a density matrix formulation to derive the nonlinear gain effects [192]. Using this
approach, the stimulated emission coefficient is derived to be [193]:

(15.561)

where:

(15.562)

(15.563)

 and are the intraband scattering times of the electrons and holes, respectively. is the line width, which
is defined by . is the polarization relaxation time and can be defined as:

(15.564)

L E() 1
4Γ
------ 1

E
2Γ

⎝ ⎠
⎛ ⎞2cosh

--------------------------⋅=

Γ

rst hω() ECo kst Mi j,
2D E()d∫

i j,
∑ fi

C E() fj
V E() 1–+()× L E()=

L E() Γ 2π()⁄

E hω–()2 Γ 2⁄()2 εS+ +
---=

ε
2 τc τv+() Mi j,

2 hω()h2

τinm0
2ε0ng

2E
--- Ψ x y,() 2⋅=

τc τv Γ
Γ 2 h τin⁄()= τin

1
τin
------ 1

2
--- 1

τc
---- 1

τv
----+⎝ ⎠

⎛ ⎞ 1
τsp
-------+=
 15.447

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
where is the electron spontaneous emission lifetime and is the normalized local optical
intensity. The stimulated emission coefficient with nonlinear gain effects in (Eq. 15.561) is of the same form
as the original stimulated emission coefficient in (Eq. 15.539). The variables in the two coefficients are the
same, except for the gain-broadening function, .

The nonlinear gain saturation effect can be included in the form of a broadening function. The simple gain
saturation model commonly cited is . This simple form gives a homogeneous broadening and
can be approximated from (Eq. 15.561) by assuming . In this model, has no spectral
dependence by definition.

Since the nonlinear gain saturation effect exists in the form of a broadening function, it can be activated by
the keyword Broadening in the Physics-Laser section of the command file:

Physics {...
Laser (...

Optics (...)
----- Gain saturation model -----
Broadening(Type = LorentzianSat

Gamma = 4.39e-4 # [eV]
eIntrabandRelTime = 1e-13 # [s]
hIntrabandRelTime = 1e-13 # [s]
PolarizationRelTime = 3e-12 # [s]

)
)

}

Users must set the electron and hole intraband scattering times with eIntrabandRelTime and hIntrabandRelTime,
respectively. The PolarizationRelTime can be computed from (Eq. 15.564).

NOTE If the nonlinear gain saturation is activated, users cannot select other gain-broadening functions.

28.6 Simple quantum well subband model
This section describes the solution of the Schrödinger equation for a simple finite quantum well model. This
is the default model in DESSIS. A more advanced model using the k.p method is available (see Section 28.9
on page 15.455). This simple QW subband model is combined with separate QW strain (see Section 28.7 on
page 15.451) and polarization dependence of the optical matrix element (see Section 28.8 on page 15.453) to
model most quantum well systems.

In a quantum well, the carriers are confined in one direction. Of interest are the subband energies and
wavefunctions of the bound states, which can be solved from the Schrödinger equation. In this simple QW
subband model, it is assumed that the bands for the electron, heavy hole, and light hole are decoupled, and the
subbands are solved independently by a 1D Schrödinger equation.

The time-independent 1D Schrödinger equation in the effective mass approximation is:

(15.565)

where is the i-th quantum mechanical wavefunction, is the i-th energy eigenvalue, and is the
finite well shape potential.

τsp Ψ x y,() 2

L E()

g g0 1 εS+()⁄=
h τin⁄() E hω–()» Mi j,

2

h2

2

x∂
∂ 1

m x()

x∂
∂– V x() Ei–+⎝ ⎠

⎛ ⎞ ζi x() 0=

ζi x() Ei V x()
15.448

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
With the following ansatz for the even wavefunctions:

(15.566)

and the odd wavefunctions:

(15.567)

(Eq. 15.565) becomes [131]:

(15.568)

(15.569)

with:

(15.570)

(15.571)

The first transcendental equation gives the even eigenvalues, and the second one gives the odd eigenvalues.
The wavefunctions are immediately obtained with (Eq. 15.566) and (Eq. 15.567) after the subband energy
has been computed. Having obtained the wavefunctions and subband energies, the carrier densities of the 1D-
confined system are also computed by:

(15.572)

(15.573)

where is the Fermi integral of the order 0, and , denote the chemical potentials. The indices hh
and lh denote the heavy and light holes, respectively. The effective densities of states are:

(15.574)

(15.575)

ζ x() C1

κl
2
-----⎝ ⎠

⎛ ⎞ e α x l 2⁄–()–cos , x l 2⁄>

κx()cos , x l 2⁄≤⎩
⎪
⎨
⎪
⎧

=

ξ x() C2

κl
2
-----⎝ ⎠

⎛ ⎞ e x l 2⁄+−()+−sin± x l 2⁄>,

κx()sin x l 2⁄≤,⎝
⎜
⎜
⎜
⎛

=

α l
2

mb
mw
-------κ l

2
--- κ l

2
---⎝ ⎠

⎛ ⎞cot+ 0=

α l
2

mb
mw
-------κ l

2
--- κ l

2
---⎝ ⎠

⎛ ⎞tan– 0=

κ
2mwE

h
-------------------=

α
2mb ∆Ec E–()

h
---------------------------------------=

E

n x() Ne
2D ζi x() 2F0 ηn Ei–()

i
∑=

p x() Nhh
2D ζj x()

2F0 ηp Ehh
j–() Nlh

2D ζm x()
2F0 ηp Elh

m–()
m
∑+

j
∑=

F0 x() ηn ηp

Ne
2D kBTme

h2πLx

----------------=

Nlh hh⁄
2D kBTmlh hh⁄

h2πLx

--------------------------=
 15.449

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
where is the thickness of the quantum well. The thickness of each quantum well is automatically detected
in DESSIS by scanning the material regions for the keyword Active.

The effective masses of the carriers in the quantum well can be changed inside the parameter file:

eDOSMass
{
 * For effective mass specification Formula1 (me approximation):
 * or Formula2 (Nc300) can be used :
 Formula = 2 # [1]
 * Formula2:
 * me/m0 = (Nc300/2.540e19)^2/3
 * Nc(T) = Nc300 * (T/300)^3/2
 Nc300 = 8.7200e+16 # [cm-3]
 * Mole fraction dependent model.
 * If just above parameters are specified, then its values will be
 * used for any mole fraction instead of an interpolation below.
 * The linear interpolation is used on interval [0,1].
 Nc300(1) = 6.4200e+17 # [cm-3]
}
...
SchroedingerParameters:
{ * For the hole masses for Schroedinger equation you can
 * use different formulas.
 * formula=1 (for materials with Si-like hole band structure)
 * m(k)/m0=1/(A+-sqrt(B+C*((xy)^2+(yz)^2+(zx)^2)))
 * where k=(x,y,z) is unit normal vector in reciprocal
 * space. ’+’ for light hole band, ’-’ for heavy hole band
 * formula=2: Heavy hole mass mh and light hole mass ml are
 * specified explicitly.
 * Formula 2 parameters:
 Formula = 2 # [1]
 ml = 0.027 # [1]
 mh = 0.08 # [1]
 * Mole fraction dependent model.
 * If just above parameters are specified, then its values will be
 * used for any mole fraction instead of an interpolation below.
 * The linear interpolation is used on interval [0,1].
 ml(1) = 0.094 # [1]
 mh(1) = 0.08 # [1]
}

28.6.1 Syntax for simple quantum well model

This simple QW subband model is the default model when the QWTransport and QW scattering model
(QWScatModel) are activated. Table 15.154 summarizes the keywords that are associated with this simple QW
model. Most keywords have been previously described except Strain, SplitOff, and QWEffPeriod. The keyword
Strain is discussed in Section 28.7 on page 15.451.

Table 15.154 Keywords in Physics-Laser or Physics-LED sections associated with simple
QW subband model

Feature keyword Description

eQWMobility=<float> 2D mobility for bound electrons for scattering model [cm2/Vs].

hQWMobility=<float> 2D mobility for bound holes for scattering model [cm2/Vs].

QWeScatTime=<float> Electron scattering time into quantum well [s].

Lx
15.450

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
28.7 Strain effects
In semiconductor laser design, it is well known that strain of the quantum well modifies the laser
characteristics. Due to the deformation potentials in the crystal at the well–bulk interface and valence band
mixing effects, band structure modifications occur mainly for the valence bands. They have an impact on the
optical recombination and transport properties. A more advanced k.p model is available, which incorporates
strain into the Hamiltonian implicitly (see Section 28.9 on page 15.455).

In the simple QW subband model discussed in the previous section, a simpler approach to the QW strain
effects is adopted. The simple QW subband model does not include nonparabolicities of the band structure,
arising from valence band mixing and strain, in a rigorous manner. However, by carefully selecting the
effective masses in the well, a good approximation of the strained band structure can be obtained [138]. The
effective masses can be changed in the parameter file as previously shown.

Basically, strain has two impacts on the band structure. Due to the deformation potentials, the effective band
offsets of the conduction and valence bands are modified. This is included in the simple QW subband model
by:

(15.576)

(15.577)

(15.578)

where an and ac are the hydrostatic deformation potential of the conduction and valence bands, respectively.
The shear deformation potential is denoted with b and is the spin-orbit split-off energy. The elastic stiffness
constants are C11 and C12, and ε is the relative lattice constant difference in the active region. The hydrostatic
component of the strain shifts the conduction band offset by and shifts the valence band offset by

.

The shear component of the strain decouples the light hole and heavy hole bands at the Γ point, and shifts the
valence bands by an amount of in opposite directions.

QWExtension=AutoDetect Width of each quantum well automatically detected. The quantum well
region must be specified by the keyword Active.

QWhScatTime=<float> Hole scattering time into quantum well [s].

QWScatModel Activates scattering model for quantum well.

QWShallow Switches on scattering for flat quantum wells.

QWTransport Activates the ‘three-point’ QW model with thermionic emission.

Strain Activates the strain model for quantum well.

Table 15.154 Keywords in Physics-Laser or Physics-LED sections associated with simple
QW subband model

Feature keyword Description

δEC 2ac 1
C12
C11
--------–⎝ ⎠

⎛ ⎞ ε=

δEV
HH 2aν 1

C12
C11
--------–⎝ ⎠

⎛ ⎞ ε b 1 2
C12
C11
--------+⎝ ⎠

⎛ ⎞ ε+=

δEV
LH 2aν 1

C12
C11
--------–⎝ ⎠

⎛ ⎞ ε b– 1 2
C12
C11
--------+⎝ ⎠

⎛ ⎞ ε ∆
2
--- 1

2
--- ∆2 9δEsh

2 2δEsh∆–+–⎝ ⎠
⎛ ⎞–+=

∆

δEC
δEV

0 2aν 1 C12 C11⁄–()ε=

δEsh b 1 2C12 C11⁄+()ε=
 15.451

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
28.7.1 Syntax for quantum well strain

The strain shift can be activated by the keyword Strain in the Physics-Laser section of the command file:

Physics {...
 Laser (...
 Optics (...)
 # --- QW physics ---
 QWTransport
 QWExtension = AutoDetect
 QWScatModel
 QWeScatTime = 8e-13 # [s]
 QWhScatTime = 4e-13 # [s]
 eQWMobility = 5370 # [cm^2/Vs]
 hQWMobility = 150 # [cm^2/Vs]
 # --- QW strain ---
 Strain
)
}

NOTE The value for the spin-orbit split-off energy is no longer defined in the command file. Enter it in
the parameter file.

The parameters an, ac, and b can be entered as a_nu, a_c, and b_shear, respectively, in the QWStrain section of
the parameter file:

QWStrain
{
 * Deformation Potentials (a_nu, a_c, b, C_12, C_11
 * and strainConstant eps :
 * Formula:
 * eps = (a_bulk - a_active)/a_active
 * dE_c =
 * dE_lh = ...
 * dE_hh = ...
 eps = -1.0000e-02 # [1]
 * a_nu = 1.27 # [1]
 * a_c = -5.0400e+00 # [1]
 * b_shear = -1.7000e+00 # [1]
 * C_11 = 10.11 # [1]
 * C_12 = 5.61 # [1]
}

The elastic stiffness constants C11 and C12 can be specified by C_11 and C_12. Due to valence band mixing and
strain, the valence bands can become nonparabolic. However, within a small range from the band edge,
parabolicity can still be assumed. In the simulation, users can modify the effective heavy hole and light hole
masses in the parameter file for the subband calculation to account for this effect. The spin-orbit split-off
energy can be specified in the BandstructureParameters section of the parameter file:

BandstructureParameters{
...
so = 0.34 # [eV]
...

}

15.452

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
28.8 Polarization-dependent optical matrix element
The polarization dependence of the optical matrix element in (Eq. 15.542) can be treated in an elegant
way for the simple QW subband model. Define the optical polarization angle, , as the angle of the vectorial
optical field between the quantum well (QW) plane and perpendicular to the QW plane, as shown in
Figure 15.108.

Figure 15.108 Taking the optical polarization with respect to QW plane so that anisotropic
polarization-dependent factor in optical matrix element can be defined

If the vector lies completely in the QW plane as in the case of TE modes, the angle is 0. If it is strictly
perpendicular as in TM modes, it is . The unit is radian. These polarization angles at each vertex can be
visualized by including the keywords OpticalPolarizationAngleMode0 to OpticalPolarizationAngleMode9 in the
Plot section of the DESSIS command file.

NOTE In bulk material, the optical matrix element is isotropic and the polarization-dependent factor can
be taken as .

The polarization-dependent factor is a measure of the influence of the polarization of the optical field with
the plane wavefunctions of the optical transition. Suppose the optical field polarization is defined by the unit
vector:

(15.579)

where . It is obvious that and from Figure 15.108. The resultant polarization-
dependent factor for a quantum well can be derived as:

(15.580)

Pij
γ

QW Plane

Optical Field Vector

γ

π 2⁄

Pij 1=

Pij

ê αâTE βâTM+=

α2 β2+ 1= α γcos= β γsin=
Pij

Pc hh,
1

Mb
2

------- ê iSi′ p 3
2
--- 3

2
---–,〈 〉 ′•

2

3 1
4
---α

2
cos2Ψ 1

4
---α2 1

2
---β2sin2Ψ+ +

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

=

 15.453

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
for C-HH transitions, and:

(15.581)

for C-LH transitions. The k-wavevector angle is defined as:

(15.582)

The cross-coupling terms between the TE and TM contributions evaluate to zero upon integration over the
polar angle in the QW plane. This is equivalent to computing different TE-stimulated and TM-stimulated
emission coefficients and, therefore, different modal gains for the TE and TM polarizations, which are
subsequently summed to give the overall modal gain of the mode at each active vertex, that is:

(15.583)

where and are the local normalized intensities of the vectorial optical field projected
onto the TE and TM planes, respectively. In this way, automatic polarization-dependent gain calculations for
each separate vertex in the active region are achieved if the vectorial optical solver (FEVectorial) is chosen.

In the case of scalar optical solvers (FEScalar), the user can select the type of polarization (TE or TM) in the
Physics-Laser-Optics-FEScalar section of the command file:

Physics {...
Laser (...

Optics(
FEScalar(EquationType = Waveguide

Symmetry = Symmetric
LasingWavelength = 800 # [nm]
TargetEffectiveIndex = (3.4 3.34) # initial guess
TargetLoss = (10.0 12.0) # initial guess [1/cm]
--- Specify the optical polarization ---
Polarization = (TE TM)
ModeNumber = 2

)
)

)
}

The TE and TM polarizations give a global optical polarization angle of 0 and , respectively. The default
is TE polarization. For purely TE or TM polarizations, (Eq. 15.580) and (Eq. 15.581) reduce to the values in
Table 15.155.

Table 15.155 Polarization-dependent factor for purely TE and TM polarizations

 TE polarization TM polarization

C-HH

C-LH

Pc lh,
1

Mb
2

------- ê iSi′ p 3
2
--- 1

2
---–,〈 〉 ′•

2
ê iSi′ p 3

2
--- 1

2
---,〈 〉 ′•

2
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

3 1
3
---α

2
sin2Ψ 1

12
------α2cos2Ψ 1

12
------α2 2

3
---β2cos2Ψ 1

6
---β2sin2Ψ+ + + +

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

=

cos2Ψ
Eg Ei E+ j+

E
----------------------------- E Eg Ei Ej+ +>,=

Gmodal x y,() rTE
st ETE x y,()

2 rTM
st ETM x y,()

2+=

ETE x y,()
2 ETM x y,()

2

π 2⁄

3
4
--- 1 Ψ2cos+() 3

2
--- Ψ2sin

5
4
--- 3

4
--- Ψ2cos– 1

2
--- 1 3 Ψ2cos+()
15.454

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
A self-consistent simulation of four vectorial modes is performed for an edge-emitting laser to show the
polarization-dependent effects on the gain. Figure 15.109 shows the modal gain plotted (using INSPECT) as
a function of transition energy for the four different modes.

Figure 15.109 Modal gain curves for two TE and two TM modes

The four modes contain two quasi-TE (TE0 and TE1) and two quasi-TM (TM0 and TM2) modes. The TE
gains are much greater than the TM gains because the InGaAs quantum wells used in this example strongly
favor TE polarization. Therefore, DESSIS can simulate multimode lasing with mixed optical polarization.

28.9 k.p method
A more advanced model for computing the QW subbands, strain shift, many-body effects, and so on with the
k.p method is available in DESSIS. The k.p method implemented in DESSIS is based on the Luttinger–Kohn
model. Choices of , , and Hamiltonians are possible to handle degenerate heavy hole, light
hole, spin-orbit split-off, and conduction bands.

The wavefunction in a periodic lattice can be expanded into plane waveforms and is assumed to be a Bloch
function:

(15.584)

where is the envelope wavefunction, which is periodic across each crystal lattice, .
Substituting this into the Schrödinger equation, gives the eigenvalue equation for
the envelope wavefunction:

(15.585)

where the Luttinger–Kohn Hamiltonian is:

(15.586)

1.22 1.24 1.26 1.28
1e-2

1e-1

1e0

1e1

1e2

lo
g(

G
ai

n)

Transition Energy (eV)

TE0

TE1

TM0

TM1

4 4× 6 6× 8 8×

ψnk r() eik r⋅ unk r()⋅=

unk r() unk r() unk r R+()=
Hψnk r() En k()ψnk r()=

H'unk r() E' k()unk r()=

H' p2

2m
------- V r() h2k

2

2m0
----------- h

4m0
2c2

------------------∇V p× σ⋅ h
m0
------k p⋅+ + + +=
 15.455

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
 is the Pauli spin matrix and is the potential variation of the quantum well region, which may include
carrier interaction effects.

In DESSIS, two types of carrier interaction effect are treated:

Free carrier theory (FCT), which assumes that the carriers do not interact with each other and, therefore,
do not contribute to any additional potential terms.

Many-body effects, which account for the Coulombic interaction between the carriers. This is included
in the form of a screened Hartree–Fock (SHF) potential.

When the k.p method is used, the valence band mixing effects and many-body effects (if included) distort the
band structure from a parabolic shape. In this case, the integral in the stimulated and spontaneous emission
coefficients ((Eq. 15.539) and (Eq. 15.540)) is performed in k-space rather than energy space.

The features of the k.p method are:

Only Lorentzian and hyperbolic-cosine gain broadenings are available.

Only scalar optical modes in single-mode simulation.

For zinc-blende crystal structure, users can select the , , and k.p Hamiltonians with the
FCT and SHF carrier interaction effects.

For wurtzite crystal structure, users can select only the k.p Hamiltonian with the FCT and SHF
carrier interaction effects.

NOTE The next release will enable multiple and vectorial transverse optical modes and the 8 x 8
Hamiltonian for the wurtzite crystal structure. An additional second Born approximation option to
treat the many-body effect will also be introduced.

28.9.1 Luttinger–Kohn parameters and Hamiltonians for zinc-
blende crystal structure

The Luttinger–Kohn parameters , , and are well known. They are used in the following expressions,
which are key components for forming the Luttinger–Kohn Hamiltonian matrices:

(15.587)

(15.588)

(15.589)

(15.590)

σ V

4 4× 6 6× 8 8×

6 6×

γ1 γ2 γ3

P h2γ1
2m

----------⎝ ⎠
⎛ ⎞ kx

2 ky
2 kz

2+ +()=

Q h2γ2
2m

----------⎝ ⎠
⎛ ⎞ kx

2 ky
2 2kz

2–+()=

R h2γ2
2m

----------⎝ ⎠
⎛ ⎞– 3 kx

2 ky
2–() i h2γ3

2m
----------⎝ ⎠

⎛ ⎞ 2 3kxky+=

S h2γ3
2m

----------⎝ ⎠
⎛ ⎞ 2 3 kx iky–()kz=
15.456

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
The strain-related parameters are:

(15.591)

(15.592)

(15.593)

(15.594)

(15.595)

where and are the lattice constants of the well and barrier, respectively. , , , and are
deformation potentials. As shorthand notations, the following are defined:

(15.596)

(15.597)

The envelope wavefunction, , is also expanded to a set of basis functions: p-like for the valence bands and
s-like for the conduction bands. Valence band mixing is also included in this expansion.

Four-band Hamiltonian

The Hamiltonian gives the solution to degenerate heavy-hole and light-hole bands; the conduction band
is treated independently. Its matrix form is:

(15.598)

where * denotes complex conjugate.

εxx εyy
a0b a0w–

a0w
-----------------------= =

εzz
2C12
C11

------------–=

Pε av εxx εyy εzz+ +() δEv–= =

Qε
b
2
--- εxx εyy 2εzz–+()–=

δEc 2ac 1
C12
C11
--------–⎝ ⎠

⎛ ⎞ εxx=

a0w a0b C11 C12 av b

Pt P Pε+=

Qt Q Qε+=

unk

4 4×

H'

Pt Qt+ S– R 0

S*– Pt Qt– 0 R

R* 0 Pt Qt– S

0 R* S* Pt Qt+

=

 15.457

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
Six-band Hamiltonian

The Hamiltonian gives the solution to degenerate heavy-hole, light-hole, and split-off bands; the
conduction band is treated independently. Its matrix form is:

(15.599)

where is the spin-orbit split-off energy.

Eight-band Hamiltonian

The Hamiltonian gives the solution to degenerate heavy-hole, light-hole, split-off, and conduction
bands. Its matrix form is:

(15.600)

6 6×

H'

Pt Qt+ R 2R S
2

-------– S– 0

R* Pt Qt– 2Q 3
2
---S* 0 S

2R* 2Q Pt ∆+ 0 3
2
---S* S

2
-------–

S*

2
-------– 3

2
---S 0 Pt ∆+ 2Q– 2R–

S*– 0 3
2
---S 2Q– Pt Qt– R

0 S* S*

2
-------– 2R*– R* Pt Qt+

=

∆

8 8×

H'

Eg sh2k
2

2m0
----------- δEc+ + 2Pzkz– Pzkz

3
2
---P+ 0

P-

2
-------– P-– 0

2Pz
*
kz– Pt Qt–()– 2Qt– S* P+

*

2
-------– 0 3

2
---S– R

Pz
kz 2Qt– Pt ∆+()– S

2
-------– P+

*– 3
2
---S 0 2R

3
2
---P

+

*
S S

2
-------– Pt Qt+()– 0 R– 2R– 0

0
P+

2
-------– P+– 0 Eg sh2k

2

2m0
----------- δEc+ + 2Pzkz Pzkz– 3

2
---P

-
–

P-
*

2
-------– 0 3

2
---S

*
R*– 2Pz

*
kz Pt Qt–()– 2Qt– S

P-
*– 3

2
---S–

*
0 2R

*
– Pz

*kz– 2Qt– Pt ∆–()– S
2

-------–

0 R* 2R
*

0 3
2
---P

-

*
– S* S*

2
-------– Pt Qt+()–

=

15.458

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
where:

(15.601)

(15.602)

and is a dimensionless parameter for describing the effect of the free-electron term in the Kane
approach [194].

28.9.2 Luttinger–Kohn parameters and Hamiltonian for wurtzite
crystal structure

Six-band Hamiltonian

The Hamiltonian gives the solution to degenerate heavy-hole, light-hole, and split-off bands; the
conduction band is treated independently. The formula from the paper by Chuang is followed [198]. Its block-
diagonalized matrix form is:

(15.603)

where:

(15.604)

(15.605)

(15.606)

(15.607)

(15.608)

(15.609)

(15.610)

Pz i P
3

-------=

P± i P
3

------- kx ky±()=

s

6 6×

H'

F Kt iHt– 0 0 0

Kt G ∆ iHt– 0 0 0

iHt ∆ iHt+ λ 0 0 0

0 0 0 F Kt iHt

0 0 0 Kt G ∆ iHt+

0 0 0 iHt– ∆ iHt– λ

=

F ∆1 ∆2 λ θ+ + +=

F ∆1 ∆2– λ θ+ +=

λ h2

2m0
---------- A1kz

2 A2kt
2+() λε+=

λε D1εzz D2 εxx εyy+()+=

θ h
2

2m0
---------- A3kz

2 A4kt
2+() θε+=

θε D3εzz D4 εxx εyy+()+=

Kt
h2

2m0
----------A5kt

2=
 15.459

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
(15.611)

28.9.3 Syntax for k.p method

The syntax to activate the k.p method is complicated. It involves:

The definition of a nonlocal mesh across the quantum wells so that a 1D (spatially) Schrödinger equation
can be formulated with the k.p method.

Using new keywords in the Physics-Laser and Solve sections.

Inputting new coefficients in the QWStrain section of the parameter file.

Constructing a nonlocal mesh on a straight line

The user must include an additional layer between the separate confinement heterostructure (SCH) and
quantum well regions, each on the n and p side of the laser diode, as shown in Figure 15.110. These additional
layers together with the quantum well region define the spatial span where the 1D Schrödinger equation will
be solved numerically using the k.p method. The 1D Schrödinger equation is solved by discretizing the line
(nonlocal mesh) that traverses these additional layers and the quantum well region in the vertical direction.
The user can select the discretization size in the command file.

Figure 15.110 Adding additional layers between the SCH and quantum well regions; these layers are labelled
psch_Schroedinger and nsch_Schroedinger as they are associated with the solution of 1D
Schrödinger equation

The k.p method is activated by the keyword BandStructure in the Physics-Laser and Solve sections of the
command file:

Electrode {
{Name="p_Contact" voltage=0.9 AreaFactor = 500}
{Name="n_Contact" voltage=0.0 AreaFactor = 500}

}

Ht
h2

2m0
----------A6kzkt=

pbulk

nbulk

psch

nsch

QWs
psch_Schroedinger

nsch_Schroedinger

Schrödinger equation is solved on
a nonlocal mesh line across the
quantum well region.
15.460

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
File {
 Grid = "mesh_mdr.grd"
 Doping = "mesh_mdr.dat"
 Parameters = "des_las.par"

 Current = "testkp_current"
 Output = "testkp_log"
 Plot = "testkp_plot"
 ModeGain= "testkp_gain"
}

Plot {
 # Include desired variables to plot
}

Physics {
 AreaFactor = 2 # for symmetric devices
 Laser (
 Optics(
 # --- Only scalar solver possible with k.p method in this release ---
 FEScalar(Symmetry = Symmetric
 Polarization = TE # or TM
 LasingWavelength = 980 # [nm]
 TargetEffectiveIndex = 3.5 # initial guess
 ModeNumber = 1
)
)
 TransverseModes # Edge emitter
 CavityLength = 500 # [microns]
 lFacetReflectivity = 0.3
 rFacetReflectivity = 0.3
 OpticalLoss = 10.0 # [1/cm]

 # --- Define basic QW physics and three-point model ---
 QWTransport
 QWExtension = AutoDetect
 QWScatmodel
 QWeScatTime = 1e-13 # [s]
 QWhScatTime = 2e-14 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]

 # --- Activate k.p method with strain effects ---
 ManyBodyEffects (Type=FCT) # or SHF
 Strain (RefLatticeConst = 5.65392e-10) # [m]
 Bandstructure (
 CrystalType = Zincblende # Wurtzite in next release
 Order = kp4x4 # or Nokp or kp6x6 or kp8x8

)
 # --- Only Lorentzian or CosHyper gain broadening with k.p method ---
 Broadening(Type=Lorentzian Gamma=0.013)

)
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi
 HeteroInterfaces
 Thermionic
}

--- Define material region physics ---
 15.461

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
Physics (region="pbulk") { MoleFraction(xfraction = 0.28) }
Physics (region="nbulk") { MoleFraction(xfraction = 0.28) }
Physics (region="psch") { MoleFraction(xfraction = 0.09) }
Physics (region="nsch") { MoleFraction(xfraction = 0.09) }
Physics (region="psch_Schroedinger") { MoleFraction(xfraction = 0.09) }
Physics (region="nsch_Schroedinger") { MoleFraction(xfraction = 0.09) }
Physics (region="barr1") { MoleFraction(xfraction = 0.09) }

--- Define the QWs as the active region ---
Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading = 0.00)
 Active
}
Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading = 0.00)
 Active
}

--- Activate Schroedinger solver on non-local mesh defined below ---
Physics (RegionInterface="psch/psch_Schroedinger") {
 Schroedinger (electron maxSolutions(electron)=3
 hole maxSolutions(hole)=6
)
}

--- Define non-local mesh ---
Math (RegionInterface="psch/psch_Schroedinger") {
 Nonlocal(Length = 0.143e-4 # [cm]
 Direction = 2 # y-direction
 Discretization = 0.2e-7 # [cm]
)
}
Math (RegionInterface="nsch/nsch_Schroedinger") {
 NonLocal(AnchorPoints)
}

--- Define regions to be excluded from non-local mesh ---
Math (Region="nsch") {
 NonLocal(-Transparent)
}
Math (Region="psch") {
 NonLocal(-Transparent)
}
Math (Region="pbulk") {
 NonLocal(-Transparent)
}

----- Choice and control of numerical methods -----
Math {...}

Solve {
 Poisson
 Coupled {Electron Hole Poisson QWeScatter QWhScatter}
 Coupled {Electron Hole Poisson QWeScatter QWhScatter PhotonRate}

 # --- Use simple QW subband model first to solve ---
 quasistationary (
 InitialStep=0.05
 MaxStep=0.1
 Minstep=0.00001
 Goal {name="p_Contact" voltage=1.2})
 {
 Plugin(BreakOnFailure) {
15.462

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
 Wavelength
 Coupled {Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate}
 }
 }

 # --- Then turn on the k.p method ---
 Bandstructure
 Wavelength

 # --- Continue using the k.p method in a Gummel iteration for self-consistency ---
 quasistationary (
 InitialStep=0.05
 MaxStep=0.1
 Minstep=0.00001
 # ---
 Plot {range=(0,1) intervals=5}
 PlotGainPara {range=(1.0 1.2) intervals=60}
 PlotGain {range=(0,1) intervals=2 }
 Goal {name="p_Contact" voltage=2.5})
 {
 Plugin(BreakOnFailure) {
 Bandstructure
 Wavelength
 Coupled{Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate}
 }
 }
}

The material regions defined in this example correspond to those in Figure 15.110 on page 15.460. Some
comments about this example are:

In the Physics-Laser section, the k.p method with various effects is activated by the keywords
Bandstructure, Strain, and ManyBodyEffects.

In the Physics-Laser-Strain section, a reference lattice constant must be specified by the argument
RefLatticeConstant=<float> to compute the strain parameters.

In the Physics-Laser-ManyBodyEffects section, only two types of many-body effects are available: free
carrier theory (keyword FCT) and screened Hartree–Fock (keyword SHF). The default is the free carrier
theory.

In the Physics-Schroedinger section, the 1D Schrödinger equation is activated to be solved on a nonlocal
mesh defined by the boundaries of the psch_Schroedinger and nsch_Schroedinger layers (see Figure 15.110).

The nonlocal mesh for the 1D Schrödinger equation is defined in the Math-Nonlocal sections. The
AnchorPoints define the starting location of the 1D nonlocal mesh. The length and discretization size of
the mesh can be defined by the keywords Length and Discretization, respectively. The mesh should only
be within the psch_Schroedinger, nsch_Schroedinger, and quantum well regions only. Therefore, the value
that is specified by the keyword Length should be approximately equal to the distance between the two
interfaces, for which Length and AnchorPoints have been specified. If the length of the nonlocal mesh
exceeds the boundaries, the user can manually exclude the unwanted material regions from the nonlocal
mesh by using the keyword NonLocal(-Transparent).

In the Solve section, the simple QW subband model is solved up to near the lasing threshold. After that,
the k.p method is included in the Gummel iterations for self-consistent solutions of the system.
 15.463

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
Adjusting k.p parameters in parameter file

The deformation potentials and other strain parameters required for the k.p method can be defined in the
QWStrain section of the parameter file:

QWStrain
{
 * Deformation Potentials (a_nu, a_c, b, C_12, C_11).
 * StrainConstant eps (formula = 1) or lattice constant
 * a0 (formula = 2) for energy shift of quantum-well
 * subbands.
 * Formula 1:
 * eps = (a_bulk - a_active)/a_bulk
 * Formula 2:
 * a0(T) = a0 + alpha (T-Tpar)
 * eps = (a_ref - a0(T))/a_ref

 * dE_c = 2 a_c (1- C12/C11) eps
 * dE_lh = 2 a_nu (1- C12/C11) eps - b (1+ 2 C12/C11) eps
 * dE_hh = 2 a_nu (1- C12/C11) eps + b (1+ 2 C12/C11) eps

 Formula = 2 # [1]

 * Mole fraction dependent model.
 * If only constant parameters are specified, those values will be
 * used for any mole fraction instead of the interpolation below.
 * Linear interpolation is used on the interval [0,1].

* a_nu(0) = 1 # [eV]
* a_nu(1) = 1.16 # [eV]
* a_c(0) = -5.0800e+00 # [eV]
* a_c(1) = -7.1700e+00 # [eV]
* b(0) = -1.8000e+00 # [eV]
* b(1) = -1.7000e+00 # [eV]
* C_11(0) = 8.329 # [eV]
* C_11(1) = 11.879 # [eV]
* C_12(0) = 4.526 # [eV]
* C_12(1) = 5.376 # [eV]
* eps(0) = 0.0000e+00 # [1]
* eps(1) = 0.0000e+00 # [1]
* a0(0) = 6.059e-10 # [m]
* a0(1) = 5.654e-10 # [m]
* alpha(0) = 2.7400e-15 # [m/K]
* alpha(1) = 3.8801e-15 # [m/K]

}

For the k.p method, Formula = 2 must be used in the parameter file and a reference lattice constant (for
example, of the substrate) must be specified by the argument RefLatticeConst =<float> in the Physics-Laser-
Strain section of the command file. For non-k.p simulations, the parameter Eps in the parameter file is used
for strain correction. It is possible to take into account the change of the lattice constant with temperature for
k.p and formula 2 only.

The k.p parameters can be defined in the BandstructureParameters section of the parameter file:

BandstructureParameters
{

* Parameters for k.p bandstructure calculation:

* Zincblende crystals:
* Luttinger parameters gamma_1, gamma_2, gamma_3
* Spin-orbit split-off energy so
* Matrix element parameters for TE and TM modes ep_te and ep_tm
15.464

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
* Wurtzite crystals:
* Effective mass parameters A1, A2, A3, A4, A5, A6
* Spin-orbit split-off energy so
* Crystal-field split energy cr
* Matrix element parameters for TE and TM modes ep_te and ep_tm
*
*

gamma_1 = 6.85 # [1]
gamma_2 = 2.1 # [1]
gamma_3 = 2.9 # [1]
so = 0.014 # [eV]
ep_te = 18.8 # [eV]
ep_tm = 12.4 # [eV]
cr = 0.019 # [eV]
A1 = -7.2400e+00 # [1]
A2 = -5.1000e-01 # [1]
A3 = 6.73 # [1]
A4 = -3.3600e+00 # [1]
A5 = -3.3500e+00 # [1]
A6 = -4.7200e+00 # [1]

}

The k.p keywords in the command file are summarized in Table 15.156 and Table 15.157.

NOTE If the wavelength search algorithm fails due to the many-body simulation or a strong strain shift of
the QW subbands, the keyword NewWavelengthSearch can be activated in the Math section. This
switches on a more robust algorithm that, in most cases, resolves the convergence problem.

28.9.3.1 Plotting the local band structure data

The band structures computed by the k.p method can be plotted in a similar fashion as the far field and gain
plots. The syntax for this is:

File{...
Bandstructure = "bandfile"
...

}
Solve{...

Quasistationary (

Table 15.156 Arguments for ManyBodyEffects section

Argument Values Default

Type FCT SHF FCT

Table 15.157 Arguments for Bandstructure section

Argument Values Default

CrystalType Zincblende Wurtzite Zincblende

Order nokp, kp4x4, kp6x6, kp8x8 nokp, kp6x6 nokp

NumKValues Number of values in k space (band structure is calculated up
to 8e8 1/m for Zincblende and up to 12e8 1/m for Wurtzite)

16 (Zincblende)
21 (Wurtzite)
 15.465

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
InitialStep=0.05
MaxStep=0.05
Minstep=0.0003
Plot {range=(0,1) intervals=3}
PlotBandstructure {range=(0,1) intervals=3}
PlotBandstructurePara {Vertex=(742 819 1150)}
Goal {name="p_Contact" voltage=1.8})
{
Plugin (BreakOnFailure Iterations=8) {

Bandstructure
Wavelength
Coupled{Electron Hole Poisson QWeScatter QWhScatter PhotonRate}

}
}
...

}

The activation syntax is similar to that of OptFarField (see Section 27.9 on page 15.427) and SaveOptField (see
Section 29.2 on page 15.472). The highlights of the syntax are:

In the File section, band structure plotting is activated by the keyword Bandstructure, and the value
assigned to it, "bandfile" in this case, becomes the base name for the output files of the band structures.

In the Solve-Quasistationary section, the argument range=(0,1) in the PlotBandstructure keyword is
mapped to the initial and final bias conditions. In this example, the initial and final (goal) p_Contact
voltages are 0 V and 1.8 V, respectively. The number of intervals is intervals=3, which gives a total of
four (= 3+1) modal gain plots at 0, 0.6, 1.2, and 1.8 V. In general, specifying intervals=n will produce
(n+1) plots.

In the Solve-Quasistationary section, the keyword PlotBandstructurePara allows users to choose the active
vertex with the keyword Vertex=(...) from which the band structure will be plotted. These vertices have
to be active vertices in the QW three-point model. For each vertex specified, the band structure is
plotted for the different subbands as well as the wavefunctions on the nonlocal line crossing the
vertex. The entries in Vertex=(...) are DESSIS vertex indices and they can be obtained from Tecplot-ISE.
Set the environment variable TEC_GRID_DEBUGGING, run Tecplot-ISE, and select Plot > Label Points > Cells
> Show Cell Labels > Show Variable Value > VertexIndex.

The units in the plot files must be [1/m] and [eV] for the plot, and [m] and [1/] for the plot.

The output files in this example are bandfile_000000_des.plt ... bandfile_000003_des.plt. These files can
be viewed with INSPECT.

28.10 Importing external gain with PMI
DESSIS can import external stimulated gain data through the physical model interface (PMI). The gain PMI
concept is illustrated in Figure 15.111 on page 15.467.

DESSIS calls the user-written gain calculations through the PMI with the variables: electron density , hole
density , electron temperature , hole temperature , and transition energy . The user-written gain
calculation then returns the gain and the derivatives of gain with respect to , , , and to DESSIS.
The derivatives are required to ensure proper convergence of the Newton iterations. In this way, the user-
import gain is made self-consistent within the laser simulation.

E k()
Φ x()

E k() m Φ x()

n
p eT hT E

g n p eT hT
15.466

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
Figure 15.111 Concept of the gain PMI

28.10.1 Implementation of the gain PMI

The PMI uses the object-orientation capability of the C++ language (see Chapter 33 on page 15.535). A brief
outline is given here of the gain PMI.

In the DESSIS header file PMIModels.h, the following base class is defined for gain:

class PMI_EXTERNAL PMI_StimEmissionCoeff : public PMI_Dessis_Interface {
public:
 PMI_StimEmissionCoeff (const PMI_Environment& env);
 virtual ~PMI_StimEmissionCoeff ();

 virtual void Compute_rstim
 (double E,
 double n,
 double p,
 double et,
 double ht,
 double& rstim) = 0;

 virtual void Compute_drstimdn
 (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdn) = 0;

 virtual void Compute_drstimdp
 (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdp) = 0;

 virtual void Compute_drstimdet
 (double E,
 double n,
 double p,

Users supply gain
and derivatives

DESSIS supplies ,
, , , and

n
p eT hT E

PMI

, , , , n p eT hT E

,

, , ,

g E n p eT hT,, , ,()

dg
dn
------ dg

dp
------ dg

deT
--------- dg

dhT

 15.467

PART 15 DESSISCHAPTER 28 QUANTUM WELL MODELING
 double et,
 double ht,
 double& drstimdet) = 0;

 virtual void Compute_drstimdht
 (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdht) = 0;
};

To implement the PMI model for gain, the user must declare a derived class in the user-written header file:

#include "PMIModels.h"

class StimEmissionCoeff : public PMI_StimEmissionCoeff {
 // User-defined variables for his/her own routines
 private:
 double a, b, c, d;

 public:
 // Need a constructor and destructor for this class
 StimEmissionCoeff (const PMI_Environment& env);
 ~StimEmissionCoeff ();

 // --- User needs to write the following routines in the .C file ---
 // The value of the function is return as the last pointer argument

 // stimulated emission coeff value
 void Compute_rstim (double E,
 double n,
 double p,
 double et,
 double ht,
 double& rstim);

 // derivative wrt n
 void Compute_drstimdn (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdn);

 // derivative wrt p
 void Compute_drstimdp (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdp);

 // derivative wrt eT
 void Compute_drstimdet (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdet);

15.468

PART 15 DESSIS CHAPTER 28 QUANTUM WELL MODELING
 // derivative wrt hT
 void Compute_drstimdht (double E,
 double n,
 double p,
 double et,
 double ht,
 double& drstimdht);
};

Next, the user must write the functions Compute_rstim, Compute_drstimdn, Compute_drstimdp, Compute_drstimdet,
and Compute_drstimdht to return the values of the stimulated emission coefficient and its derivatives to DESSIS
using this gain PMI. If users have, for example, a table of gain values, they must implement the above
functions to interpolate the values of the gain and derivatives from the table.

The spontaneous emission coefficient can also be imported using the PMI. The implementation is exactly the
same as the stimulated emission coefficient, and users only need to replace StimEmissionCoeff with
SponEmissionCoeff in the above code.
 15.469

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
DESSIS

CHAPTER 29 Additional features of laser or LED
simulation

A host of features is available to aid the simulation of lasers and LEDs.

29.1 Free carrier loss
The free carrier loss is caused by plasma-induced effects and contributes to the total optical loss as shown in
(Eq. 15.478). The free carrier loss can be modeled by:

(15.612)

where the loss is linearly dependent on the electron and hole carrier densities. This model is activated by the
keyword FreeCarr in the Physics-Laser section of the command file:

Plot {...
 efreecarr
 hfreecarr
}
...
Physics {...
 Laser (...
 Optics (...
 FEVectorial (...
)
)
 FreeCarr
)
}

In this example, eFreeCarr and hFreeCarr in the Plot section enable the electron and hole contributions to the
free carrier loss to be plotted. The coefficients for the free carrier loss, and , for each material region
are specified in the parameter file:

FreeCarrierAbsorption
{
 * Coefficients for free carrier absorption:
 * alpha_n for electrons,
 * alpha_p for holes

 * FCA = (alpha_n * n + alpha_p * p) * Light Intensity
 * Mole fraction dependent model.
 * If only constant parameters are specified, those values will be
 * used for any mole fraction instead of the interpolation below.
 * Linear interpolation is used on the interval [0,1].
 fcaalpha_n(0) = 4.0000e-18 # [cm^2]
 fcaalpha_n(1) = 5.0000e-18 # [cm^2]
 fcaalpha_p(0) = 8.0000e-18 # [cm^2]
 fcaalpha_p(1) = 9.0000e-18 # [cm^2]
}

Lcarr αnn αpp+() Ψ 2 Vd∫∫=

αn αp
 15.471

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.2 Saving and loading optical modes
The calculation of the optical modes of a laser can be time-consuming especially for large geometries. To save
simulation time, transverse optical mode patterns can be saved and loaded from data files. However, when the
optical modes are loaded from a file, the optical modes are assumed to be constant throughout the simulation.
As a result, self-consistent iteration between the optics and electronics is not possible in this case.

29.2.1 Saving optical modes on optical or electrical mesh

The optical field can be saved on the grid of the optical device (referred to as the optical mesh) in a dual-grid
simulation by using the keyword SaveOptField. To understand more about dual-grid simulation (see
Section 25.2.2 on page 15.378). If the optical mesh is not found, the keyword SaveOptField saves the optical
field to the only grid that is available – the electrical mesh as it is in Section 25.2.1 on page 15.373. The
activation keyword is SaveOptField in the File and Solve-quasistationary sections of the command file:

File {...
 SaveOptField = "laserfield"
}
...
Solve {...
 quasistationary (
 SaveOptField { range=(0,1) intervals=3 }
 Goal({name="p_Contact" voltage=1.8})
 {...}
}

Refer to Section 25.2.1 to see where this syntax is inserted in the command file. The SaveOptField has the same
format as the OptFarField (see Section 27.9 on page 15.427) and GainPlot (see Section 29.4 on page 15.475).
In this way, users can track the evolution of the optical field as the bias increases. With regard to the syntax
and its output:

In the File section, saving the optical field is activated by the keyword SaveOptField. The value assigned
to it, "laserfield" in this case, becomes the base name for the output files of the optical fields.

In the Solve-quasistationary section, the argument range=(0,1) in the SaveOptField keyword is mapped to
the initial and final bias conditions. In this example, the initial and final (goal) p_Contact voltages are 0 V
and 1.8 V, respectively. The number of intervals=3 , which gives a total of four (= 3+1) optical field saved
at 0 V, 0.6 V, 1.2 V, and 1.8 V. In general, specifying intervals=n will produce (n+1) sets of optical field
files.

The output files in this example are laserfield_000000_mode0_int.dat, laserfield_000000_mode0_real.dat,
and lasefield_000000_mode0_imag.dat. The first is the optical field intensity, and the other two are the real
and imaginary parts of the vectorial optical fields. If the scalar optical solver FEScalar is used, the optical
field is saved in the x-component of the real and imaginary files.

For an LED simulation, only the intensity file is produced because the LED raytracing contains no
vectorial or phase information.

29.2.2 Loading optical modes from arbitrary mesh

The optical mode that is read into DESSIS with the keyword OptField<n> must strictly be on the same DF–ISE
mesh as the electrical device. If the optical field has been saved on another mesh (for example, in an optics
stand-alone simulation on a different optical mesh), the field must be interpolated onto that of the electrical
15.472

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
mesh before DESSIS can load it. This is accomplished by using the ISE tool DIP. For example, to interpolate
the 2D optical intensity for an edge-emitting laser, the following commands for dipsh will perform the
interpolation:

set A [dip_mesh2D -args NULL optical_grid.grd mode_0_int.dat]
set B [dip_mesh2D -args NULL electronic_grid.grd 0]
$B importDatasets $A new OpticalIntensity
$B writeDatasets mode_0_interpolated_int.dat 0

These commands can be saved into a file, for example, dipcommands.cmd, and the DIP interpolation routine can
be called by dipsh dipcommands.cmd. To interpolate the real and imaginary parts of the vectorial optical fields,
the corresponding _real.dat or _imag.dat files can be used instead, and OpticalIntensity is replaced with
OpticalField in the above dipsh commands.

NOTE As stated in Section 29.2 on page 15.472, when optical fields are saved, three files containing the
intensity (_int.dat), and the real (_real.dat) and imaginary (_imag.dat) vectorial optical fields are
produced.

Users can selectively load up to ten possible vectorial optical fields, which have been computed separately.
The activating keyword is OptField<n> and the following example shows the syntaxes for loading scalar and
vectorial optical fields.

Loading scalar optical fields
File {...
 OptField0 = "mode_0"
 OptField1 = "mode_1"
}
...
Physics {...
 Laser (...
 Optics (...
 FEScalar(
 Polarization = (TE TM)
 ModeNumber=2
)
)
)
}

Loading vectorial optical fields
File {...
 OptField0 = "mode_0"
 OptField1 = "mode_1"
 OptField2 = "mode_2"
}
...
Physics {...
 Laser (...
 Optics (...
 FEVectorial(ModeNumber=3)
)
)
}
 15.473

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
Some comments about these syntaxes are:

For example, if "mode_0" is specified by the keyword OptField0 in the File section, DESSIS searches for
mode_0_int.dat, mode_0_real.dat, and mode_0_imag.dat as the input files to load the intensity as well as the
real and imaginary parts of the vectorial optical field. In the case of scalar fields, the scalar optical field
is stored as the x-component of the vectorial field files.

The optical solver type in the Physics-Laser-Optics section must be specified as FEScalar or FEVectorial so
that DESSIS knows which type of optical field to read.

The number of optical field files specified must match the number of modes specified by Modenumber.

For scalar optical fields, the type of Polarization must be set for each mode that is read. For vectorial
fields, the optical polarization angles are automatically computed.

After the optical fields are read, DESSIS normalizes them for use with the photon rate equation.

NOTE When optical modes are read from files, self-consistent simulation between the optics and
electronics is not possible.

29.2.3 Obsolete optical intensity save and load options

The keywords for loading and saving optical intensities, SaveOptPattern and OptPattern, are obsolete and will
be discontinued in Release 10.0.

29.3 Symmetry considerations
Imposing symmetry of the device in laser simulations requires the treatment of symmetry in both the optical
and electrical parts of the problem. In particular, symmetry changes the boundary conditions for the optical
solvers and must be handled carefully. See Chapter 27 on page 15.399 for a detailed discussion about
symmetry in the optics.

Conversely, symmetry in the electrical part of the problem is simpler. With the finite box method used in the
simulation, the Neumann boundary condition is implicitly imposed at all boundaries that are not defined as
the contacts. Therefore, there is no need for the user to set the boundary specifically for symmetric structures.
However, an additional area factor of 2 must be specified in the Physics section:

Physics {...
 AreaFactor = 2
 Laser (...
 Optics(
 FEVectorial(...
 Symmetry = Symmetric
)
)
)
}

This adjusts the total electrode area and the optical output power, both of which double in the symmetric
simulation mode.
15.474

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.3.1 Cylindrical symmetry

VCSEL structures are generally assumed to be cylindrically symmetric, and cylindrical symmetry in DESSIS
is managed in a slightly different way. The 2D plane whereby the device is drawn is treated as the plane
in cylindrical symmetry.

In addition to the specification of Coordinates=Cylindrical in the Physics-Laser-Optics-FEVectorial section, the
keyword Cylindrical must also be added to the Math section:

Physics {...
 AreaFactor = 1
 Laser (...
 Optics(
 FEVectorial(...
 Coordinates = Cylindrical
)
)
 VCSEL() # specify this is a VCSEL simulation
)
}
...
Math {...
 Cylindrical
}

This is to ensure that the area and volume computations associated with each vertex is based on cylindrical
symmetry.

NOTE In the cylindrical symmetry case, it is not necessary to specify an AreaFactor of 2.

29.4 Plotting gain
Modal or material gain is an important parameter in laser operations. It affects the threshold current,
modulation response, external efficiency, lasing wavelength, and so on. In the simulation, the modal or
material gain can be monitored in three ways: as a function of bias, spatial distribution, and a function of
energy. Refer to Section 25.2.1 on page 15.373 while proceeding through these gain-plotting options.

29.4.1 Modal gain as a function of bias

The modal gain for the lasing frequency is automatically output in the Current file in a laser simulation if the
current file has been specified:

File {...
 Current = "multiqw_curr"
}

At the end of the simulation, the file multiqw_curr_des.plt is produced. With INSPECT, users can plot
OpticalGain as a function of bias current, voltage, and so on. This modal gain [1/cm] is the total gain of the
device at the lasing frequency. In multimode simulations, a modal gain curve corresponds to each mode, and
the modal gain is taken at the respective lasing frequencies of the modes.

ρ z,()
 15.475

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.4.2 Material gain in the active region

The peak value of the local material gain at each vertex of the active region can be extracted by including the
keyword MatGain in the Plot section:

File {...
 Grid = "mesh_mdr.grd"
 Plot = "multiqw_plot"
}
...
Plot {...
 MatGain
}
...

At the end of the simulation, the file multiqw_plot_des.dat will be produced. This file can be used in
Tecplot-ISE in conjunction with the grid file, mesh_mdr.grd, to view the peak material gain at each spatial
location of the active region.

29.4.3 Modal gain as a function of energy/wavelength

One important way to look at the gain is to plot the modal gain as a function of the energy. This is possible by
including gain-plotting keywords in the File and Solve-quasistationary sections of the command file:

File {...
 ModeGain = "gain"
}
...
Solve {...
 quasistationary (...
 # ----- Specify plot gain parameters -----
 PlotGain { range=(0,1) intervals=3}
 PlotGainPara{range=(1.22,1.32) intervals=120}# energy range [eV], discretization
 Goal {name="p_Contact" voltage=1.8})
 {...}
}

The activation syntax is similar to that of OptFarField (see Section 27.9 on page 15.427) and SaveOptField (see
Section 29.2 on page 15.472). The highlights of the syntax are:

In the File section, modal gain-plotting is activated by the keyword ModeGain, and the value assigned to it,
"gain" in this case, becomes the base name for the output files of the modal gain as a function of energy.

In the Solve-quasistationary section, the argument range=(0,1) in the PlotGain keyword is mapped to the
initial and final bias conditions. In this example, the initial and final (goal) p_Contact voltages are 0 V and
1.8 V, respectively. The number of intervals=3 , which gives a total of four (= 3+1) modal gain plots at
0 V, 0.6 V, 1.2 V, and 1.8 V. In general, specifying intervals=n will produce (n+1) plots.

In the Solve-quasistationary section, the keyword PlotGainPara allows users to choose the energy range of
the gain curve to plot. In this example, the range has been chosen as 1.22–1.32 eV, and 120 discretization
points are to be used.

The output files in this example are gain_gain_000000_des.plt, ..., gain_gain_000003_des.plt. These files
contain the modal gains as a function of energy or wavelength, and can be viewed with INSPECT.
15.476

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.5 Refractive index, dispersion, and optical loss
The refractive index (dielectric constant) is a function of temperature, carrier density, and wavelength. The
temperature dependence is assumed to be linear and the change in refractive index due to carriers is attributed
to the free carrier plasma effect [155].

The user can specify the refractive index dependence on temperature and carrier density with the keywords
TemperatureDep and CarrierDep in the Physics-Laser section of the command file:

Physics {...
Laser (...

RefractiveIndex(TemperatureDep CarrierDep)
)

}

The user can select either or both type of dependence. If none is chosen (that is, there are no keywords),
DESSIS assumes that the refractive index is a constant value.

NOTE The refractive index and its associated temperature parameters for each material region can be
changed by the user in the parameter file.

29.5.1 Temperature dependence of refractive index

The temperature dependence of the refractive index follows the relation:

(15.613)

and the coefficients can be changed in the parameter file:

RefractiveIndex
{ * Optical Refractive Index

* refractiveindex() = refractiveindex * (1 + alpha * (T-Tpar))
 Tpar = 3.0000e+02 # [K]
 refractiveindex = 3.60e+00
 alpha = 0.0000e-04 # [1/K]
}

29.5.2 Carrier density dependence of refractive index

The change in refractive index due to free carriers [155] is:

(15.614)

where CarrDepCoeff is introduced as a tuning parameter and has a default value of 1. is the lasing wavelength
and is the refractive index. can also change if it is specified as TemperatureDep.

n T() n 1 α T Tpar–()+()⋅=

∆n CarrDepCoeff e2λ2

8π2c2ε0ng

--------------------------× n
me
------ p

mh
------+⎝ ⎠

⎛ ⎞–=

λ
ng ng
 15.477

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
In the case of QW carriers, the heavy-hole mass is modified to become [155]:

(15.615)

The activating syntax in the command file is:

Physics {...
Laser (...

Optics (...)
RefractiveIndex(CarrierDep) # use lasing wavelength of mode0

RefractiveIndex(CarrierDep(LasingWavelength=777.77)) # fixed wavelength [nm]
)

}

There is an option to fix a LasingWavelength if required. Otherwise, DESSIS automatically uses the lasing
wavelength that it computes in the simulation. The tuning parameter CarrDepCoeff is defined for each region
and can be input in the parameter file:

RefractiveIndex
{ * Optical Refractive Index
 refractiveindex = 3.893 # [1]

* Mole fraction dependent model.
* If just above parameters are specified, then its values will be
* used for any mole fraction instead of an interpolation below.
* The linear interpolation is used on interval [0,1].

 refractiveindex(1) = 3.51 # [1]

* Tune the region-wise carrier dependence (plasma effect)
* e^2.lambda^2 (n p)
* del_n = - CarrDepCoeff * ------------------------- (--- + ---)
* 8pi^2.c^2.epsilon0.n_refr (m_e m_h)
* Default of CarrDepCoeff is 1.

 CarrDepCoeff = 1.0 # [1]
 CarrDepCoeff(0) = 0.5
 CarrDepCoeff(1) = 1.0
}

If CarrDepCoeff is not entered in the parameter file, it is assumed to be the default value of 1 during the
simulation. CarrDepCoeff is a mole fraction–dependent parameter, so it works the same way as the other mole
fraction–dependent parameters.

29.5.3 Wavelength dependence and absorption of refractive
index

Wavelength-dependent optical absorption can also be included by using the ODB (Optik database) feature in
the optical solver section of the command file:

Physics {...
 Laser (...
 Optics (...
 FEVectorial (...

mh
mhh

1.5 mlh
1.5+

mhh mlh+
--------------------------------=
15.478

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
 Absorption(ODB)
)
)
)
}

This feature is also available for the other optical solvers such as FEScalar, TMM1D, and EffectiveIndex. In this
case, the user must create a corresponding ODB table for each material region in the parameter file, for example:

TableODB
{ * Table format of the Optik DataBase

* complex refractive index n + i*k (unitless)
* refractive index = n, absorption coefficient = 4*pi*k/wavelength
* WAVELEN(um) n k
0.5904 3.940 0.240
0.6199 3.878 0.211
0.6526 3.826 0.179
0.6888 3.785 0.151
0.7293 3.742 0.112
0.7749 3.700 0.091
0.8266 3.666 0.080
0.8856 3.614 0.0017
0.9184 3.569 0.0
1.0332 3.492 0.0
1.1271 3.455 0.0
1.2399 3.423 0.0
1.3776 3.397 0.0
1.5498 3.374 0.0
1.7712 3.354 0.0
2.0664 3.338 0.0

 2.4797 3.324 0.0
}

29.6 Transient simulation
Transient simulation is important in the tracking of the time evolution of carrier dynamics and photon output
fluctuations in a laser diode. DESSIS has an option to perform the transient simulation of edge-emitting lasers,
VCSELs, and LEDs. A small step bias is applied at the input and, through Newton iterations, the time-varying
continuity equations and photon rate equations are solved self-consistently with the Poisson equation, QW
scattering equations, and Schrödinger equation.

Upon the application of the step bias, the time steps are increased in small intervals to trace the dynamics of
the carriers and photons in the transient simulation. At each time step, the full set of variables everywhere in
the device can be saved and plotted. In this way, users can calculate which feature of the device is hampering
the faster modulation of the device.

Transient simulations performed at different biases yield different dynamics, so users must perform a
quasistationary simulation first to reach the required bias current or voltage level, after which the transient
simulation is activated. The syntax for transient simulation of general devices is described in Section 2.9.4 on
page 15.62. Here, the emphasis is on explaining the syntax that is related to Section 25.2.1 on page 15.373.
 15.479

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.6.1 Syntax for laser transient simulation

The transient simulation can be activated by the keyword Transient in the Solve section of the command file:

Solve {
 # ----- Get initial guesses, coupled means Newton’s iteration -----
 Poisson
 coupled {Hole Electron Poisson }
 coupled {Hole Electron QWhScatter QWeScatter Poisson }
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate}

 # ----- Ramping the voltage to 1.8 V -----
 quasistationary (
 # ----- Specify ratio step size of voltage ramp -----
 InitialStep = 0.001
 MaxStep = 0.05
 Minstep = 1e-5

 # ----- Specify the final voltage ramp goal -----
 Goal {name="p_Contact" voltage=1.8})
 {
 # ----- Gummel iterations for self-consistency of Optics -----
 Plugin(BreakOnFailure){
 # --- Newton iterations for coupled equations -----
 Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate }
 Wavelength
 Optics
 }
 }

 # ----- At 1.8V, perform transient simulation -----
 transient (
 # ----- Specify the starting and ending time -----
 InitialTime = 0.0 # [s]
 FinalTime = 2.0e-9 # [s]

 # ----- Control the time step size -----
 InitialStep = 1.0e-3
 MinStep = 1.0e-3
 MaxStep = 1.0e-1

 # ----- Save the plot variables at specified intervals -----
 Plot { range=(0,1) intervals=4 }
)
 {
 Plugin(BreakOnFailure){
 Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate }
Wavelength
Optics
 }
 }
}

15.480

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
The above syntax has been extracted from Section 25.2.1 on page 15.373:

A quasistationary simulation is performed first to ramp up the operating voltage to a bias of 1.8 V before
the transient simulation is activated.

In the transient section, the user must specify the start and end time. The response of the carriers and
photons subjected to a small step bias input will generally settle to a steady state in the time frame of a
few thousand picoseconds. This settling time depends on bias conditions and the type of laser diode.
Users are encouraged to use different values of FinalTime so that the important parts of the transient
response are observed.

In the transient section, the user must specify the time-step size as well in the same format as is used to
specify the bias step size in the quasistationary simulation. In this case, the time-step size is the fraction
indicated in InitialStep, MinStep, and MaxStep multiplied by (FinalTime - InitialTime), which gives 2, 2, and
200 picoseconds, respectively. The scattering time for the carriers is in the order of s, so a time
step shorter than this time will not be meaningful. Of course, if the time step is too big, it cannot resolve
the finer features of the transient response.

In the transient section, the Plot statement enables users to save the variables that have been defined in
the Plot section at required intervals of the transient simulation. In this example, intervals=4 produces five
plot files at the time intervals of 0, 400, 800, 1200, 1600, and 2000 picoseconds.

The transient response computed is saved in the current file. The major results of laser output are saved
as a function of time in this current file. The user can then perform a FFT of the time response to obtain
the modulation response of the laser diode.

29.7 Performing a temperature simulation
There are a few different types of temperatures, but DESSIS only treats two types:

Lattice temperature, which describes the vibrational states of the crystal lattice

Carrier temperatures, which determine the distribution of the excited carriers

The lattice temperature is solved by the lattice temperature model described in Section 4.2.3 on page 15.128.
The carrier temperatures are solved by the hydrodynamic equations discussed in Section 4.2.4 on
page 15.130.

NOTE For stability reasons, the QW scattering model (see Section 28.2.3 on page 15.441) must be
activated when the lattice temperature or hydrodynamic models are solved in a laser simulation.

29.7.1 Lattice temperature simulation

To solve the lattice temperature model, the following three steps must be taken:

1. A thermode must be defined in the grid file and command file.

2. In the Physics section, the keyword Thermodynamic is optional. If it is included, a lattice temperature
gradient term is appended to the carrier current flux density.

3. In the Solve section, the keyword LatticeTemperature or Temperature must be added to the Coupled statement.

1 10 13–×
 15.481

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
These steps are embedded in the following syntax:

----- Need to specify where to impose Dirichlet boundary condition for temperature solution -----
Thermode {
 { Name="top_thermode" AreaFactor=200 Temperature=300 SurfaceResistance = 0.14}
 { Name="bot_thermode" AreaFactor=200 Temperature=300 SurfaceResistance = 0.09}
}

Plot {
 # ----- Temperature variables -----
 LatticeTemperature
}
...
Physics {...
 Laser (...
 Optics (...)
)
 # ------ Turn on thermodynamic simulation ------

Thermodynamic
RecGenHeat

}
...
Solve {
 # ----- Get initial guesses, coupled means Newton’s iteration -----
 Poisson
 coupled {Hole Electron QWhScatter QWeScatter Poisson }
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate}
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate
 LatticeTemperature}

 # ----- Ramping the voltage -----
 quasistationary (
 # ----- Specify ratio step size of voltage ramp -----
 InitialStep = 0.001
 MaxStep = 0.05
 Minstep = 1e-5

 # ----- Specify the final voltage ramp goal -----
 Goal {name="p_Contact" voltage=1.8})
 {
 # ----- Gummel iterations for self-consistency of Optics -----
 Plugin(BreakOnFailure){
 # --- Newton iterations for coupled equations -----
 Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate LatticeTemperature}
 Wavelength
 Optics
 }
 }
}

Refer to Section 25.2.1 on page 15.373 for the rest of the laser simulation syntaxes, which have been omitted
here. Some comments about the above syntax are:

A thermode is a boundary where the Dirichlet boundary condition is set for the lattice temperature
equation. At all other boundaries without a thermode, Neumann boundary condition is assumed. It can be
set in the same way as the contact electrodes are set in MDRAW or DEVISE, and this is shown in
Figure 15.112 on page 15.483. The SurfaceResistance [cm2 K/W] can be used to tune the lattice
temperature profile in the device.
15.482

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
In the Physics section, the keyword Thermodynamic contributes an additional term (gradient of the lattice
temperature) to the electron and hole flux densities. The keyword RecGenHeat adds heat produced or
absorbed by generation–recombination to the lattice temperature equation.

In the Solve section, the keyword LatticeTemperature in the Coupled statement adds the lattice temperature
equation to the Newton system to be solved iteratively.

Figure 15.112 Setting thermodes in the same way as setting contacts; labeled top_thermode and bot_thermode,
respectively

29.7.2 Carrier temperature simulation

The carrier temperatures can be solved by the hydrodynamic model, and the activation syntaxes are located
in similar locations as the lattice temperature model:

Plot {
 # ----- Temperature variables -----
 eTemperature
 hTemperature
}
...
Physics {...
 Laser (...
 Optics (...)
)
 # ----- Specify ambient device temperature -----
 Temperature = 298
 # ------ Turn on hydrodynamic simulation ------
 Hydrodynamic
 RecGenHeat
}
...
Solve {
 # ----- Get initial guesses, coupled means Newton’s iteration -----
 Poisson
 coupled {Hole Electron QWhScatter QWeScatter Poisson }
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate}
 coupled {Hole Electron QWhScatter QWeScatter Poisson PhotonRate

eTemperature hTemperature}

 # ----- Ramping the voltage -----
 quasistationary (
 # ----- Specify ratio step size of voltage ramp -----
 InitialStep = 0.001
 MaxStep = 0.05
 Minstep = 1e-5

top_thermode

bot_thermode

p_contact

n_contact

QWs
 15.483

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
 # ----- Specify the final voltage ramp goal -----
 Goal {name="p_Contact" voltage=1.8})
 {
 # ----- Gummel iterations for self-consistency of Optics -----
 Plugin(BreakOnFailure){
 # --- Newton iterations for coupled equations -----
 Coupled { Electron Hole Poisson QWeScatter QWhScatter
 PhotonRate eTemperature hTemperature}
 Wavelength
 Optics
 }
 }
}

Some comments about the above syntax are:

The user does not need to specify any thermode if the hydrodynamic model is solved without the lattice
temperature equation. However, it is possible to solve both the lattice temperature and hydrodynamic
models together. The user must include the keywords for both models.

In the Plot section, users can choose to save the electron and hole temperatures everywhere in the device
with the keywords eTemperature and hTemperature.

In the Physics section, if the lattice temperature is not solved, the user can specify an ambient device lattice
temperature with the keyword Temperature=<float>. The hydrodynamic model is activated by the keyword
Hydrodynamic in this section. The keyword RecGenHeat adds the heat produced or absorbed as a result of
carrier generation–recombination to the hydrodynamic equations.

In the Solve section, the hydrodynamic model requires two keywords, eTemperature and hTemperature, to
be included in the Coupled statement.

29.8 Optics stand-alone option
In many cases, the initial phase of design of a laser diode involves the optimization of the geometry of the
laser structure to achieve specific optical mode properties, for example, mode shape. DESSIS provides an
option to run the optical solver without invoking the entire laser simulation.

An example of a stand-alone optical simulation of an edge-emitting laser, waveguiding structure is:

----- Optics Stand-alone command file -----

----- Specify only a dummy electrode -----
Electrode {
 { Name="dummy" voltage=0.0 }
}

----- Tell Dessis where to read/save the parameters/results -----
File {
 Grid = "optmesh_mdr.grd"
 Doping = "optmesh_mdr.dat"
 Parameter = "des_las.par"
 Plot = "opt_plot"
 Output = "log"
 # ----- Compute and save the farfield -----
 OptFarField = "farfield"
 # ----- Save the optical field -----
 SaveOptField = "optmode"
15.484

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
}

Plot {
 refractiveindex
}

----- Specify the material region properties, as usual -----
Physics (region="pbulk") { MoleFraction(xfraction=0.28) }
Physics (region="nbulk") { MoleFraction(xfraction=0.28) }
Physics (region="psch") { MoleFraction(xfraction=0.09) }
Physics (region="nsch") { MoleFraction(xfraction=0.09) }
Physics (region="barr") { MoleFraction(xfraction=0.09) }
----- Quantum Wells -----
Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active # keyword to specify active region
}
Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
}

----- Major difference from the laser command file -----
Physics {

Optics (
FEVectorial (EquationType = Waveguide # or Cavity

Symmetry = Nonsymmetric # or Symmetric or Periodic
LasingWaveLength = 656 # [nm]
TargetEffectiveIndex = (3.45 3.42 3.34)
Boundary = ("Type2" "Type1" "Type2")
ModeNumber = 3

)
)
HeteroInterfaces

}

Solve { Optics }

Compare this code to Section 25.2.1 on page 15.373. The most significant difference in the optics stand-alone
simulation is that the entire Laser section has been removed. Other notable changes are:

In the Electrode statement, a dummy electrode must be specified in order to conform to the DESSIS input
format. It has no other purpose in the optical simulation.

In the File section, the user can choose to plot the far field with the keyword OptFarField. For the optics
stand-alone case, the far-field parameters are set internally. The range of observation angles for the far
field is in both directions. If a scalar optical solver (for example, FEScalar) is chosen, only the
scalar far field is produced.

In the File section, the user must specify the base name for the optical-field files with the keyword
SaveOptField. These files can be read into the laser simulation (see Section 29.2 on page 15.472).

The optical-active region is specified in the material region Physics statement by the keyword Active. This
is important so that the optical confinement factor can be computed within DESSIS.

In the Optics section, the optical mode solver type (FEScalar, FEVectorial, TMM1D, or EffectiveIndex) is
specified. The arguments for these mode solver types are discussed in Section 27.3 on page 15.401,
Section 27.6 on page 15.411, and Section 27.7 on page 15.413.

In the Solve section, the stand-alone calculation of the optical mode solver is activated by the sole
keyword Optics.

90°– 90°,[]
 15.485

PART 15 DESSISCHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.9 Switching from voltage to current ramping
Before the lasing threshold, the voltage varies almost linearly with the spontaneous output power. At and
beyond the lasing threshold, a small increase in voltage will lead to an exponential-order increase in the laser
output power. Therefore, it is desirable to switch between voltage and current bias ramping in a laser
simulation. This is achieved using the following syntax in the Solve section of the command file:

Solve {
 # --- Solve for initial guesses of the coupled system ---
 Poisson
 Coupled {Poisson Hole Electron}
 Coupled {Poisson Hole Electron QWeScatter QWhScatter}
 Coupled {Poisson Hole Electron QWeScatter QWhScatter PhotonRate}

 # --- Ramp using voltage bias to near lasing threshold ---
 Quasistationary (
 InitialStep = 0.01
 MaxStep = 0.1
 Minstep = 1e-9
 Goal {name="p_contact" voltage=1.3})
 {
 Plugin(BreakOnFailure){
 Coupled { Poisson Hole Electron QWeScatter QWhScatter
 PhotonRate }
 Optics
 Wavelength
 }
 }

 # --- Change the p_contact from voltage to current type ---
 Set ("p_contact" mode current)

 # --- Then ramp using current bias ---
 Quasistationary (
 InitialStep = 0.01
 MaxStep = 0.05
 Minstep = 1e-8
 Goal {name="p_contact" current=2.5e-4})
 {
 Plugin(BreakOnFailure){
 Coupled { Poisson Hole Electron QWeScatter QWhScatter
 PhotonRate }
 Optics
 Wavelength
 }
 }
}

The threshold voltage of a laser diode can be estimated approximately by considering the laser diode as a p-i-n
diode with the quantum well as a strong recombination center. In order for diffusion current to flow into the
quantum well, the intrinsic Fermi levels of the bulk region near the p or n contact must approximately align
with that of the quantum well. This means a voltage that is approximately the difference in these Fermi levels
must be applied for the device to start the current flow towards the quantum wells to fill them.

Of course, the lasing will not start until the quantum wells are filled to a level such that population inversion
is achieved and the threshold losses are overcome. Resistance of the semiconductor layers will also contribute
to the voltage. Nevertheless, this consideration will give a rough estimate of the threshold voltage for current
flow in the laser diode.
15.486

PART 15 DESSIS CHAPTER 29 ADDITIONAL FEATURES OF LASER OR LED SIMULATION
29.10 Scripts
There is a list of scripts that are written in Tcl and can be used to extract various useful parameters from laser
and LED simulations, as well as to control different tools in the ISE software suite. The laser-related or LED-
related scripts available from ISE Technical Support are:

Automatic extraction of the threshold current

Calculation of the slope efficiency of the L–I curve

Automatic addition of DBR layers in the VCSEL structure

Automatic addition of PML to the laser structure

Generation of multiple–quantum well (MQW) edge-emitting lasers

Generation of MQW VCSEL structures

Ternary-material and quaternary-material parameter calculations

Extraction of far-field angle from far-field patterns
 15.487

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
DESSIS

CHAPTER 30 Simulation of different laser types
and LEDs

30.1 Overview
DESSIS can simulate different laser diode types and LEDs with different geometry. In this section, different
types of edge-emitting laser, VCSEL, and LED are presented. For each type of laser or LED, the device
physics is briefly discussed and suggestions are given on how to tune the input parameters in DESSIS to
achieve various laser or LED output.

Users are referred to the examples in Section 25.2.1 on page 15.373 and Section 25.2.2 on page 15.378 for
the generic format of the syntaxes in the command file, which is similar for simulating all laser diodes and
LED types. Only the relevant portions of the syntax that are associated with differentiating features are
described here.

The parameters for a laser or an LED simulation are contained in the Physics-Laser or Physics-LED sections of
the command file. Table 15.158 lists the available options in these sections. Some options are only specific to
a particular type of laser. For example, LongitudinalModes, TransverseModes, and DFB are only applicable to edge-
emitting lasers; it does not make sense to use them in VCSEL or LED simulations.

Table 15.158 Feature keywords in the Physics-Laser or Physics-LED sections

Feature keyword Parameter/Description Reference

Optics(<parameters>) OptConfin=<float> Section 26.4 on page 15.390

FEScalar, FEVectorial, EffectiveIndex, TMM1D,
RayTrace (optical mode solvers)

Chapter 27 on page 15.399

LongitudinalModes Specifies that longitudinal optical modes must be
calculated.

Section 30.2 on page 15.491

TransverseModes Specifies that transverse optical modes must be
calculated (default).

DFB(DFBperiod=<float>) Switches on DFB feature where <float> is the
period of the DFB grating [µm].

GroupRefract=<float> Specifies fixed effective index, ignoring the
effective index computed by the optical solvers.

CavityLength=<float> Length of laser cavity [µm]. Section 26.3 on page 15.388

lFacetReflectivity=<float> Left-facet power reflectivity.

rFacetReflectivity=<float> Right-facet power reflectivity.

OpticalLoss=<float> Background optical loss [1/cm].

SponEmiss=<float> Spontaneous emission factor.
 15.489

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
RefractiveIndex(<parameter>) TemperatureDep Section 29.5 on page 15.477

CarrierDep

VCSEL(<parameters>) Presence of this keyword signifies VCSEL
simulation.

Section 30.3 on page 15.494

NearField(<float>,<float>,<int>) Section 27.10 on page 15.433

QWTransport Activates ‘three-point’ QW model. Section 28.2 on page 15.440

QWExtension=AutoDetect Reads QW widths automatically.

QWScatModel Activates QW scattering model.

eScatTime=<float> Electron capture time in the QW [s].

hScatTime=<float> Hole capture time in the QW [s].

eQWMobility=<float> Mobility for bound state electrons [cm2/Vs].

hQWMobility=<float> Mobility for bound state holes [cm2/Vs].

QWShallow Activates shallow QW scattering model.

Strain Activates QW strain model. Section 28.7 on page 15.451

SplitOff=<float> Spin-orbit split-off energy [eV].

FreeCarr Switches on free carrier absorption. Section 29.1 on page 15.471

Broadening(<parameter>) Activates gain-broadening models or nonlinear gain
saturation model.

Section 28.4 on page 15.446,
Section 28.5 on page 15.447.

SponScaling=<float> Scaling factor for matrix element of spontaneous
emission.

Section 28.3 on page 15.443

StimScaling=<float> Scaling factor for matrix element of stimulated
emission.

BandStructure(<parameters>) CrystalType=ZincBlende
(Activates k.p method for zinc-blend crystal lattice)

Section 28.9 on page 15.455

Order=<parameter> (Choice of Nokp, 4x4kp, 6x6kp,
and 8x8kp. Default is Nokp.)

NumkValues=<int>
(Number of discretization points for the k-space.)

Strain(RefLatticeConst=<float>) Input strain reference lattice constant for the k.p
method.

ManyBodyEffects(Type=<parameter>) FCT (free carrier theory, default)

SHF (screen Hartree–Fock potential)

Table 15.158 Feature keywords in the Physics-Laser or Physics-LED sections

Feature keyword Parameter/Description Reference
15.490

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.2 Edge-emitting lasers
The 2D edge-emitting laser structure is essentially a waveguide problem (see Section 26.4 on page 15.390) in
the transverse plane, with the cavity resonance occurring in the longitudinal direction. The main type of cavity
resonance in the longitudinal direction used is the Fabry–Perot type where the resonant wavelength is chosen
as the location of the gain peak. There is also an option to activate a simple distributed feedback (DFB) laser
simulation. In addition, multiple transverse modes or multiple longitudinal modes can be simulated.

Two choices of optical mode solver are available for edge-emitting lasers: FEScalar and FEVectorial. These
solvers have been described in Section 27.3 on page 15.401.

DESSIS–Laser offers two choices of multimode simulation: transverse and longitudinal modes. Such a
simulation can be performed by setting the keyword Modenumber=<int> to greater than one, and specifying one
of the keywords TransverseModes (which is the default and can be omitted) or LongitudinalModes in the Physics-
Laser section of the command file:

Physics {...
 Laser (...
 Optics (
 FEVectorial (...)
)
 # --- Choose transverse or longitudinal modes, but NOT both ---
 TransverseModes
LongitudinalModes
 ModeNumber = 5 # can choose up to 10 modes
 ...
)
}

For each longitudinal or transverse mode, one photon rate equation is solved.

NOTE Users can select either multiple transverse modes or multiple longitudinal modes simulation, but
not both simultaneously.

30.2.1 Multiple transverse modes

A maximum of ten transverse modes are allowed. Different transverse modes have different spatial
distribution of the optical density. Therefore, each mode experiences different modal gains, giving rise to
different stimulated gain spectra. Assuming a Fabry–Perot cavity, the wavelength of each mode is given by
the location of the peaks of the corresponding gain spectrum. In a DFB simulation, the wavelength is set and
the modal gain of each mode is taken as the value of its respective gain spectrum at this wavelength.

Depending on the current flow distribution, the carriers available to contribute to the material gain of each
mode are determined by carrier transport. The different distributions of spatial optical intensity of different
modes mean that the carriers are depleted (by stimulation recombination) at different locations, and this is
commonly called the spatial hole-burning effect. The user can view this effect by plotting the carrier density
distribution in the active region of the device.
 15.491

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.2.2 Multiple longitudinal modes

The longitudinal mode simulation is only possible with Fabry–Perot-type cavities. If the keyword
LongitudinalModes is set in the Physics-Laser section of the command file, a multilongitudinal mode calculation
is performed. DESSIS automatically selects an odd number of modes, which ensures one central (or main)
mode and an equal number of modes, smaller and greater than the main mode frequency. The frequency of
the main mode is determined as in the single-mode case by calculating the Fabry–Perot mode with maximum
mode gain.

The spacing of the frequencies of the side modes is calculated according to the resonant frequencies in the
Fabry–Perot cavity, which is in turn defined by the cavity length (keyword CavityLength in the Physics-Laser
section). There is only one transverse mode associated with the multiple longitudinal modes.

For 2D simulations, this means that all the longitudinal modes share the same modal gain spectrum and,
hence, the same carrier population for stimulated recombination. The multiple longitudinal-mode simulation
is important for analyzing the suppression ratio of the side mode of the laser.

NOTE The longitudinal mode option cannot be used with the DFB option.

30.2.3 Simple distributed feedback model

A simple distributed feedback (DFB) laser simulation can be performed by setting the keyword DFB in the
Physics-Laser section of the command file:

Physics {...
 Laser (...
 Optics (
 FEVectorial (...)
)
 # --- Specify DFB simulation
 TransverseModes
 DFB (Period=0.11) # [microns]
 CavityLength = 200 # [microns]
 lFacetReflectivity = 0.3
 rFacetReflectivity = 0.3
 GroupRefract = 3.4 # fix effective index
 ...
)
}

The argument DFBPeriod=<float> specifies the period of the DFB grating, , in units of µm. As a result, the
lasing wavelength is assumed to occur at the Bragg wavelength, , where is the effective
refractive index. The effective index is solved from the Helmholtz equation using either the scalar (FEScalar)
or vectorial (FEVectorial) optical solvers and can change if the refractive index profile changes in the
simulation. The wave propagation in the longitudinal DFB grating, however, is not simulated. The user can
also set a fixed constant effective index with the keyword GroupRefract=<float>.

∆
λB 2neff∆= neff
15.492

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.2.4 Bulk active-region edge-emitting lasers

Bulk active-region lasers can also be simulated. Similar to the case of the quantum well laser, users must
specify the active material region by the keyword Active. In the Physics-Laser section of the command file, all
the quantum well–related keywords should be removed: QWTransport, QWExtension, QWScatModel, QWeScatTime,
QWhScatTime, Strain, and SplitOff. In this case, DESSIS–Laser treats the active region as a bulk region, and the
stimulated gain is computed as a bulk material gain. The carriers are assumed to scatter into the bulk active
region by thermionic emission.

30.2.5 Device physics and parameter tuning

There are many quantities that users may want to optimize for the best laser diode performance or may want
to tune in order to match experimental results. A selected list of these quantities and ways to tune them are:

Optical mode shape The shape is controlled by the geometry and refractive index of the device.
GENESISe provides an automatic parameterization option for the user to optimize
geometric feature sizes, layer thickness, refractive index profile, and so on for the
required mode shape.

Discretization of optical grid
The optical solvers use the finite element method and a general rule is to use 20 points
per wavelength to generate the mesh. This should provide an accurate solution for the
optical mode.

Lasing threshold current
The threshold current is a function of the dark recombinations (Auger and SRH),
optical losses, gain spectrum, and radiative recombination. The SRH lifetimes and
Auger coefficients can be changed in the parameter file. Additional background
optical loss can be input by OpticalLoss=<float> in the Physics-Laser section of the
command file. The stimulated and spontaneous gain spectrum can be scaled by the
keywords StimScaling=<float> and SponScaling=<float> in the Physics-Laser section of
the command file.

Slope efficiency of L–I curve
This is primarily determined by the injection efficiency and the photon lifetime,
which can be changed by the optical losses. However, changing the optical losses also
affects the threshold current.

Temperature profile The temperature distribution is sensitive to the boundary conditions specified at the
thermodes. Users can change the SurfaceResistance in the Thermode section of the
command file to tune the temperature profile (see Section 29.7 on page 15.481).

Thermal rollover The rollover is caused by self-heating effects of the laser diode. Possible major causes
are Auger recombination and increased quantum well current leakage.

30.2.6 Leaky waveguide lasers

In many laser designs, the refractive index of the substrate or top layers is near the value of the guiding layer
and is higher than that of the cladding layers. In such a case, any waves penetrating into the substrate or top
layer will radiate outwards contributing to additional losses of the mode. Such leakage can also be used to
discriminate higher order modes (which have higher losses) from the fundamental mode so that single-mode
high-power laser diodes can be designed.
 15.493

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
The FEVectorial optical solver coupled with PML (see Section 27.5 on page 15.410) makes DESSIS an ideal
tool to simulate such leaky waveguide lasers. In fact, DESSIS has been successfully used to optimize leaky
waveguide lasers for single-mode high-power operations [195].

30.3 Vertical-cavity surface-emitting lasers
Vertical-cavity surface-emitting lasers (VCSELs) are difficult devices to simulate due to their many layers
(usually more than 100 layers). A full 3D simulation of a VCSEL is not feasible because it requires an
excessive amount of computing resources.

To reduce the computational load, cylindrical symmetry is assumed so that the VCSEL problem is reduced to
a quasi-2.5-dimensional problem. Each mesh on the plane represents a solid ring rotated around the z-
axis. As a result of such symmetry, the optical field can be expanded in cylindrical harmonics, and this further
helps to reduce the size of the problem (see Section 26.5 on page 15.392).

Three different types of optical solver are available to solve for the cavity modes of a VCSEL. There is one
vectorial solver (FEVectorial) and two scalar solvers (EffectiveIndex and TMM1D). Only the vectorial solver
provides accurate computation of the scattering and diffraction losses in a VCSEL of any type of geometry.
This is important in computing the photon lifetime, which is a critical parameter in determining the slope
efficiency of the light power output and the threshold current.

Nevertheless, the scalar solvers are extremely fast and most useful in the initial design phase of the VCSEL
structure. In particular, the effective index method (keyword EffectiveIndex) can compute fairly accurate
resonant wavelengths for strongly index-guided VCSELs, including oxide-confined VCSELs.

All VCSEL simulations in DESSIS must be performed on two different grids: one for the electrical problem
and one for the optical problem.

30.3.1 Different grid and structure for electrical and optical
problems

A typical VCSEL structure contains over 100 layers. DESSIS can manage such a large electrical problem, but
the resultant Jacobian matrix may be too large for standard computers to handle. The carrier transport
behavior in the distributed Bragg reflectors (DBRs) is not interesting with regard to the laser physics, and the
DBRs will probably contribute only to an additional series resistance. Therefore, the size of the electrical
problem can be simplified and reduced by replacing the DBR layers with an equivalent homogeneous bulk
material with similar total resistance and thermal conduction properties. However, the actual layered structure
must be used for the optical simulation because the optical resonance depends on the exact geometry of the
VCSEL cavity.

Therefore, there will be two different structures and grids for the electrical and optical problems. To handle
this, the dual-grid mixed-mode capability of DESSIS is used. The syntax for such a dual-grid simulation is
described in Section 30.3.4 on page 15.496.

For the vectorial optical (FEVectorial) solver, the optical mesh is discretized according to the requirements of
the finite element method. Adaptive meshing can be used to refine the mesh at sharp corners where scattering
and diffraction effects are strong. For the scalar optical solvers (EffectiveIndex and TMM1D), the meshing of the
optical grid can be relaxed: users will draw the VCSEL structure and apply coarse meshing to generate the
optical grid.

ρ z,()
15.494

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.3.2 Aligning resonant wavelength within the gain spectrum

Besides being a cavity problem, a VCSEL is different from an edge-emitting laser mainly in the size of the
gain volume. The gain volume in a VCSEL is many times smaller than that of an edge-emitting laser.
Therefore, ensuring a VCSEL lases is an intricate design task of minimizing the source of optical and
electrical losses and maximizing the gain. One critical issue in VCSEL design is to align the resonant
wavelength such that it is within the gain spectrum during lasing.

Self-heating of the VCSEL cavity causes red-shifts in both the gain spectrum (band-gap reduction as shown
in Figure 15.113) and the resonant wavelength (thermal lensing effect). However, the shift in the gain
spectrum is many times that of the resonant wavelength. Therefore, it is important to adjust the resonant
wavelength such that it is near the peak of the gain spectrum at the required operating bias.

Figure 15.114 shows two starting positions of the resonant mode. As the bias increases, the gain spectrum
shifts left, and the resonant mode of the model in Figure 15.114 (right) runs the risk of not obtaining enough
gain required for lasing. Therefore, it becomes a design issue of geometry and quantum well material gain to
ensure that the resonant wavelength and gain spectrum (before lasing) resembles the model in Figure 15.114
(left).

Figure 15.113 As bias increases, the gain spectrum red-shifts (band-gap reduction) due to self-heating effects

Figure 15.114 Resonant wavelength chosen to with different starting positions from the gain spectrum at very low bias
(not lasing yet)

Energy [eV]

Increasing bias

Energy [eV] Energy [eV]

Resonant Mode Resonant Mode
 15.495

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.3.3 Device physics and parameter tuning

For a VCSEL, many quantities such as threshold current, slope efficiency, and stimulated and spontaneous
gain can be similarly tuned as in the case of an edge-emitting laser. Other quantities that are of interest in a
VCSEL simulation are:

Resonant wavelength selection
The resonant wavelength can be changed by changing the thickness or refractive
indices of the DBR layers or the lambda cavity of the VCSEL. Users can use the
optics stand-alone option and the EffectiveIndex scalar solver to accomplish this
optical design problem efficiently.

Aligning wavelength with gain spectrum
It is easier to tune the resonant wavelength rather than the gain spectrum. Users are
advised to run the simulation once to look at the gain spectrum shifts, then change the
resonant wavelength as described in the previous paragraph.

Gain spectrum shifts The band gap is reduced as temperature increases (due to self-heating). Higher carrier
densities also result in band-gap renormalization caused by many-body effects.
However, the band-gap renormalization shift is very small compared to the
temperature band-gap shift.

Scattering and diffraction losses
The optical losses give the photon lifetime which is a critical parameter in the
threshold current and slope efficiency. Only the vectorial optical (FEVectorial) solver
can compute the optical losses accurately. If users plan to use the scalar optical
solvers (EffectiveIndex or TMM1D), it is advisable to run the vectorial optical solver once
to obtain the accurate optical losses, then append an appropriate background loss
(using keyword OpticalLoss in Physics-Laser section) or diffraction loss (using
keyword DiffractionLoss in EffectiveIndex section) to the scalar optical solvers to
enhance the accuracy of the scalar simulation.

30.3.4 Example syntax for VCSEL simulation

A VCSEL simulation is only performed if the keyword VCSEL is included in the Physics-Laser section of the
command file:

----- Dessis command file for dual grid VCSEL simulation -----
File {
 Output = "dual_log"
}

----- Control of the numerical method in the mixed-mode circuit -----
Math {
 NoAutomaticCircuitContact
 DirectCurrentComputation
 Method = blocked
 Submethod = pardiso
 Digits = 5
 Extrapolate

ErReff(electron) = 1.e3
 ErReff(hole) = 1.e3
 Iterations = 30
 Notdamped = 50

RelErrControl
 ElementEdgeCurrent
15.496

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
}

===== Define the Optical grid =====
----- Use keyword OpticalDevice -----
OpticalDevice optgrid {

 File {
 # ----- Read in the optical mesh -----
 Grid = "optmesh_mdr.grd"
 Doping = "optmesh_mdr.dat"
 Parameters = "des_las.par"
 }
 Plot {
 LaserIntensity
 OpticalIntensityMode0
 }
 # ----- Material region physics for the optical problem -----
 ... # all the layers including the DBR layers

 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

}
===== End of Optical grid definition =====

===== Define the electrical grid and solver info =====
----- Use keyword Dessis -----
Dessis electricaldev {

 Electrode {
 { Name="p_Contact" voltage=0.8 AreaFactor=1 }
 { Name="n_Contact" voltage=0.0 AreaFactor=1 }
 }
 File {
 # ----- Read in electrical grid mesh -----
 Grid = "elecmesh_mdr.grd"
 Doping = "elecmesh_mdr.dat"
 Parameters = "des_las.par"

 Current = "elec_current"
 Plot = "elec_plot"
 SaveOptField = "laserfield"
 ModeGain = "gain"
 VCSELNearField = "nf"
 OptFarField = "far"
 }
 Plot {
 # ----- Can include a long list -----
 LaserIntensity
 OpticalIntensityMode0
 }
 Physics {
 AreaFactor = 1
 # ------ Laser definition ------
 Laser(
 15.497

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
 Optics(
 FEVectorial(EquationType = Cavity
 Coordinates = Cylindrical
 TargetWavelength = (781.2 776.5) # initial guesses [nm]
 TargetLifetime = (2.4 1.2) # initial guesses [ps]
 AzimuthalExpansion = (1 0) # cylindrical harmonic order
 ModeNumber = 2
)
)
 # ----- Signify this is a VCSEL simulation -----
 VCSEL(NearField(10.0,0,100)) # the argument gives the near field parameters
 OpticalLoss = 10.0 # [1/cm]
 # ----- Choose Gain broadening -----
 Broadening (Type=Lorentzian Gamma=0.10) # [eV]
 # ----- Specify QW parameters -----
 qwTransport
 qwExtension = AutoDetect # auto read QW widths
 qwScatmodel
 QWeScatTime = 8e-13 # [s]
 QWhScatTime = 4e-13 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]
 # ----- QW Strain effects -----
 Strain
 SplitOff = 0.34 # [eV]
 # ----- can scale stim and spon gain independently -----
 StimScaling = 1.0
 SponScaling = 1.0
 # ----- Specify dependency of refractive index ----
 RefractiveIndex(TemperatureDep CarrierDep)
)
 # ----- Specify transport physics -----
 Thermionic
 HeteroInterfaces
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi
 }
 # ----- Material region physics for electrical problem -----
 # --- Simplify the DBR layers by an equivalent bulk region ---
 Physics (region="pDBR_equivalent") { MoleFraction(xfraction=0.35) }
 Physics (region="nDBR_equivalent") { MoleFraction(xfraction=0.35) }
 Physics (region="psch") { MoleFraction(xfraction=0.09) }
 Physics (region="nsch") { MoleFraction(xfraction=0.09) }
 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

 # ----- Control the numerical method in the electrical problem -----
 Math {
 Digits = 7

ElementEdgeCurrent
----- Need to include this to specify cylindrical symmetry -----

 Cylindrical
 }
15.498

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
}
===== End of electrical grid definition =====

===== Define the circuit mixed-mode system =====
System {
 # ----- Define opt1 of type optgrid -----
 optgrid opt1 ()
 # ----- Define d1 of type electricaldev, and coupled to opt1 -----
 electricaldev d1 (p_Contact=vdd n_Contact=gnd) {Physics{OptSolver="opt1"}}
 # ----- Set the initial bias voltage to circuit contacts -----
 Vsource_pset drive(vdd gnd){ dc=0.8 }
 Set (gnd=0.0)
}

===== Solver part =====
Solve {
 Poisson
 coupled { Hole Electron Poisson Contact Circuit }
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit }
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit PhotonRate}

 quasistationary (
 InitialStep = 0.001
 MaxStep = 0.01
 Minstep = 1e-7
 # ----- Plot and save various quantities at specified intervals of bias -----
 Plot { range=(0,1) intervals=5 }
 PlotGain { range=(0,1) intervals=5 }
 PlotGainPara { range=(1.22,1.32) intervals=150 }
 SaveOptField { range=(0,1) intervals=3 }
 VCSELNearField { range=(0,1) intervals=3 }
 PlotFarField { range=(0,1) intervals=2 }
 PlotFarFieldPara { range=(80,80) intervals=50 Scalar1D Vector2D}
 # ----- Specify final voltage -----
 Goal { Parameter=drive.dc Value=1.6 })
 {
 Plugin (BreakOnFailure) {
 Coupled { Electron Hole Poisson Contact Circuit
 QWeScatter QWhScatter PhotonRate }
 Optics
 Wavelength
 }
 }
}

Compare this VCSEL example with the edge-emitting laser example in Section 25.2.2 on page 15.378, to
highlight the syntaxes required for a VCSEL simulation. Some comments about the above example are:

The vectorial optical solver (FEVectorial) has been used. To use the scalar solvers, users need only replace
the FEVectorial section with the EffectiveIndex or TMM1D section.

Dual-grid mixed-mode simulation is required for VCSELs regardless of whether the vectorial or scalar
optical solvers are chosen.

In the Math section for the electrical device, the keyword Cylindrical must be included so that the mesh
volumes and areas in the finite box integration method are computed with cylindrical symmetry in mind.
 15.499

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
30.4 Light-emitting diodes
From an electronic perspective, light-emitting diodes (LEDs) are similar to lasers operating below the lasing
threshold. Consequently, the electronic model contains similar electrothermal parts and quantum-well physics
as in the case of a laser simulation.

The optics are different because the field is not confined to any waveguide or cavity modes, but radiates
incoherently from the device. The only optical solver available for LED simulation is RayTrace (see
Section 27.8 on page 15.419). In DESSIS, raytracing calculates the optical intensity in the device and the
extraction efficiency (fraction of rays that radiate outwards from the device). The other results of an LED
simulation are the total spontaneous power output, voltage, current, and the mean wavelength. These values
are plotted in the current file (keyword Current="String" in the File section).

30.4.1 Single-grid versus dual-grid LED simulation

Both single-grid and dual-grid LED simulations are possible. However, in the case of a single-grid simulation,
raytracing takes a longer time for the following reason: raytracing builds a binary tree for each starting ray.
Each branch of the tree corresponds to a ray at a mesh cell boundary. If the materials in two adjoining cells
are different, the ray splits into refracted and reflected rays, creating two new branches. If the materials are
the same in adjoining cells, the propagated ray creates a new branch. A fine mesh increases the depth of the
branching significantly. Each new branch of the binary tree is created dynamically and if dynamic memory
allocation of the machine is not fast enough, the tree creation of the raytracing becomes a bottleneck in the
simulation.

To overcome this problem, the grids for the electrical problem and raytracing problem are separated. The
optical grid for raytracing is meshed coarsely. The ideal and coarsest possible optical mesh would have each
material region as a single mesh cell. The binary tree created will then be small and raytracing is more
efficient. Such a coarse mesh enables users to compute the extraction efficiency and output radiation pattern.
However, the optical intensity within the device cannot be resolved with such a coarse mesh.

NOTE Due to the random nature of spontaneous emission, raytracing and the electronic solver cannot be
coupled self-consistently.

30.4.2 LED output power

The LED output power computed in DESSIS is the integral sum of the spontaneous emission power at every
energy interval in the spontaneous gain spectrum (see (Eq. 15.555)). This output power, together with the
extraction efficiency, is saved as a function of bias in the current file (specified by Current="string" in the File
section) at the end of the simulation. The total measured power of the LED should be the product of these two
quantities, that is:

(15.616)

In addition, the bias currents and voltages are available in the current file. Therefore, the user can easily
compute the internal quantum efficiency and the wallplug efficiency.

Pmeasured Ptotal
sp Extraction Efficiency×=
15.500

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
An average wavelength for the spontaneous emission output is computed by averaging the wavelengths of the
peak spontaneous gain at every active vertex.

30.4.3 Device physics and tuning parameters

Unlike a laser diode, an LED does not have a threshold current. Therefore, the carriers in the active region are
not limited to any threshold value. This means that the spontaneous gain spectrum continues to grow as the
bias current increases. The limiting factor for the growth is when the quantum well active region is completely
filled and leakage current increases significantly.

There are two main design concerns for an LED:

Extraction efficiency. This is mainly a problem of the geometric shape of the LED structure. Many LED
structures have tapered sidewalls to help couple more light out of the device. The slope of the taper can
be set as a parameter using GENESISe, and the automatic parameter variation feature can be used to
optimize the extraction efficiency of the LED geometry.

Uniform current spreading. It is desirable to spread the current uniformly across the entire active region
so that total spontaneous emissions can be increased. In DESSIS, there is an option to switch off
raytracing in an LED simulation. Switching off raytracing only forgoes the extraction efficiency and
radiation pattern computation; the total spontaneous emission power is still calculated. This can assist
users in the faster optimization of the LED device for uniform current spreading.

30.4.4 Example syntax for LED simulation

An LED simulation is activated by the keyword LED in the Physics section of the command file:

----- Dessis command file for dual grid LED simulation -----
File {
 Output = "dual_log"
}

----- Control of the numerical method in the mixed-mode circuit -----
Math {
 NoAutomaticCircuitContact
 DirectCurrentComputation
 Method = blocked
 Submethod = pardiso
 Digits = 7
 Extrapolate

ErReff(electron) = 1.e3
 ErReff(hole) = 1.e3
 Iterations = 30
 Notdamped = 50

RelErrControl
 ElementEdgeCurrent
}

===== Define the Optical grid =====
----- Use keyword OpticalDevice -----
OpticalDevice optgrid {

 File {
 # ----- Read in the optical mesh -----
 Grid = "optmesh_mdr.grd"
 Doping = "optmesh_mdr.dat"
 15.501

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
 Parameters = "des_las.par"
 }
 Plot {
 OpticalIntensityMode0
 }
 # ----- Material region physics for the optical problem -----
 Physics (region="pbulk") { MoleFraction(xfraction=0.35) }
 Physics (region="nbulk") { MoleFraction(xfraction=0.35) }
 Physics (region="psch") { MoleFraction(xfraction=0.09) }
 Physics (region="nsch") { MoleFraction(xfraction=0.09) }
 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

}
===== End of Optical grid definition =====

===== Define the electrical grid and solver info =====
----- Use keyword Dessis -----
Dessis electricaldev {

 Electrode {
 { Name="p_Contact" voltage=0.8 AreaFactor=1 }
 { Name="n_Contact" voltage=0.0 AreaFactor=1 }
 }
 File {
 # ----- Read in electrical grid mesh -----
 Grid = "elecmesh_mdr.grd"
 Doping = "elecmesh_mdr.dat"
 Parameters = "des_las.par"

 Current = "elec_current"
 Plot = "elec_plot"
 SaveOptField = "ledfield"
 ModeGain = "gain"

LEDRadiation = "rad"
 }
 Plot {
 # ----- Can include a long list -----
 OpticalIntensityMode0
 }

 Physics {
 AreaFactor = 2 # for symmetric devices
 # ----- Activate LED simulation -----
 LED (
 Optics (
 # ----- Choose ray tracing to compute extraction efficiency -----
 RayTrace(
 # ----- Info about LED structure -----
 Symmetry = Symmetric # or NonSymmetric
 Coordinates = Cartesian # or Cylindrical
 # ----- Specify absorption and refractive index models -----
 SemAbsorption (model = ODB)
 RefractiveIndex(model = ODB)
 # ----- Specify Starting rays parameters -----
15.502

PART 15 DESSIS CHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
 RaysPerVertex = 40 # Number of starting rays per active vertex source
 RaysRandomOffset # Randomize starting ray angle
 # ----- Specify ray trace terminating conditions -----
 DepthLimit = 10 # finish after ray crosses 10 material boundaries
 MinIntensity = 1e-7 # finish if ray intensity is less than 1e-7

 LEDRadiationPara(1000.0,180) # (<radius-microns>, Npoints)
 # ----- Auxiliary features of LED ray tracing -----
Disable # disable ray tracing but still run the LED simulation
Print # print out all the rays in a grid file
)
)

 # ----- Other parameters of the LED structure -----
 Cavitylength = 200 # for 2D simulation [microns]

 # ----- Choose spontaneous gain broadening -----
 Broadening (Type=Lorentzian Gamma=0.01)

 # ----- Specify QW Physics -----
 QWTransport
 QWExtension = AutoDetect # auto read QW widths
 QWScatModel
 QWeScatTime = 1e-13 # [s]
 QWhScatTime = 2e-14 # [s]
 eQWMobility = 9200 # [cm^2/Vs]
 hQWMobility = 400 # [cm^2/Vs]
 # ----- QW strain effects -----
 Strain
 SplitOff = 0.34 # [eV]
 # ----- Can scale spon gain independently -----
 SponScaling = 1.0
)

 # ----- User specified physics of transport -----
 Thermionic
 HeteroInterfaces
 Mobility (DopingDep)
 Recombination (SRH Auger)
 EffectiveIntrinsicDensity (NoBandGapNarrowing)
 Fermi
 }

 # ----- Material region physics for electrical problem -----
 Physics (region="pbulk") { MoleFraction(xfraction=0.35) }
 Physics (region="nbulk") { MoleFraction(xfraction=0.35) }
 Physics (region="psch") { MoleFraction(xfraction=0.09) }
 Physics (region="nsch") { MoleFraction(xfraction=0.09) }
 # ----- Quantum wells -----
 Physics (region="qw1") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }
 Physics (region="barr") { MoleFraction(xfraction=0.09) }
 Physics (region="qw2") {
 MoleFraction(xfraction = 0.8 Grading=0.00)
 Active
 }

 # ----- Control the numerical method in the electrical problem -----
 Math {
 Digits = 5

ElementEdgeCurrent
 15.503

PART 15 DESSISCHAPTER 30 SIMULATION OF DIFFERENT LASER TYPES AND LEDS
----- Need to include this if cylindrical symmetry is chosen -----
Cylindrical
 }
}
===== End of electrical grid definition =====

===== Define the circuit mixed-mode system =====
System {
 # ----- Define opt1 of type optgrid -----
 optgrid opt1 ()
 # ----- Define d1 of type electricaldev, and coupled to opt1 -----
 electricaldev d1 (p_Contact=vdd n_Contact=gnd) {Physics{OptSolver="opt1"}}
 # ----- Set the initial bias voltage to circuit contacts -----
 Vsource_pset drive(vdd gnd){ dc=0.8 }
 Set (gnd=0.0)
}

===== Solver part =====
Solve {
 Poisson
 coupled { Hole Electron Poisson Contact Circuit }
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit }
 coupled { Hole Electron QWhScatter QWeScatter Poisson Contact Circuit PhotonRate}

 quasistationary (
 InitialStep = 0.001
 MaxStep = 0.01
 Minstep = 1e-7
 # ----- Plot and save various quantities at specified intervals of bias -----
 Plot { range=(0,1) intervals=5 }
 PlotGain { range=(0,1) intervals=5 }
 PlotGainPara { range=(1.22,1.32) intervals=150 }
 SaveOptField { range=(0,1) intervals=3 }
 PlotLEDRadiation { range=(0,1) intervals=2 }
 # ----- Specify final voltage -----
 Goal { Parameter=drive.dc Value=1.6 })
 {
 Plugin (BreakOnFailure) {
 Coupled { Electron Hole Poisson Contact Circuit
 QWeScatter QWhScatter PhotonRate }
 Wavelength
 }
 }
}

Some comments about the above syntax are:

The dual-grid electrical and optical feature has been used. If users select a single-grid simulation, they
only need to copy the Physics-LED section of this example and insert it into the Physics section of a typical
single-grid command file such as in Section 25.2.1 on page 15.373.

In the Solve section, the keyword PhotonRate must be added to the Coupled statement. The LED simulation
requires the interface of the photon rate equation to access the spontaneous emission gain calculations.
However, the photon rate equation is not actually solved.
15.504

Part IV Mesh and Numeric Methods
This part of the DESSIS manual contains the following chapters:

CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM ON
PAGE 15.507

CHAPTER 32 NUMERIC METHODS ON PAGE 15.519

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
DESSIS

CHAPTER 31 Automatic grid generation and
adaptation module AGM

31.1 Overview
DESSIS supports the automatic generation and adaptation of 2D quadtree-based simulation grids for physical
devices. The approach is based on a local anisotropic grid adaptation technique for the drift-diffusion model
[163][164] and has been formally extended to thermodynamic and hydrodynamic simulations.

NOTE In its current status, AGM is not designed to improve the speed of simulations but rather to control
the accuracy of the solution. In fact, using AGM slows down the simulation time considerably as
the control of the grid sizes is difficult and the recomputation of solutions on adaptively generated
grids is, in the presence of strong nonlinearities, a time-consuming task. Therefore, it is not
recommended to use AGM throughout large simulation projects in a fully automatic adaptation
modus. AGM in its current status may be used in a semi-automatic fashion to understand which
parts of a device grid require more refinement to improve solution accuracies and to construct for
a set of simulations appropriately fixed simulation grid(s). Its integration in DESSIS is incomplete
as incompatibilities with certain DESSIS features occur.

The accuracy of approximate solutions computed by many simulation tools depends strongly on the
simulation grid used in the discretization of the underlying problem. The major aim of grid adaptation is to
obtain numeric solutions with a controlled accuracy tolerance using a minimal amount of computer resources
using a posteriori error indicators to construct appropriate simulation grids. The main building blocks of a
local grid adaptation module for stationary problems are the adaptation criteria (local error indicators that
somehow determine the quality of grid elements), the adaptation scheme (determining if and how the grid will
be modified on the basis of the adaptation criteria), and the recomputation procedure of the approximate
solution on adaptively generated grids. In the framework of finite element methods for linear, scalar elliptic
boundary value problems grid adaptation has reached a mature status [165].

The semiconductor device problem consists of a nonlinearly coupled system of partial differential equations
and the true solution of the problem exhibits layer behavior and singularities, posing additional difficulties for
grid adaptation modules. Several adaptation criteria have been proposed in the literature [163]. For the overall
robustness of adaptive simulations, the recomputation of the solution is a very serious (and, sometimes, very
time-consuming) problem.

The adaptation procedure used in DESSIS is based on the approach developed in [163] and [164]. It uses the
idea of equidistributing local dissipation rate errors and aims at accurate computations of the terminal currents
of the device. The quadtree mesh structure of MESH is used to enable anisotropic grid adaptation on boundary
Delaunay meshes required by the discretization used in DESSIS. The recomputation procedure relies on local
and global characterizations of dominating nonlinearities and includes relaxation techniques based on the
solution of local boundary value problems and a global homotopy technique for large avalanche generation.
 15.507

PART 15 DESSISCHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
31.1.1 Adaptation procedure

The adaptation flow is sketched in the following pseudo-code:

compute solution on actual grid(s)

coupled adaptation loop{
// adaptation decision
for all adaptive devices {

compute adaptation criteria (including h/2-grid computations)
check if adaptation is required

}
check if coupled adaptation is required

// adaptation strategy
for all adaptive devices {

// grid adaptation
criteria adaptation (tree loop)
(directed) neighbor size refinement
new simulation grid (conforming, delaunization)

// device level data smoothing
data interpolation (initial guess)
electrostatic potential correction (EPC)
nonlinear node block Jacobi smoothing (NBJI)
avalanche homotopy

}

// system level smoothing
Newton iteration to achieve self consistent solution of the fully coupled system

}

The coupled adaptation loop is iterated until the system fulfills the adaptation criteria or the maximal number
of iterations is reached (MaxCLoops).

31.1.2 Adaptation decision

The decision as to whether the grid of a device must be updated depends on the (global) relative error of the
observables specified for the adaptation criteria. Refinement and coarsening adaptation are distinguished
depending on the size of the relative error, that is, the grid will be refined if for one global error estimate

of the (Dirichlet or residual) criteria:

(15.617)

holds, where and are the relative and absolute error (specified by RelError and AbsError), respectively,
and is the actual value of the integral quantity (is the mesh size parameter).

A coarsening adaptation occurs if all criteria satisfy:

(15.618)

F

η F()

η F() εR εA Fh+()>

εR εA
Fh h

η F() 1
20
------εR εA Fh+()≤
15.508

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
31.1.3 Adaptation strategy

If the grid must be adapted, first, the adaptation criteria are applied to the elements of the grid tree performing
one or several levels of anisotropic refinement and/or coarsening (tree adaptation loop or RCLoop). To make
the mesh regular, a directed (anisotropic) neighbor size refinement is performed and a final delaunization step
generates the new simulation mesh. Even in refinement adaptation, coarsening is allowed (if not disabled by
the user) for elements with small errors. In a coarsening adaptation, no refinement is performed.

31.1.4 Adaptation criteria

The adaptation criteria determine if and how the grid will be modified. In [163], adaptation criteria for the
nonlinearly coupled system of equations for the drift-diffusion model have been proposed, aiming at accurate
computations of the terminal currents of the device. They use the close relationship between the system
dissipation rate and the terminal currents, and estimate the error of the dissipation rate. This is performed by
either solving related local Dirichlet problems or using the residual error estimation technique. Both
techniques are well known in the framework of finite element discretizations for scalar elliptic boundary value
problems [165]. The following adaptation criteria are supported by DESSIS.

31.1.4.1 Adaptation criteria based on local Dirichlet problems

These criteria construct locally refined meshes and solve local Dirichlet problems to estimate the error of the
interesting integral quantity (criterion type Dirichlet). Their computation is quite expensive as they require
the solution of additional problems, that is, they are based on implicit error indicators.The Dirichlet adaptation
criteria estimate the error of the quantity per grid element as:

(15.619)

where and are the quantity density on the actual simulation grid and the locally refined h/2-grid,
respectively. A weaker form of the error is given by the expression:

(15.620)

and is called deviation of the quantity on element .

Dirichlet-type adaptation criteria are implemented for the so-called AGM dissipation rate, which is a weighted
form of the physical system dissipation rate and the domain integral current (of a given contact). The AGM
dissipation rate (AGMDissipationRate) is given as:

(15.621)

where is the weighted absolute sum of individual generation–recombination processes with
their individual weights , and is the lattice temperature (all weights can be modified by the user).

F T

ηT F() ωF
h ωF

h 2⁄–() xd
T
∫=

ωF
h ωF

h 2⁄

ηT
D F() ωF

h ωF
h 2⁄–() xd

T
∫=

F T

DAGM ŵn µnn jn
2 xd

Ω
∫ ŵp µpp jp

2 xd
Ω
∫ ŵrkBTl Rabs

np
ni eff, pi eff,
------------------------⎝ ⎠

⎛ ⎞log xd
Ω
∫+ +=

Rabs ŵRi
Ri∑=

ŵRi
Tl ŵi
 15.509

PART 15 DESSISCHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
The (electron) domain integral current at contact is given as:

(15.622)

where is a suitable test function with for locations on contact , for all locations
 on contacts . The sum of electron and corresponding hole domain integral currents give the (total)

domain integral current (DomainIntegralCurrent) at the specified contact.

31.1.4.2 Residual adaptation criteria

The residual adaptation criteria (so far, only available for the AGMDissipationRate) are explicit error estimators
as they refer only to the actual solution (criterion type Residual). In analogy to standard methods, they measure
jumps of the density of interest across inter-element boundaries.The error for element is estimated as:

(15.623)

where denotes the approximate element functional density (on element and , respectively),
is the set of (semiconductor) elements sharing an edge with , is the number of elements, and is
the volume of .

31.1.4.3 Adaptation criteria based on element variation

Extending the adaptation criteria of [163], an adaptation criterion based on the variation of arbitrary (on
vertices defined) functionals has been implemented (criterion type Element). The criterion uses simply the
differences of vertex-based data as an error indicator, that is:

(15.624)

Elements are refined if the value exceeds a user-specified value (using MaxTransDiff).

31.1.5 Solution recomputation

For the recomputation of the solution, the data is interpolated onto the new simulation, and iterative
smoothing techniques are applied to improve the robustness of the procedure.

31.1.5.1 Device level data smoothing

In the first step, the electrostatic potential is adjusted to interpolated data by applying the so-called
electrostatic potential correction (EPC), that is, a mixed linear and nonlinear Poisson equation is solved using
a Newton algorithm. To achieve almost self-consistent solutions for the coupled equations of the device, local
Dirichlet problems are solved approximately, resulting in the so-called nonlinear NBJI (node block Jacobi
iteration). The node block iterations are performed only on a subset of all grid vertices.

For remarkable avalanche generation, a homotopy technique (or continuation technique), here called
avalanche homotopy, is applied to improve the robustness of the recomputation procedure, that is, the true

C

In
C Rhn

C jn∇hn
C+ xd

Ω
∫–=

hn
C hn

C x() 1= x C hn
C x() 0=

x C′ C≠

T

ηT F() T
Ne T()
----------------- ωF

h T′() ωF
h T()–

T ′ Ne T()∈
∑=

ωF
h T() T T′ Ne T()

T Ne T() T
T

f

ηT f() max f xi() f xj()– : xixj edge of T{ }=
15.510

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
avalanche generation is globally decoupled from the equations and is integrated stepwise into the solution
process. As the avalanche generation is an additive term, the equations to be solved

 can be split into a basic part and the avalanche generation term , where
 represents the unknown solution variables.

With the fix avalanche generation interpolated from the old grid, the avalanche homotopy now reads:

(15.625)

where is the homotopy parameter ramped from 0 to 1. For , the homotopy is reduced to a
simplified problem, while for the fully coupled system is solved. Thus, the avalanche homotopy is
similar to a quasistationary simulation where the avalanche generation is ramped (instead of specified
parameters).

31.1.5.2 System level data smoothing

On the system level, a self-consistent solution for the original fully coupled system of equations is computed
by the Newton algorithm.

31.2 Adaptive device instances
A device instance is adaptive if the keyword GridAdaptation is specified as a section of the instance description.
Several parameters can be passed to the instance by specifying parameter or body entries for the keyword,
that is:

GridAdaptation (<agm-device-par-list>) { <agm-device-body-list> }

For adaptive devices, a mesh description from the MESH command and boundary files is necessary.

31.2.1 AGM device parameters

The possible parameter entries modify device-specific quantities.

Parameters affecting grid generation

The specification MaxNumberMacroElements=<int> limits the number of leaf elements in the quadtree (before
possible neighbor size refinement and delaunization), that is, no refinement adaptation is performed if the
specified value is exceeded.

MaxCLoops specifies the maximal number of adaptations of the instance in coupled adaptation loops.

Weights modifies the AGM dissipation rate (see (Eq. 15.621)) of the instance used in the adaptation criteria.
An example is:

Weights (eCurrent = 1. hCurrent = 1.e2 Recombination = 1.e3 Avalanche = 1.e-3)

where eCurrent, hCurrent, and Recombination refer to the weights , , and , respectively; while Avalanche,
for example, refers to the corresponding weight of the avalanche generation in . By default, all weights
are 1.

Fava
F x() Fb x() Fava x()+ 0= = Fb Fava
x

F ava

)

Hava x t,() Fb x() 1 t–() F ava tFava x()+ +=

)

t 0 1;[]∈ t 0=
t 1=

ŵn ŵp ŵr
Rabs
 15.511

PART 15 DESSISCHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
The neighbor size refinement can be switched on and off by [-] NeighborSizeRefinement, and the material
group–dependent ratios can be modified explicitly by using NeighborSizeRatio. The material group is
Semiconductor, or Insulator, or Conductor.

For the Dirichlet adaptation criteria requiring solutions on locally refined meshes, two modes are available,
namely, the element and the global patch mode. The element patch mode computes for each element a solution
of local h/2-grid Dirichlet problems; the global patch mode computes the global solution on the h/2-grid and
uses this in the adaptation criteria as a reference solution.

In the RCLoop, the tree adaptation loop is specified. The number of iterations applied to the element tree can be
specified by using Iterations = <int> (default is 2), and by using [-]Coarsening if coarsening is allowed in
refinement adaptations (default is enabled).

Device parameters affecting smoothing

The flags [-]Poisson and [-]Smooth enable or disable the EPC smoothing step and the NBJI, respectively.

The avalanche homotopy can be influenced only by a temporary interface via environment variables. The
environment variable DES_AGM_AVAHOMOTOPY_NB_IT modifies the number of iterations used within Newton
iterations of the homotopy, for example, for a C-shell, the command:

setenv DES_AGM_AVAHOMOTOPY_NB_IT 10

sets the number of iterations (which is internally multiplied by 5). Setting DES_AGM_AVAHOMOTOPY_NB_IT to 0
disables the avalanche homotopy (default is 5). The environment variable DES_AGM_AVAHOMOTOPY_LINPAR causes
a linear parameter ramping in the homotopy, and DES_AGM_AVAHOMOTOPY_EXTRAPOL switches the extrapolation on
within the homotopy.

Table 15.159 AGM device parameter entries

Keyword syntax Description Default

MaxNumberMacroElements = <int> Maximal number of leaf elements in macro element tree. 100000

MaxCLoops = <int> Maximal number of iterations per adaptive coupled system. 100000

Weights (<weight-list>) Weights in AGM dissipation rate. 1.

[-] NeighborSizeRefinement Enables/disables neighbor size refinement. enabled

NeighborSizeRatio(<matgroup>) =
<real>

Allowed anisotropic edge length ratios for neighboring elements. 3. for
semiconductor,
106 else

PatchMode = Element | Global Affects only Dirichlet adaptation criteria: solve mode on h/2-grid
for reference solutions of (local/global) Dirichlet problems.

Element

RCLoop {<rcloop-entries>} Specification of tree loop properties. –

[-] Poisson Enables/disables EPC smoothing step. enabled

[-] Smooth Enables/disables NBJI smoothing step. enabled
15.512

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
31.2.2 Grid specification

Adaptive device instances require a grid description in the form of MESH command and boundary files. This
is specified by the keyword Boundary in the File section of the instance. If Boundary is specified, the keywords
Grid and Doping of the File section have a different interpretation: These strings now serve as the basis for
output file names of grid and doping information (required to visualize corresponding plot files).

An example File section is:

File {
Boundary = "mos_agm_msh" # INPUT files "mos_agm_msh.{cmd,bnd}"
Grid = "test_agm_des" # reinterpreted as OUTPUT !
Doping = "test_agm_des" # reinterpreted as OUTPUT !
...
GridCompressed # writing compressed grid and doping files

}

With the keyword GridCompressed, the grid and doping files are written as compressed files (.gz).

The specification in the MESH command file is used to construct the initial mesh for the device. During
adaptation, the maximal edge length specifications are respected, that is, in this way it is possible to control
the coarsest possible grid. The minimal edge length specifications describe the finest possible mesh during
adaptation, that is, elements are not further refined if half of the edge length is smaller than the specified
minimal value. The doping-specific refinement information is completely ignored during adaptation, that is,
it is only relevant for initial grid generation.

DESSIS supports grid adaptation for the quadtree grid generation approach of MESH, though the grid
generation algorithm used in DESSIS differs slightly from the algorithm of the (stand-alone) mesh generator
MESH:

Minimal edge length specifications of refinement definitions are interpreted individually per referencing
refinement placement (instead of using the smallest, local, minimal edge length value of all refinement
definitions).

The local lower bound of edge lengths allowed in AGM is the smallest, local, minimal edge length of all
referenced refinement definitions.

The NOFFSET section in the command file causes an error during parsing and should be removed.

NOTE DESSIS supports the MESH command file syntax of MESH Release 7.0.

31.3 Adaptation criteria
The adaptation criteria are specified as AGM device body entries and determine if adaptation (refinement and/
or coarsening) is required, for example:

GridAdaptation (...) {
Criteria { # list of adaptation criteria

Dirichlet (DataName = "DomainIntegralCurrent" Contact = "drain"
AbsError = 1.e-7 RelError = 0.2)

Residual (DataName = "AGMDissipationRate"
 15.513

PART 15 DESSISCHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
AbsError = 1.e-20 RelError = 0.4)
Element (DataName = "ElectrostaticPotential"

MaxTransDiff = 0.1)
}

}

31.3.1 General

Each adaptation criterion refers to a physical quantity specified by DataName = "<quantity-name>". The
supported data for the different types of criterion are listed in Table 15.160.

The relative and absolute error tolerances and are specified using RelError=<real> or AbsError=<real> (not
used for element criteria). Each adaptation criterion plots specific data to plot files in addition to the specified
data of the Plot section.

31.3.2 Dirichlet

For the functional DomainIntegralCurrent, an additional contact name must be supplied to the criterion using
the keyword Contact. The flag CurrentWeighting must be switched on in the Math section of the device.
Dirichlet-type criteria plot the specified data, and its error and deviation.

NOTE With the current implementation of the element patch mode, Dirichlet error estimation is very time-
consuming and, therefore, such error indicators should be used only if they improve the grid
adaptation compared to other criteria.

31.3.3 Residual

No additional options are available. Residual-type criteria plot the specified data and its error.

31.3.4 Element

The element is refined if where is the value specified by MaxTransDiff = <real>, for
example:

Criteria {
Element (DataName = "ElectrostaticPotential" # vertex based data

MaxTransDiff = 0.1 # unit is taken from DATEX
}

}

Table 15.160 Supported data for different adaptation types of criterion

Criterion type Supported data

Dirichlet AGMDissipationRate, DomainIntegralCurrent

Residual AGMDissipationRate

Element Any vertex-based scalar datasets known in DESSIS.

εR εA

ηT f() dmtd> dmtd
15.514

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
All data that can be plotted is available as a vertex-based dataset and can be used in the element-type criterion.
The specified data is plotted by this criterion type.

31.4 Adaptive solve statements
Grid adaptation is only performed for explicitly adaptive solve statements using the keyword GridAdaptation.
Only the highest level Coupled and Quasistationary solve statements can be adaptive.

31.4.1 General adaptive solve statements

The following parameter entries are interpreted by all adaptive solve statements.

With MaxCLoops, the maximal number of adaptation iterations for each adaptive coupled system is given
(default is 100000). The flag [-]Plot enables or disables device plots for all intermediate device grids (default
is disabled). The flag [-]CurrentPlot allows for the plotting of current file data on intermediate grids to the
current file (default is disabled).

31.4.2 Adaptive coupled solve statements

A Coupled solve statement can be adaptive if (a) it is the highest level solve statement and (b) it contains either
none or at least the three drift-diffusion equations (Poisson, Electron, and Hole) for all adaptive devices:

Coupled (... GridAdaptation (MaxCLoops = 5))
{ Poisson Electron Hole }

31.4.3 Adaptive quasistationary solve statements

In the current implementation, a Quasistationary can be adaptive only if (a) it is the highest level solve
statement and (b) its system consists of a Coupled solve statement (containing none or, at least, the Poisson,
Electron, and Hole equations of adaptive devices), that is, Plugin statements are not yet supported.

In adaptive quasistationary simulations, it may be useful to restrict the adaptation to certain ranges of the
parameter values. This can be achieved by specifying parameter ranges or iteration numbers in a similar
fashion as in Plot in solve statements using the Time, IterationStep, and Iterations keywords, for example:

Quasistationary (
GridAdaptation (

IterationStep = 10
Iterations = (2 ; 7)
Time = (Range = (0.2 0.4) ; range = (0. 1.) intervals = 5 ; 0.1 ; 0.99)
...

) ...
) { ... }

The fixed times specified by Time do not force adaptation at these values (which can be achieved by other
methods, for example, adding plot statements for the desired parameter values), while the free time ranges
(specified by Range without the keyword Intervals) force adaptation if the actual parameter falls into the
specified open interval.
 15.515

PART 15 DESSISCHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
31.5 Limitations and recommendations

31.5.1 Limitations

The grid adaptation approach implemented in DESSIS has been developed for the drift-diffusion model and
2D quadtree-based simulation grids, and is still under development. For the convenience of the user, the
approach has been formally extended to support other transport models and features available in DESSIS, that
is, AGM is formally compatible with the drift-diffusion, thermodynamic, and hydrodynamic transport
models. Nevertheless, it must be noted that AGM has been applied so far only for the drift-diffusion model
and silicon devices. Total incompatibility is to be expected with the Schrödinger equation solver,
heterostructures, interface conditions, and laser equations. These incompatibilities are only partially checked
after command file parsing.

31.5.2 Recommendations

Accuracy of terminal currents as adaptation goal

The choice of appropriate adaptation criteria depends on the adaptation goal. In most adaptive simulation
procedures, the local discretization errors are used as adaptation criteria. This approach is not practicable for
device simulation as the criteria lead to overwhelmingly large grid sizes. The residual and Dirichlet adaptation
criteria for the functionals AGMDissipationRate and DomainIntegralCurrent aim for accurate computations of the
device terminal currents, a minimal requirement for all simulation cases, allowing in principle some
unresolved solution layers, which do not contribute to the terminal current computation.

AGM simulation times

Each coupled adaptation iteration requires remarkable simulation time. In contrast to linear or easy-to-solve
problems, for device simulation, most time is consumed in the recomputation procedure of the solution due
to the extreme nonlinearities of the problem and not in the pure adaptation of the grid. The Dirichlet adaptation
criteria require the solution of local or global nonlinear problems that also consume large parts of the
simulation time even if the grid is not to be updated. Before using very time-consuming adaptation criteria, it
is recommended to use first explicit adaptation criteria (not requiring the solution of additional equations,
such as residual or element variation criteria) to see which kinds of mesh are created and if the AGM module
runs robustly on the given simulation.

As a second step, it may be useful to add Dirichlet adaptation criteria as they provide more accurate
(mathematical) error bounds than the other error indicators. The most time-consuming parts in many AGM
simulations are (in order of importance):

1. Dirichlet adaptation criteria with Element path mode computations (very expensive).

2. Avalanche homotopy if the computation for fails to converge (can be very expensive).

3. Dirichlet adaptation criteria with Global patch mode computations.

4. NBJI smoothing step (for large grid sizes).

5. EPC smoothing step.

6. Grid generation.

t 1=
15.516

PART 15 DESSIS CHAPTER 31 AUTOMATIC GRID GENERATION AND ADAPTATION MODULE AGM
Dirichlet versus residual adaptation criteria

The Dirichlet adaptation criteria are implicit adaptation criteria, that is, they require solutions of local
boundary value problems, while the residual adaptation criteria are explicit, that is, refer only to the solution
on the actual grid. Therefore, the Dirichlet criteria are much more expensive. Experimentally, the Dirichlet
and residual criteria for AGMDissipationRate are comparable in wide regions of the device, that is:

(15.626)

where for (essentially) 1D and for 2D simulations. This relationship makes the residual error
indicator a very favorable choice as it is much cheaper and, in general, smoother than the Dirichlet error
indicator.

Large grid sizes

The low convergence order of the discretization causes quite large grid sizes even for low accuracy
requirements. Especially in the vicinity of solution layers and singularities (at boundary points with changing
boundary conditions), the point density is hard to control. The user has several possibilities to influence the
sizes of the resulting grids:

Increase minimal edge length specification in the MESH command file: Elements that reach the allowed
minimal edge length are no longer refined and their local error does not contribute to the global error used
in the adaptation decision. Hence, realistic minimal edge lengths stop refinement in singularities and
layers.

Decrease the accuracy requirement in adaptation criteria. Realistic relative error tolerances for the
Dirichlet adaptation criteria are about 0.1 or greater. The comparison relation between Dirichlet and
residual adaptation criteria results in relative error tolerances RelError > 0.4 for the residual criteria.

Reduce the maximal number of elements in the macro element tree (MaxNumberMacroElements).

Convergence problems after adaptation

It has been observed that, for very coarse simulation grids, the recomputation procedure shows convergence
problems. Such problems can be solved by using slightly refined initial grids or by refining the coarsest
possible grid (reduce MaxElementSize in refinement definitions). On the other hand, the changes between
consecutive grids could be too large, which can be controlled by reducing the number of tree loop iterations.
Convergence problems occur in the presence of strong nonlinearities (caused by the selected transport model
or certain physical models). Restricting the physical complexity may solve the problem and resulting grids
may be still useful for the intended simulation case.

AGM and extrapolate

After adaptation within a quasistationary, extrapolation is not possible and the parameter step size may
decrease. Extrapolation is supported as soon as two consecutive solutions are computed on the same mesh.

ηF
Residual DAGM() cηF

Dirichlet DAGM()≈

c 4≈ c 2≈
 15.517

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
DESSIS

CHAPTER 32 Numeric methods

32.1 Discretization
The well-known ‘box discretization’ [1][99][100] is applied to discretize the partial differential equations
(PDEs). This method integrates the PDEs over a test volume such as that shown in Figure 15.115, which
applies the Gaussian theorem, and discretizes the resulting terms to a first-order approximation.

Figure 15.115 Single box for a triangular mesh in 2D

In general, box discretization discretizes each PDE of the form:

(15.627)

into:

(15.628)

with values listed in Table 15.161.

Table 15.161 Dimension

Dimension

1D 1 / lij Box length

2D dij / lij Box area

3D Dij / lij Box volume

∇ J⋅ R+ 0=

κi j jij⋅
j i≠
∑ µ Ωi() ri⋅+ 0=

κi j µ Ωi()
 15.519

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
In this case, the physical parameters and have the values listed in Table 15.162, where
is the Bernoulli function.

One special feature of DESSIS is that the actual assembly of the nonlinear equations is performed
elementwise, that is:

(15.629)

This expression is equivalent to (Eq. 15.628), but has the advantage that some parameters (such as ε, µn, µp)
can be handled elementwise, which is useful for numeric stability and physical exactness.

32.2 Box method coefficients

32.2.1 Basic definitions

A mesh is a Delaunay mesh if the interior of the circumsphere (circumcircle for 2D) of each element contains
no mesh vertices.

Let be a mesh element. The center circumsphere (circle for 2D) around the element is called the element
Voronoï center . Let be the face of the element . The center circumcircle around the face is called the
face Voronoï center .

Let be a vertex of the mesh and let be the set of edges connected to vertex . Let be the
mid-perpendicular plane for the edge . The plane splits 3D space into two half-spaces. Let be the
half-space that contains the vertex . The intersection of all half-spaces is called the Voronoï box of
vertex . The Voronoï box is the convex polyhedron and any face of is called a Voronoï face. In
addition, is the set of elements per vertex and is the set of elements per
edge .

Table 15.162 Equation

Equation

Poisson

Electron continuity

Hole continuity

Temperature

jij ri
B x() x ex 1–()⁄=

jij ri

ε ui uj–() ρi–

µ
n niB ui uj–() njB uj ui–()–() Ri Gi– td

d ni+

µ
p pjB uj ui–() piB ui uj–()–() Ri Gi–

td
d pi+

κ Ti Tj–() Hi td
d Tici–

κi j
e jij

e⋅
j Vertices e()∈

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

µe Ωi() ri
e⋅+

⎩ ⎭
⎨ ⎬
⎧ ⎫

e Elements i()∈
∑ 0=

T T
VT f T f

Vf

v evn 1 n N≤ ≤() v Pev
n

evn Pev
n Sev

n

v Sev
n Bv

v Bv Bv
Tv

m 1 m M≤ ≤() v Tev
k 1 k K≤ ≤()

ev
15.520

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
For a Delaunay mesh, there are two propositions:

1. The vertices of a Voronoï box are element Voronoï centers, that is, is a polyhedron with the vertices
.

2. The Voronoï face associated with the edge is the convex polygon with the vertices
 and this polygon lies in the mid-perpendicular plane (see Figure 15.116).

Figure 15.116 Voronoï face of 3D Delaunay elements: view of mid-perpendicular plane at edge e with element Voronoï
centers and the face Voronoï center between elements and

For a non-Delaunay mesh, the Voronoï box is a convex polyhedron, but there are vertices that are not Voronoï
element centers (see Figure 15.117, vertex R).

Figure 15.117 Voronoï face of 3D non-Delaunay elements: non-Delaunay mesh; Voronoï face is polygon

32.2.2 Variation of box method algorithms

The various box methods differ in the way that the 2D volume of the Voronoï face is split into the elements
 associated with edge . All box methods give the same result if the mesh has no obtuse elements (an

element is obtuse if its element Voronoï center is outside of the element).

Bv Bv
V

Tv
1 V

Tv
2 … V

Tv
M, , ,()

ev
V

Tev
1 V

Tev
2 … V

Tev
K, , ,() Pev

V
T1

V
T2

V
T3

V
T4

V
T5 V

f1 2,

V
f2 3,

V
f3 4,

V
f4 5,

V
f5 1,

me

elem. 1

elem. 2

elem. 3

elem. 4

elem. 5

V
Ti V

fi i 1+, Ti Ti 1+

V
T1

V
T2

V
T3

V
T4

V
T5

V
f1 2,

V
f2 3,

V
f3 4,

V
f4 5, V

f5 1,

meR

V
T1 V

T2 V
T3 R V

T1, , , ,()

Tev
k ev
 15.521

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
DESSIS implements of the following box method (BM) algorithms: element intersection BM, element-face
intersection BM, and quadrilateral BM. Figure 15.118 shows a situation where these methods produce
different results. For all methods, the Voronoï faces for elements are the same and are equal to the
area of the polygons . The elements have the following Voronoï faces
depending on the BM algorithms:

Element intersection BM algorithms

• Element : area of polygon

• Element : area of polygon

Element-face intersection BM algorithms

• Element : area of polygon

• Element : area of polygon

Quadrilateral BM algorithms

• Element : area of polygon

• Element : area of polygon minus area of polygon

Figure 15.118 Voronoï face of 3D elements to consider different box method algorithms

32.2.3 Truncated and non-Delaunay elements

If an obtuse element has an obtuse face on the material or region boundary, then for this element, an algorithm
of truncation can be applied. Figure 15.119 on page 15.523 shows the difference between the original and
truncated Voronoï polygons in the 2D case.

T1 T2 T3, ,
me V

fi 1– i, V
Ti V

fi i 1+,
· me, , , ,() T4 T5,

T4 me V
f3 4, V

T4 V
T5 p me, , , , ,()

T5 me p V,
f5 1, me, ,()

T4 me V
f3 4, V

T4 V
T5 me, , , ,()

T5 me V
T5V

f5 1,
me, ,()

T4 me V
f3 4, V

T4 V
f4 5, me, , , ,()

T5 me V
T5V

f5 1,
me, ,() me V

T5V
f4 5,

me, ,()

V
T1

V
T2

V
T3

V
T4

V
T5

V
f1 2,

V
f2 3,

V
f3 4,

V
f4 5,

V
f5 1,

me

p

15.522

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
Figure 15.119 Box method in 2D for truncated element: (a) Voronoï polygons before truncation – P1(v1,1,2,5,4,v1),
P2(v2,1,2,3,v2), P3(v3,3,2,5,6,v3), P4(v4,4,5,6,v4); (b) Voronoï polygons after truncation –
P1(v1,1,2,8,6,5,v1), P2(v2,1,2,3,4,v2), P3(v3,4,3,8,6,7,v3), P4(v4,5,6,7,v4)

For the 3D case, a similar algorithm of truncation is used. If an element is non-Delaunay, it is truncated in any
case. In the 2D case, there is a soft truncation for the non-Delaunay element if the neighbor elements have the
same material (see Figure 15.120).

Figure 15.120 Box method in 2D for non-Delaunay element: (a) Voronoï polygons before truncation – P1(v1,1,2,5,4,v1),
P2(v2,1,2,3,v2), P3(v3,3,2,5,6,v3), P4(v4,4,5,6,v4) (the polygons P1 and P3 are singular; the polygons P2
and P4 have an intersection); (b) Voronoï polygons after truncation – P1(v1,1,2,5,v1), P2(v2,1,2,3,4,v2),
P3(v3,4,3,6,v3), P4(v4,5,2,3,6,v4) (the polygons P1 and P3 are not singular; the polygons P2 and P4 have
no intersection)

32.2.4 Math parameters for box method coefficients

The coefficients needed for discretization and from (Eq. 15.629) (referred to as Measure and
Coefficients) can be computed inside DESSIS or read from outside files.

Table 15.163 on page 15.524 lists all available options for computing Measure and Coefficients.

a)

v1

v2

v3

v4

1

2

3

4

5

6

b)

v1

v2

v3

v4

1

2 3

4

5

6

7

8

a) b)

v1 v1

v2

v3

v4 v4

v2

v3

1

2

3

4

5

6

1

2 3

4

5
6

µe Ωi() κi j
e

 15.523

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
Only one BM algorithm can be activated. The default options are:

Math { ...
AverageBoxMethod -VoronoiFaceBoxMethod -NaturalBoxMethod
BoxMethodFromFile -BoxCoefficientsFromFile -BoxMeasureFromFile
...

}

32.2.5 Saving and restoring box method coefficients

Usually, the coefficients needed for discretization are computed inside DESSIS. For experimental purposes,
it may be preferred to use externally provided data. Measure and Coefficients can be stored in an input
geometry file (it is an old format for input mesh file) or in the file MeasureCoefficientsDebug. DESSIS reads
them from the file if the keyword BoxMeasureFromFile (to read the Measure array) or BoxCoefficientsFromFile (to
read the Coefficients array) is specified in the Math section of the DESSIS input file.

Table 15.163 Keywords for box method coefficients

Keyword Description

-AverageBoxMethod Quadrilateral BM algorithm.

AverageBoxMethod Element intersection BM algorithm that is element oriented,
that is, for each element and all edges of this element, it
computes the element Voronoï faces.

NaturalBoxMethod Element intersection BM algorithm that is edge oriented, that
is, for each edge and all elements around this edge, it
computes the element Voronoï faces.

VoronoiFaceBoxMethod = -TruncatedVoronoiBox Element-face intersection BM algorithm without truncated
correction for obtuse elements. For non-Delaunay elements, it
uses truncated correction in any case.

VoronoiFaceBoxMethod = TruncatedVoronoiBox Element-face intersection BM algorithm with truncated
correction for all obtuse elements.

VoronoiFaceBoxMethod = RegionBoundaryVoronoiBox Element-face intersection BM algorithm with truncated
correction for obtuse elements, which have an obtuse face
(edge for 2D) on boundary of regions, or these elements are
not Delaunay.

VoronoiFaceBoxMethod = MaterialBoundaryVoronoiBox Element-face intersection BM algorithm with truncated
correction for obtuse elements, which have an obtuse face
(edge for 2D) on boundary of materials, or these elements are
not Delaunay.

[-]BoxMethodFromFile Read Voronoï surface from grid file. By default, this option is
switched on. If the grid file has a VoronoiFaces section, all the
above options are ignored and the Voronoï surface is read
from this file. A VoronoiFaces section is added to the grid file
if MESH is called with the option -voronoiOutput (used in
quadrilateral BM algorithm).

[-]BoxCoefficientsFromFile
[-]BoxMeasureFromFile

Both keywords try to read sections of the geometry file (see
Section 32.2.5).
15.524

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
Measure[element][element_vertex_index] is the control volume associated with the index element_vertex_index
of the element element (from (Eq. 15.629)). In line k of the Measure section, the control volume for each
element_vertex_index of element k is stored. The Measure section in the grid file appears as:

Measure {
8.719666833501378e-08 4.359833416750702e-08 4.359833416750729e-08
8.719666833501378e-08 4.359833416750702e-08 4.359833416750729e-08
...

}

Coefficient[element][element_edge_index] is the ratio of the cross section of the appropriate control volume of
an element to the length of the edge corresponding to element_edge_index (from (Eq. 15.629)). In the line
k of the Coefficients section, the ratios for each element_edge_index of element k are stored.

Usually, it is not necessary to write Measure and Coefficients, although for debugging purposes, it may be
useful. DESSIS writes this information into the file MeasureCoefficientsDebug if the keyword
BoxMeasureFromFile or BoxCoefficientsFromFile is specified.

32.3 AC simulation
AC simulation is based on small-signal AC analysis. The response of the device to ‘small’ sinusoidal signals
superimposed upon an established DC bias is computed as a function of frequency and DC operating point.
Steady-state solution is used to build up a linear algebraic system [196] whose solution provides the real and
imaginary parts of the variation of the solution vector induced by small sinusoidal
perturbation at the contacts.

32.3.1 AC response

The AC response is obtained from the three basic semiconductor equations (see (Eq. 15.19) and (Eq. 15.20))
and from up to three additional energy conservation equations to account for electron, hole, and lattice
temperature responses. In the following description of the AC system, the temperatures have been omitted in
the solution vector and Jacobian for simplicity, a complete description being formally obtained by adding the
temperature responses to the solution vector and the corresponding lines to the system Jacobian. After
discretization, the simplified system of equations can be symbolically represented at the node of the
computation mesh as:

(15.630)

(15.631)

(15.632)

where and are nonlinear functions of the vector arguments , and the dot denotes time
differentiation.

µe Ωi()

κi j
e

ψ n p Tn Tp TL, , , , ,()

i

Fψi ψ n p, ,() 0=

Fni ψ n p, ,() G· ni n()=

Fpi ψ n p, ,() G· pi p()=

F G ψ n p, ,
 15.525

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
By substituting the vector functions of the form into (Eq. 15.630), (Eq. 15.631), and
(Eq. 15.632) where , is the value of at the DC operating point, and is the
corresponding response (or the phasor uniquely identifying the complex perturbation) and then expanding the
nonlinear functions and in the Taylor’s series around the DC operating point and keeping only the first-
order terms (the small-signal approximation), the AC system of equations at the node can be written as:

(15.633)

where the solution vector is scaled with respect to terminal voltages (at the contact where the voltage is
applied, is 1). Therefore, the unit of carrier density responses is cm–3 V–1 and the potential response is
unitless.

The matrix of (Eq. 15.633) differs from the Jacobian of the system of equations (Eq. 15.630), (Eq. 15.631),
and (Eq. 15.632) only by pure imaginary additive terms involving derivatives of with respect to carrier
densities. The global AC matrix system is obtained by imposing the corresponding AC boundary conditions
and performing the summation (assembling the global matrix).

Common AC boundary conditions used in AC simulation are Neumann boundary and oxide–semiconductor
jump conditions carried over directly from DC simulation; Dirichlet boundary conditions for carrier densities
where and at Ohmic contacts are ; and Dirichlet boundary conditions for AC potential at
Ohmic contacts that are used to excite the system.

After assembling the global AC matrix and taking into account the boundary conditions, the AC system
becomes:

(15.634)

where is the Jacobian matrix, contains the contributions of the functions to the matrix, is a real
vector dependent on the AC voltage drive, and is the AC solution vector. By writing the solution vector as

 with and the real and imaginary part of the solution vector respectively, the AC system
can be rewritten using only real arithmetic as:

(15.635)

The AC response is actually computed by solving the real system (Eq. 15.635).

An ACPlot statement in the System section is used to plot AC responses . The responses are
plotted in the DESSIS AC plot file with a separate file for each frequency.

For details of the ACPlot statement, see Table 15.50 on page 15.117. For details and examples of small-signal
AC analysis, see Section 3.8.3 on page 15.117.

ξtotal ξDC ξ̃ejωt+=
ξ ψ n p, ,= ξDC ξ ξ̃

F G
i

∂Fψi
∂ψj

∂Fψi
∂nj

∂Fψi
∂pj

∂Fni
∂ψj

∂Fni
∂nj

----------- jω
∂Gni
∂nj

-----------–
∂Fni
∂pj

∂Fpi
∂ψj

∂Fpi
∂nj

∂Fpi
∂pj

----------- jω
∂Gpi
∂pj

-----------–
DC

ψ̃j

ñj

p̃j
j

∑ 0=

ψ̃

G

n p ñ p̃ 0= =

J jD+[]X̃ B=

J D G B
X̃

X̃ XR jXI+= XR XI

J D–
D J

XR

XI

B
0

=

ψ̃ ñ p̃ T̃n T̃p T̃L, , , , ,()
15.526

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
32.3.2 AC current density responses

When the AC system is solved, the AC current density responses , , and are computed using:

(15.636)

(15.637)

(15.638)

The unit of current density responses is Acm–2 V–1.

The ACPlot statement in the System section is used to plot the six AC current density responses.The responses
are added to the AC solution response in the DESSIS AC plot files.

32.4 Transient simulation
Transient equations used in semiconductor device models and circuit analysis can be formally written as a set
of ordinary differential equations:

(15.639)

which can be mapped to the DC and transient parts of the PDEs. DESSIS uses implicit discretization of
transient equations (see (Eq. 15.639)), and supports two discretization schemes: simple backward Euler (BE),
and composite trapezoidal rule/backward differentiation formula (TRBDF), which is the default.

32.4.1 Backward Euler method

Backward Euler is a very stable method, but it has only a first-order of approximation over time-step hn. The
discretization can be written as:

(15.640)

The local truncation error (LTE) estimation is based on the comparison of the obtained solution q(tn+hn) with
the linear extrapolation from the previous time-step. The extrapolated solution is written as:

(15.641)

Then, in every point, the relative error can be estimated as .

J̃disp J̃n J̃p

J̃disp jωε ψ̃∇–=

J̃n
∂Jn
∂ψ

DC
ψ̃

∂Jn
∂n

DC
ñ

∂Jn
∂p

DC
p̃+ +=

J̃p
∂Jp
∂ψ

DC
ψ̃

∂Jp
∂p

DC
p̃

∂Jp
∂n

DC
ñ+ +=

td
d q z t()() f t z t(),()+ 0=

q tn hn+() hnf tn hn+()+ q tn()=

qextr q tn()
f tn() f tn hn+()+

2
--hn–=

q tn hn+()() qextr–() q tn hn+()()⁄
 15.527

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
Using (Eq. 15.640) and (Eq. 15.641), and estimating the norm of relative error, DESSIS computes the value:

(15.642)

where the sum is taken over all unknowns (that is, all free vertices of all equations), and and are
the relative and absolute transient errors, respectively.

The next time-step is estimated as:

(15.643)

The value of the estimated time-step is used for computation (see Section 32.4.3 on page 15.529).

32.4.2 TRBDF composite method

The transient scheme [101] for the approximation of (Eq. 15.9) is briefly reviewed in this section. From each
time point , the next time point (is the current step size) is not directly reached. Instead, a step in
between to is made. This improves the accuracy of the method. has been shown to be the
optimal value. Using this, two nonlinear systems are reached. For the trapezoidal rule (TR) step:

(15.644)

and for the BDF2 step:

(15.645)

The local truncation error (LTE) is estimated after such a double step as:

(15.646)

(15.647)

DESSIS then computes the following value from this:

(15.648)

where the sum is taken over all unknowns (that is, all free vertices of all equations), and and are
the relative and absolute transient errors, respectively. Since the TRBDF method has a second-order
approximation over hn, the next step can be estimated as:

(15.649)

The value of the estimated time-step is used for hn+1 computation (see Section 32.4.3).

r 1
N

f tn hn+() f tn()–

εR qn tn hn+() εA+
---hn

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

i 1=

N

∑=

εR tr, εA tr,

hest hnr 1 2⁄–=

hn 1+

tn tn hn+ hn
tn γhn+ γ 2 2–=

2q tn γhn+() γhnf tn γhn+()+ 2q tn() γhnf tn()–=

2 γ–()q tn hn+() 1 γ–()hnf tn hn+()+ 1 γ⁄() q tn γhn+() 1 γ–()2q tn()–()=

τ
f tn()

γ

f tn γhn+()

γ 1 γ–()
---------------------------–

f tn hn+()

1 γ–
------------------------+=

C 3γ2– 4γ 2–+
12 2 γ–()

----------------------------------=

r 1
N

τi

εR qn tn hn+() εA+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

i 1=

N

∑=

εR tr, εA tr,

hest hnr 1 3⁄–=
15.528

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
32.4.3 Syntax and implementation

By default, DESSIS uses the TRBDF method. To switch to backward Euler (BE), the statement Transient=BE
must be specified in the Math section.

To evaluate whether a time-step was successful and to provide an estimate for the next step size, the following
rules are applied:

If one of the nonlinear systems cannot be solved, the step is refused and tried again with .

Otherwise, the inequality is tested. If it is fulfilled, the transient simulation proceeds with
. Otherwise, the step is re-tried with .

The LTE is checked only if the CheckErrorTransient option is selected; otherwise, the selection of the next
time-step is based only on convergence of nonlinear iterations.

To activate LTE evaluation and time-step control, CheckErrorTransient must be specified either globally (in
the Math section) or locally as an option in the Transient statement. The keyword NoCheckErrorTransient disables
time-step control. The value of the relative error is defined by the parameter TransientDigits according to
(Eq. 15.15).

Absolute error is given by the keyword TransientError or recomputed from TransientErrRef () using
(Eq. 15.16) (if RelErrControl is switched on). DESSIS provides the default values of , , and .
The coefficient is equal to 1 by default. The user can define the values of , , , and
globally in the Math section, or specify them as options in the Transient statement. In the latter case, it
overwrites the default and Math specifications for this command.

32.5 Nonlinear solvers
In the next two sections, the Digits variable corresponds to the keyword Digits, which can be given in the Math
section of the input file (see Section 2.10.2 on page 15.76), or in parentheses of each Plugin or Coupled
statement.

32.5.1 Full coupled solution

For the solution of nonlinear systems, the scheme developed by Bank and Rose [102] is applied. This scheme
tries to solve the nonlinear system g(z) = 0 by the Newton method:

(15.650)

(15.651)

where λ is selected such that , but is as close as possible to 1. DESSIS handles the error by
computing an error function that can be defined by two methods.

hn 0.5 hn⋅=

r 2frej<
hn 1+ hest= hn 0.9 hest⋅=

xref,tr
εR tr, εA tr, xref,tr

frej εR tr, εA tr, xref,tr frej

g g'x+ 0=

z
j

z–
j 1+

λx=

gk 1+ gk<
 15.529

PART 15 DESSISCHAPTER 32 NUMERIC METHODS
Figure 15.121 Newton iteration

The Newton iterations stop if the convergence criteria are fulfilled. One convergence criterion is the norm of
the right-hand side, that is, in (Eq. 15.650). Another natural criterion may be the relative error of the
variables measured, such as .

Conversely, for the very small z updates, λx must be measured with respect to some reference value of the
variable zref. The formula used in DESSIS as the second convergence criterion is:

(15.652)

where is the solution of the equation EQ (EQ is Poisson, Electron, Hole, and so on) at the node i
after the Newton iteration of j. The constant Norm is given by the total number of nodes multiplied by the total
number of equations. The parameter is the relative error criterion. The value of = 10-Digits is set by
specifying the following in the Math section:

Math{ ...
Digits = 5

}

where 5 is the default for Digits. The reference values ensure numeric stability even for cases when
 is zero or very small. This error condition ensures that the respective equations are solved to an

accuracy of approximately . (Eq. 15.652) can be written in the symbolic form:

(15.653)

(Eq. 15.653) can also be rewritten in the equivalent form:

(15.654)

where and .

z* is the normalization factor (for example, it is the intrinsic carrier density /cm3 for electron
and hole equations, and the thermal voltage mV for the Poisson equation).

z

g(z)

g(z)j

g(z)j+1

z j+1z j
λx

g
λx()
z

1
εR
----- 1

Norm
-------------- z EQ,i,j() z EQ,i,j-1()–

z EQ,i,j() zref EQ()+

i EQ,
∑ 1<

z EQ,i,j()

εR εR

zref EQ()
z EQ,i,j()

zref EQ()εR

1
εR
----- λx

zj zref+
------------------ 1<

λx
εRzj εA+
---------------------- 1<

zj zj

z∗
-----= x x

z∗
-----=

ni 1.48 10×10=
uT0 25.8=
15.530

PART 15 DESSIS CHAPTER 32 NUMERIC METHODS
The absolute error is related to the relative error through:

 (15.655)

DESSIS supports two schemes for controlling the error conditions. The default scheme is based on
(Eq. 15.654). The default values for the parameters are given in Section 2.10 on page 15.73. They are
accessible in the Math section:

Math{ ...
Error(Electron) = 1e-5
Error(Hole) = 1e-5

}

The second scheme is activated with the keyword RelErrControl in the Math section and is based on
(Eq. 15.652). The default values for the parameters are given in Section 2.10. They are accessible in the
Math section:

Math{ ...
RelErrControl
ErrRef(Electron) = 1e10
ErrRef(Hole) = 1e10

}

NOTE The use of the keyword RelErrContol is recommended, even if none of the parameters are
actually redefined.

32.5.2 ‘Plugin’ iterations

This is the traditional scheme, which is also known as ‘Gummel iterations’ in most other device simulators.
Consider that there are n sets of nonlinear systems gj(z1 ... zn) = 0. (n can be, for example, 3 and the sets can
be the Poisson equation and two continuity equations.) This method starts with values z1(1) ... zn(1) and then
solves each set gj = 0 separately and consecutively. One loop could be:

(15.656)

If an update (λx) of the solution between two successive plugin iterations is defined as:

(15.657)

(Eq. 15.653) or (Eq. 15.654) can be applied for convergence control in plugin iterations.

εA εR
zref

z∗
--------=

εA

zref

zref

g1 z1z2
i()…zn

i()() 0= z1
i 1+()⇒

…

g1 z1
i 1+()…zn 1–

i 1+()zn() 0= zn
i 1+()⇒

λx() zj
i 1+() zj

i()–=
 15.531

Part V Physical Model Interface
This part of the DESSIS manual contains the following chapter:

CHAPTER 33 PHYSICAL MODEL INTERFACE ON PAGE 15.535

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
DESSIS

CHAPTER 33 Physical model interface

33.1 Overview
The physical model interface (PMI) provides direct access to certain models in the semiconductor transport
equations. The user can provide new C++ functions to compute these models, and DESSIS loads the functions
at run-time using the dynamic loader. No access to the DESSIS source code is necessary. The user can modify
the following models:

Generation–recombination rate , compared to (Eq. 15.20)

Avalanche generation, that is, ionization coefficient in (Eq. 15.225)

Electron and hole mobilities and , compared to (Eq. 15.21) and (Eq. 15.22)

Band gap, see Chapter 5 on page 15.151

Band-gap narrowing , see Section 5.2 on page 15.151

Electron affinity, see Section 5.2

Effective mass, see Section 5.3 on page 15.155

Energy relaxation times , compared to (Eq. 15.43) to (Eq. 15.45)

Lifetimes , as used in SRH recombination (see (Eq. 15.184)) and CDL recombination (see (Eq. 15.212))

Thermal conductivity , compared to (Eq. 15.25)

Heat capacity , compared to (Eq. 15.25)

Optical absorption, see Section 33.22 on page 15.586

Refractive index, see Section 13.3.5 on page 15.254

Stress, see Section 33.24 on page 15.589

Trap space factor, see Chapter 10 on page 15.225

Piezoelectric polarization

Incomplete ionization, see Chapter 6 on page 15.161

A separate interface is provided to add new entries to the DESSIS current plot file, see Section 33.28 on
page 15.600.

The following steps are needed to use a PMI model in a DESSIS simulation:

A C++ subroutine must be implemented to evaluate the PMI model. Additional C++ subroutines must be
written to evaluate the derivatives of the PMI model with respect to all input variables (see Section 33.2
on page 15.536).

The cmi script produces a shared object file that DESSIS loads at run-time (see Section 33.3 on
page 15.538).

R

α

µn µp

∆Eg

τ

τ

κ

c

 15.535

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
The PMIPath variable must be defined in the File section of the DESSIS command file. This defines the
search path for the shared object files. A PMI model is activated in the Physics section of the DESSIS
command file by specifying its name (see Section 33.4 on page 15.539).

Parameters for PMI models can appear in the DESSIS parameter file (see Section 33.6 on page 15.542).

These steps are discussed further in the following sections. The source code for the examples is in the
directory $ISEROOT/tcad/$ISERELEASE/lib/dessis/src.

33.2 C++ interface
For each PMI model, the user must implement a C++ subroutine to evaluate the model. Additional
subroutines are necessary to evaluate the derivatives of the model with respect to all the input variables. More
specifically, the user must implement a C++ class that is derived from a base class declared in the header
file PMIModels.h. In addition, a so-called virtual constructor function must be provided, which allocates an
instance of the derived class.

For example, consider the implementation of Auger recombination as a new PMI model. (The built-in Auger
recombination model is discussed in Section 9.7 on page 15.212.)

In its simplest form, Auger recombination can be written as:

(15.658)

where and are the electron and hole densities, respectively, and is the effective intrinsic density.
DESSIS needs to evaluate the value of and the derivatives:

(15.659)

In the header file PMIModels.h, the following base class is defined for recombination models:

class PMI_Recombination : public PMI_Dessis_Interface {

public:
 PMI_Recombination (const PMI_Environment& env);
 virtual ~PMI_Recombination ();

 virtual void Compute_r
 (const double t, const double n, const double p,
 const double nie, const double f, double& r) = 0;

 virtual void Compute_drdt
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdt) = 0;

 virtual void Compute_drdn
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdn) = 0;

 virtual void Compute_drdp

R C n p+() np ni eff,
2–()⋅ ⋅=

n p ni eff,
R

R∂
n∂

------ C np ni eff,
2– n p+()p+()=

R∂
p∂

------ C np ni eff,
2– n p+()n+()=

R∂
ni eff,∂

--------------- 2C n p+()ni eff,–=
15.536

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdp) = 0;

 virtual void Compute_drdnie
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdnie) = 0;

 virtual void Compute_drdf
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdf) = 0;
};

To implement a PMI model for Auger recombination, the user must declare a derived class:

#include "PMIModels.h"

class Auger_Recombination : public PMI_Recombination {

 double C;

public:
 Auger_Recombination (const PMI_Environment& env);
 ~Auger_Recombination ();

 void Compute_r
 (const double t, const double n, const double p,
 const double nie, const double f, double& r);

 void Compute_drdt
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdt);

 void Compute_drdn
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdn);

 void Compute_drdp
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdp);

 void Compute_drdnie
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdnie);

 void Compute_drdf
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdf);
};

The constructor of the derived class is invoked for each region of the device. In this example, the variable C
is initialized from the DESSIS parameter file:

Auger_Recombination::
Auger_Recombination (const PMI_Environment& env) :

PMI_Recombination (env)
{ C = InitParameter ("C", 1e-30);
}

If the parameter is not found in the parameter file, a default value of is used (see Section 33.6 on
page 15.542). During a Newton iteration, DESSIS evaluates a PMI model for each mesh vertex. The method

C 10 30–
 15.537

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
Compute_r() computes the recombination rate for a given vertex. According to the parameter list, the
recombination rate can depend on the following variables:

The result of the function is stored in the parameter r:

void Auger_Recombination::
Compute_r (const double t, const double n, const double p,

const double nie, const double f, double& r)
{ r = C * (n + p) * (n*p - nie*nie);

if (r < 0.0) {
r = 0.0;

}
}

Besides Compute_r(), the user must implement other methods to compute the partial derivatives of the
recombination rate with respect to the input variables t, n, p, nie, and f. The implementation of Compute_drdn()
to compute the value of is:

void Auger_Recombination::
Compute_drdn (const double t, const double n, const double p,
const double nie, const double f, double& drdn)
{ double r = C * (n + p) * (n*p - nie*nie);
 if (r < 0.0) {
 drdn = 0.0;
 } else {
 drdn = C * ((n*p - nie*nie) + (n + p) * p);
 }
}

Finally, the user must provide a so-called virtual constructor function, which allocates a variable of the new
class:

extern "C"
PMI_Recombination* new_PMI_Recombination (const PMI_Environment& env)
{ return new Auger_Recombination (env);
}

NOTE This function must have C linkage and exactly the same name as declared in the header file
PMIModels.h.

33.3 Shared object code
DESSIS assumes that the shared object code corresponding to a PMI model can be found in the file
modelname.so.arch. The base name of this file must be identical to the name of the PMI model. The extension
.arch depends on the hardware architecture. The script cmi, which is also a part of the CMI, can be used to
produce the shared object files (see Compact Models, Section 3.7 on page 16.109).

t Lattice temperature

n Electron density

p Hole density

nie Effective intrinsic density

f Absolute value of electric field

R∂ n∂⁄
15.538

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.4 DESSIS command file
To load PMI models into DESSIS, the PMIPath search path must be defined in the File section of the DESSIS
command file. The value of PMIPath consists of a sequence of directories, for example:

File {
PMIPath = ". /home/joe/lib /home/mary/dessis/lib"

}

For each PMI model, which appears in the Physics section, the given directories are searched for a
corresponding shared object file modelname.so.arch.

The PMI in DESSIS provides access to mesh-based scalar fields specified by the user. These fields must be
defined on the device grid in a separate DF–ISE data file (extension .dat). Up to ten datasets (PMIUserField0,
..., PMIUserField9) can be defined. DESSIS reads the user-defined fields if the corresponding file name is
given in the command file:

File {
PMIUserFields = "fields"

}

A PMI model can be activated in the Physics section of the DESSIS command file by specifying the name of
the PMI model in the appropriate part of the Physics section. Examples for different types of PMI models are:

Generation–recombination models:

Physics {
Recombination (pmi_model_name ...)

}

Avalanche generation:

Physics {
Recombination (Avalanche (pmi_model_name ...))

}

Mobility models:

Physics {
Mobility (

DopingDep (pmi_model_name)
Enormal (pmi_model_name)
ToCurrentEnormal (pmi_model_name)
HighFieldSaturation (pmi_model_name driving_force)

)
}

A PMI model name can only consist of alphanumeric characters and underscores (_). The first character must
be either a letter or an underscore. A PMI model name can also be quoted as "model_name" to avoid conflicts
with DESSIS keywords.

All the PMI models can be specified regionwise or materialwise:

Physics (region = "Region.1") {
...
}
Physics (material = "AlGaAs") {
...
}

 15.539

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
NOTE No PMI models are available for region interfaces and material interfaces.

Certain values of PMI models can be plotted in the Plot section of the DESSIS command file. The following
identifiers are recognized:

Generation–recombination models:

Plot {
PMIRecombination

}

User-defined fields:

Plot {
PMIUserField0 PMIUserField1 PMIUserField2 PMIUserField3
PMIUserField4 PMIUserField5 PMIUserField6 PMIUserField7
PMIUserField8 PMIUserField9

}

Piezoelectric polarization:

Plot {
PE_Polarization/vector PE_Charge

}

The current plot PMI can be used to add entries to the DESSIS current plot file:

CurrentPlot {
pmi_CurrentPlot

}

33.5 Run-time support
The base class PMI_Dessis_Interface provides run-time support for the PMI models:

class PMI_Dessis_Interface {
public:

PMI_Dessis_Interface (const PMI_Environment& env);
virtual ~PMI_Dessis_Interface ();

 const char* Name () const;

 const PMIBaseParam* ReadParameter (const char* name) const;

 double InitParameter (const char* name, double defaultvalue) const;

 int ReadDimension () const;

 void ReadCoordinate (double& x, double& y, double& z) const;

 double ReadTime () const;

 double ReadxMoleFraction () const;
 double ReadyMoleFraction () const;

 double ReadDoping (PMI_DopingSpecies species) const;

 double ReadDoping (const char* UserSpeciesName) const;
15.540

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 int IsUserFieldDefined (PMI_UserFieldIndex index) const;

 double ReadUserField (PMI_UserFieldIndex index) const;

 double ReadStress (PMI_StressIndex index) const;
};

The method Name() returns the name of the PMI model as specified in the DESSIS command file. The methods
ReadParameter() and InitParameter() read the value of a parameter from the DESSIS parameter file (see
Section 33.6 on page 15.542).

ReadDimension() returns the dimension of the problem. The functions ReadCoordinate() and ReadTime() provide
the coordinates of the current vertex [µm] and the simulation time during a transient simulation [s].

The methods ReadxMoleFraction() and ReadyMoleFraction() return the x and y mole fractions, respectively.

The methods ReadDoping(species) and ReadDoping(UserSpeciesName) return the doping profiles for the current
vertex []. The string UserSpeciesName is the same as in the file datexcodes.txt (see Chapter 2.14.2 on
page 15.98). The enumeration type PMI_DopingSpecies is used to select the doping species, the incomplete
ionization doping species, and their derivatives:

enum PMI_DopingSpecies {
// Acceptors
 PMI_Boron,
 PMI_Indium,
 PMI_PDopant,
 PMI_Acceptor, // total acceptor concentration
// incomplete ionization entries
 PMI_AcceptorMinus, // total incomplete ionization acceptor concentration
 PMI_AcceptorMinusPer_hDensity,
 PMI_AcceptorMinusPerT,

// Donors
 PMI_Phosphorus,
 PMI_Arsenic,
 PMI_Antimony,
 PMI_Nitrogen,
 PMI_NDopant,
 PMI_Donor, // total donor concentration
// incomplete ionization entries
 PMI_DonorPlus, // total incomplete ionization donor concentration
 PMI_DonorPlusPer_eDensity,
 PMI_DonorPlusPerT
};

NOTE The species PMI_Acceptor and PMI_Donor are always defined. The remaining entries are only defined
if they appear in the DESSIS doping input file. The incomplete ionization entries are only
accessible if the option IncompleteIonization is activated (see Chapter 6 on page 15.161).

The method IsUserFieldDefined() checks if a user-defined field has been specified. The enumeration type
PMI_UserFieldIndex selects the desired field:

enum PMI_UserFieldIndex {
PMI_UserField0, PMI_UserField1, PMI_UserField2, PMI_UserField3,
PMI_UserField4, PMI_UserField5, PMI_UserField6, PMI_UserField7,
PMI_UserField8, PMI_UserField9

};

cm 3–
 15.541

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
If a field is defined, the method ReadUserField() returns its value for the current vertex. The method
ReadStress() returns the value of one of the following stress components:

enum PMI_StressIndex {
PMI_StressXX, PMI_StressYY, PMI_StressZZ,
PMI_StressYZ, PMI_StressXZ, PMI_StressXY

};

33.6 DESSIS parameter file
For each PMI model, a corresponding section with the same name can appear in the DESSIS parameter file:

PMI_model_name {
par1 = value
par2 = value
...

}

NOTE Parameter names can only consist of alphanumeric characters and underscores (_). The first
character must be either a letter or an underscore.

The parameters can be specified regionwise and materialwise:

Region = "Region.1" {
PMI_model_name {
...
}

}
Material = "AlGaAs" {

PMI_model_name {
...
}

}

NOTE No user models can be specified for region interfaces and material interfaces. Therefore, PMI
parameters specified for these interfaces are ignored.

The method PMI_Dessis_Interface::ReadParameter() can be used to obtain the value of a parameter given its
name. ReadParameter() returns a pointer to a variable of type PMIBaseParam. A NULL pointer indicates that the
parameter has not been defined in the parameter file. If the pointer p in:

const PMIBaseParam* p = ReadParameter ("name of parameter");

is not NULL, the following assignment is a valid C++ statement:

double d = *p;

The variable d is assigned the value of the parameter p. The method PMI_Dessis_Interface::InitParameter()
checks if a parameter has been specified in the DESSIS parameter file. If the parameter has been specified,
the given value is taken. Otherwise, the default value is used.
15.542

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.7 Generation–recombination model
The recombination rate appears in the electron and hole continuity equations (see (Eq. 15.20)).

33.7.1 Dependencies

The recombination rate may depend on these variables:

The PMI model must compute the following results:

33.7.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_Recombination : public PMI_Dessis_Interface {

public:
 PMI_Recombination (const PMI_Environment& env);
 virtual ~PMI_Recombination ();

 virtual void Compute_r
 (const double t, const double n, const double p,
 const double nie, const double f, double& r) = 0;

 virtual void Compute_drdt
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdt) = 0;

 virtual void Compute_drdn
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdn) = 0;

 virtual void Compute_drdp
 (const double t, const double n, const double p,

t Lattice temperature [K]

n Electron density []

p Hole density []

nie Effective intrinsic density []

f Absolute value of electric field [Vcm–1]

r Generation–recombination rate [cm–3s–1]

drdt Derivative of r with respect to t [cm–3s–1K–1]

drdn Derivative of r with respect to n [s–1]

drdp Derivative of r with respect to p [s–1]

drdnie Derivative of r with respect to nie [s–1]

drdf Derivative of r with respect to f [cm–2s–1V–1]

R

R

cm 3–

cm 3–

cm 3–
 15.543

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 const double nie, const double f, double& drdp) = 0;

 virtual void Compute_drdnie
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdnie) = 0;

 virtual void Compute_drdf
 (const double t, const double n, const double p,
 const double nie, const double f, double& drdf) = 0;
};

The prototype for the virtual constructor is:

typedef PMI_Recombination* new_PMI_Recombination_func
(const PMI_Environment& env);

extern "C" new_PMI_Recombination_func new_PMI_Recombination;

By default, DESSIS assumes that a PMI generation–recombination model depends on the electric field.
However, the user can implement the optional function PMI_Recombination_ElectricField() to indicate whether
the model depends on the electric field. If the model does not depend on the electric field (return value of 0),
the method Compute_drdf() is not called, and the matrix assembly in DESSIS works more efficiently:

typedef int PMI_Recombination_ElectricField_func ();
extern "C"
PMI_Recombination_ElectricField_func PMI_Recombination_ElectricField;

33.7.3 Example: Auger recombination

See Section 33.2 on page 15.536.

33.8 Avalanche generation model
The generation rate due to impact ionization can be expressed as:

(15.660)

where and are the ionization coefficients for electrons and holes, respectively (compare with
(Eq. 15.225)). The PMI in DESSIS allows the user to redefine the calculation of and .

33.8.1 Dependencies

The ionization coefficients and may depend on the following variables:

F Driving force [Vcm–1]

t Lattice temperature [K]

bg Band gap [eV]

ct Carrier temperature [K]

currentWoMob[3] Current without mobility [cm–4AVs]

G|| αnnvn αppvp+=

αn αp
αn αp

αn αp
15.544

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
The parameter ct represents the electron temperature during the calculation of and the hole temperature
during the calculation of .

The parameter currentWoMob can be used to compute anisotropic avalanche generation. Only the first
components of the vector currentWoMob are defined, where is equal to the dimension of the problem. It is
recommended that only the direction of the vector currentWoMob is taken into account, but not its magnitude.

The PMI model must compute the following results:

Only the first components of the vector dalphadcurrentWoMob need to be computed.

33.8.2 C++ interface

Different driving forces for avalanche generation can be selected in the DESSIS command file. The
enumeration type PMI_AvalancheDrivingForce, defined in PMIModels.h, is used to reflect the selection of the user:

enum PMI_AvalancheDrivingForce {
PMI_AvalancheElectricField,
PMI_AvalancheParallelElectricField,
PMI_AvalancheGradQuasiFermi

};

The following base class is declared in the file PMIModels.h:

class PMI_Avalanche : public PMI_Dessis_Interface {

private:
 const PMI_AvalancheDrivingForce drivingForce;

public:
 PMI_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force);
 virtual ~PMI_Avalanche ();

 PMI_AvalancheDrivingForce AvalancheDrivingForce () const
 { return drivingForce; }

 virtual void Compute_alpha
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& alpha) = 0;

 virtual void Compute_dalphadF
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadF) = 0;

 virtual void Compute_dalphadt
 (const double F, const double t, const double bg,

alpha Ionization coefficient [cm–1]

dalphadF Derivative of alpha with respect to F [V–1]

dalphadt Derivative of alpha with respect to t [cm–1K–1]

dalphadbg Derivative of alpha with respect to bg [cm–1 eV–1]

dalphadct Derivative of alpha with respect to ct [cm–1K–1]

dalphadcurrentWoMob[3] Derivative of alpha with respect to currentWoMob [cm3A-1V-1s-1]

αn
αp

d
d

d

 15.545

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 const double ct, const double currentWoMob[3], double& dalphadt) = 0;

 virtual void Compute_dalphadbg
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadbg) = 0;

 virtual void Compute_dalphadct
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadct) = 0;

 virtual void Compute_dalphadcurrentWoMob
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double dalphadcurrentWoMob[3]) = 0;
};

Two virtual constructors are required for the calculation of the ionization coefficients and :

typedef PMI_Avalanche* new_PMI_Avalanche_func
(const PMI_Environment& env, const PMI_AvalancheDrivingForce force);
extern "C" new_PMI_Avalanche_func new_PMI_e_Avalanche;
extern "C" new_PMI_Avalanche_func new_PMI_h_Avalanche;

33.8.3 Example: Okuto model

Okuto and Crowell propose the following expression for the ionization coefficient :

(15.661)

This built-in model is discussed in Section 9.9.3 on page 15.215 and its implementation as a PMI model is:

#include "PMIModels.h"

class Okuto_Avalanche : public PMI_Avalanche {

protected:
 const double T0;
 double a, b, c, d;

public:
 Okuto_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force);

 ~Okuto_Avalanche ();

 void Compute_alpha
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& alpha);

 void Compute_dalphadF
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadF);

 void Compute_dalphadt
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadt);

 void Compute_dalphadbg
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadbg);

αn αp

α

α F() a 1 c T T0–()+[] Fe

b 1 d T T0–()+[]
F

---⎝ ⎠
⎛ ⎞

2
–

⋅ ⋅=
15.546

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 void Compute_dalphadct
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double& dalphadct);

 void Compute_dalphadcurrentWoMob
 (const double F, const double t, const double bg,
 const double ct, const double currentWoMob[3], double dalphadcurrentWoMob[3]);
};

Okuto_Avalanche::
Okuto_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force) :
 PMI_Avalanche (env, force),
 T0 (300.0)
{
}

Okuto_Avalanche::
~Okuto_Avalanche ()
{
}

void Okuto_Avalanche::
Compute_alpha (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& alpha)
{ const double aa = a * (1.0 + c * (t - T0));
 const double bb = b * (1.0 + d * (t - T0)) / F;
 alpha = aa * F * exp (-bb*bb);
}

void Okuto_Avalanche::
Compute_dalphadF (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& dalphadF)
{ const double aa = a * (1.0 + c * (t - T0));
 const double bb = b * (1.0 + d * (t - T0)) / F;
 const double alpha = aa * F * exp (-bb*bb);
 dalphadF = (alpha / F) * (1.0 + 2.0*bb*bb);
}

void Okuto_Avalanche::
Compute_dalphadt (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& dalphadt)
{ const double aa = a * (1.0 + c * (t - T0));
 const double bb = b * (1.0 + d * (t - T0)) / F;
 const double tmp = F * exp (-bb*bb);
 dalphadt = tmp * (a * c - 2.0 * aa * bb * b * d / F);
}

void Okuto_Avalanche::
Compute_dalphadbg (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& dalphadbg)
{ dalphadbg = 0.0;
}

void Okuto_Avalanche::
Compute_dalphadct (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& dalphadct)
{ dalphadct = 0.0;
}

void Okuto_Avalanche::
Compute_dalphadcurrentWoMob (const double F, const double t, const double bg,
 15.547

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
const double ct, const double currentWoMob[3],
double dalphadcurrentWoMob[3])

{ const int dim = ReadDimension ();
for (int k = 0; k < dim; k++) {

dalphadcurrentWoMob [k] = 0.0;
}

}

class Okuto_e_Avalanche : public Okuto_Avalanche {

public:
 Okuto_e_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force);

 ~Okuto_e_Avalanche () {}
};

Okuto_e_Avalanche::
Okuto_e_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force) :
 Okuto_Avalanche (env, force)
{ // default values
 a = InitParameter ("a_e", 0.426);
 b = InitParameter ("b_e", 4.81e5);
 c = InitParameter ("c_e", 3.05e-4);
 d = InitParameter ("d_e", 6.86e-4);
}

class Okuto_h_Avalanche : public Okuto_Avalanche {

public:
 Okuto_h_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force);

 ~Okuto_h_Avalanche () {}
};

Okuto_h_Avalanche::
Okuto_h_Avalanche (const PMI_Environment& env,
 const PMI_AvalancheDrivingForce force) :
 Okuto_Avalanche (env, force)
{ // default values
 a = InitParameter ("a_h", 0.243);
 b = InitParameter ("b_h", 6.53e+5);
 c = InitParameter ("c_h", 5.35e-4);
 d = InitParameter ("d_h", 5.67e-4);
}

extern "C"
PMI_Avalanche* new_PMI_e_Avalanche
 (const PMI_Environment& env, const PMI_AvalancheDrivingForce force)
{ return new Okuto_e_Avalanche (env, force);
}

extern "C"
PMI_Avalanche* new_PMI_h_Avalanche
 (const PMI_Environment& env, const PMI_AvalancheDrivingForce force)
{ return new Okuto_h_Avalanche (env, force);
}

15.548

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.9 Mobility models
DESSIS supports three types of PMI mobility models:

Doping-dependent mobility

Mobility degradation at interfaces

High-field saturation

PMI and built-in models can be used simultaneously. See Chapter 8 on page 15.175 for more information
about how the contributions of the different models are combined. PMI mobility models support anisotropic
calculations and can be evaluated along different crystallographic axes. The enumeration type:

enum PMI_AnisotropyType {
PMI_Isotropic,
PMI_Anisotropic

};

determines the axis. The default is isotropic mobility. If anisotropic mobilities are activated in the DESSIS
command file, the PMI mobility classes are also instantiated in the anisotropic direction.

33.10 Doping-dependent mobility
A doping-dependent PMI model must account for both the constant mobility and doping-dependent mobility
models discussed in Section 8.3 on page 15.176 and Section 8.4 on page 15.176.

33.10.1 Dependencies

The constant mobility and doping-dependent mobility may depend on the following variables:

The PMI model must compute the following results:

In most cases, it is not necessary to compute the derivatives with respect to the dopant concentrations.

t Lattice temperature [K]

n Electron density []

p Hole density []

m Mobility [cm2V–1s–1]

dmdn Derivative of with respect to n [cm5V–1s–1]

dmdp Derivative of with respect to p [cm5V–1s–1]

dmdt Derivative of with respect to t [cm2V–1s–1K–1]

µdop

cm 3–

cm 3–

µdop

µdop

µdop

µdop
 15.549

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
However, to model random dopant fluctuations (see Section 15.3.4 on page 15.294), the PMI model must
override the functions that compute the following values:

33.10.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_DopingDepMobility : public PMI_Dessis_Interface {

private:
const PMI_AnisotropyType anisoType;

public:
 PMI_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
 virtual ~PMI_DopingDepMobility ();

PMI_AnisotropyType AnisotropyType () const { return anisoType; }

 virtual void Compute_m
 (const double n, const double p,
 const double t, double& m) = 0;

 virtual void Compute_dmdn
 (const double n, const double p,
 const double t, double& dmdn) = 0;

 virtual void Compute_dmdp
 (const double n, const double p,
 const double t, double& dmdp) = 0;

 virtual void Compute_dmdt
 (const double n, const double p,
 const double t, double& dmdt) = 0;

virtual void Compute_dmdNa
 (const double n, const double p,
 const double t, double& dmdNa)

{ dmdNa=0.0; }

virtual void Compute_dmdNd
 (const double n, const double p,
 const double t, double& dmdNd)

{ dmdNd=0.0; }

};

Two virtual constructors are required for electron and hole mobilities:

typedef PMI_DopingDepMobility* new_PMI_DopingDepMobility_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_DopingDepMobility_func new_PMI_DopingDep_e_Mobility;
extern "C" new_PMI_DopingDepMobility_func new_PMI_DopingDep_h_Mobility;

dmdNa Derivative of with respect to the acceptor concentration [cm5V–1s–1]

dmdNd Derivative of with respect to the donor concentration [cm5V–1s–1]

µdop

µdop
15.550

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.10.3 Example: Masetti model

The built-in Masetti model (see Section 8.4.2 on page 15.177) can also be implemented as a PMI model:

#include "PMIModels.h"

class Masetti_DopingDepMobility : public PMI_DopingDepMobility {
protected:
 const double T0;
 double mumax, Exponent, mumin1, mumin2, mu1, Pc, Cr, Cs, alpha, beta;

public:
 Masetti_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
 ~Masetti_DopingDepMobility () {}

 void Compute_m
 (const double n, const double p,
 const double t, double& m);

 void Compute_dmdn
 (const double n, const double p,
 const double t, double& dmdn);

 void Compute_dmdp
 (const double n, const double p,
 const double t, double& dmdp);

 void Compute_dmdt
 (const double n, const double p,
 const double t, double& dmdt);
};

Masetti_DopingDepMobility::
Masetti_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
 PMI_DopingDepMobility (env, anisotype),
 T0 (300.0)
{
}

void Masetti_DopingDepMobility::
Compute_m (const double n, const double p,
 const double t, double& m)
{ const double mu_const = mumax * pow (t/T0, -Exponent);
 const double Ni = Max (ReadDoping (PMI_Donor) +
 ReadDoping (PMI_Acceptor), 1.0);
 m = mumin1 * exp (-Pc / Ni) +
 (mu_const - mumin2) / (1.0 + pow (Ni / Cr, alpha)) -
 mu1 / (1.0 + pow (Cs / Ni, beta));
}

void Masetti_DopingDepMobility::
Compute_dmdn (const double n, const double p,
 const double t, double& dmdn)
{ dmdn = 0.0;
}

void Masetti_DopingDepMobility::
Compute_dmdp (const double n, const double p,
 const double t, double& dmdp)
 15.551

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
{ dmdp = 0.0;
}

void Masetti_DopingDepMobility::
Compute_dmdt (const double n, const double p,
 const double t, double& dmdt)
{ const double Ni = Max (ReadDoping (PMI_Donor) +
 ReadDoping (PMI_Acceptor), 1.0);
 dmdt = mumax * (-Exponent/T0) * pow (t/T0, -Exponent - 1.0) /
 (1.0 + pow (Ni / Cr, alpha));
}

class Masetti_e_DopingDepMobility : public Masetti_DopingDepMobility {
public:
 Masetti_e_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
 ~Masetti_e_DopingDepMobility () {}
};

Masetti_e_DopingDepMobility::
Masetti_e_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
 Masetti_DopingDepMobility (env, anisotype)

{ // default values
 mumax = InitParameter ("mumax_e", 1417.0);
 Exponent = InitParameter ("Exponent_e", 2.5);
 mumin1 = InitParameter ("mumin1_e", 52.2);
 mumin2 = InitParameter ("mumin2_e", 52.2);
 mu1 = InitParameter ("mu1_e", 43.4);
 Pc = InitParameter ("Pc_e", 0.0);
 Cr = InitParameter ("Cr_e", 9.68e16);
 Cs = InitParameter ("Cs_e", 3.43e20);
 alpha = InitParameter ("alpha_e", 0.680);
 beta = InitParameter ("beta_e", 2.0);
}

class Masetti_h_DopingDepMobility : public Masetti_DopingDepMobility {
public:
 Masetti_h_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
 ~Masetti_h_DopingDepMobility () {}
};

Masetti_h_DopingDepMobility::
Masetti_h_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
 Masetti_DopingDepMobility (env, anisotype)

{ // default values
 mumax = InitParameter ("mumax_h", 470.5);
 Exponent = InitParameter ("Exponent_h", 2.2);
 mumin1 = InitParameter ("mumin1_h", 44.9);
 mumin2 = InitParameter ("mumin2_h", 0.0);
 mu1 = InitParameter ("mu1_h", 29.0);
 Pc = InitParameter ("Pc_h", 9.23e16);
 Cr = InitParameter ("Cr_h", 2.23e17);
 Cs = InitParameter ("Cs_h", 6.10e20);
 alpha = InitParameter ("alpha_h", 0.719);
 beta = InitParameter ("beta_h", 2.0);
}

extern "C"
15.552

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
PMI_DopingDepMobility* new_PMI_DopingDep_e_Mobility
 (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new Masetti_e_DopingDepMobility (env, anisotype);
}

extern "C"
PMI_DopingDepMobility* new_PMI_DopingDep_h_Mobility
 (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new Masetti_h_DopingDepMobility (env, anisotype);
}

33.11 Mobility degradation at interfaces
DESSIS uses Mathiessen’s rule:

(15.662)

to combine the constant and doping-dependent mobility , and the surface contribution (see
Section 8.5 on page 15.180). To express no mobility degradation, for example, in the bulk of a device, it is
necessary to set . To avoid numeric difficulties, the PMI requires the calculation of the inverse
mobility instead of .

As an additional precaution, DESSIS does not evaluate the PMI model if the normal electric field is very
small.

33.11.1 Dependencies

The mobility degradation at interfaces may depend on the following variables:

NOTE If DESSIS cannot determine the distance to the nearest interface, the value of is used.

NOTE The carrier temperature ct represents the electron temperature during the evaluation of the model
for electrons, and the hole temperature during the evaluation of the model for holes. The parameter
ct is only defined for hydrodynamic simulations. Otherwise, the value of is used.

dist Distance to nearest interface [cm]

pot Electrostatic potential [V]

enorm Normal electric field [Vcm–1]

t Lattice temperature [K]

n Electron density []

p Hole density []

ct Carrier temperature [K]

1
µ
--- 1

µdop
---------- 1

µenormal
------------------+=

µdop µenormal

µenormal ∞=
1 µenormal⁄ µenormal

F⊥

cm 3–

cm 3–

dist 1010=

ct 0=
 15.553

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
The PMI model must compute the following results:

In most cases, it is not necessary to compute the derivatives with respect to the dopant concentrations.
However, to model random dopant fluctuations (see Section 15.3.4 on page 15.294), the PMI model must
override the functions that compute the following values:

33.11.2 C++ interface

The enumeration type PMI_EnormalType describes the type of the normal electric field :

enum PMI_EnormalType {
PMI_EnormalToCurrent,
PMI_EnormalToInterface

};

The following base class is declared in the file PMIModels.h:

class PMI_EnormalMobility : public PMI_Dessis_Interface {

private:
 const PMI_EnormalType enormalType;

const PMI_AnisotropyType anisoType;

public:
 PMI_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

 virtual ~PMI_EnormalMobility ();

 PMI_EnormalType EnormalType () const { return enormalType; }
PMI_AnisotropyType AnisotropyType () const { return anisoType; }

 virtual void Compute_muinv
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& muinv) = 0;

 virtual void Compute_dmuinvdpot
 (const double dist, const double pot,

muinv Inverse of mobility [cm–2Vs]

dmuinvdpot Derivative of with respect to pot [cm–2s]

dmuinvdenorm Derivative of with respect to enorm [cm–1s]

dmuinvdn Derivative of with respect to n [cmVs]

dmuinvdp Derivative of with respect to p [cmVs]

dmuinvdt Derivative of with respect to t [cm–2VsK–1]

dmuinvdct Derivative of with respect to ct [cm–2VsK–1]

dmuinvdNa Derivative of with respect to the acceptor concentration
[cmVs]

dmuinvdNd Derivative of with respect to the donor concentration [cmVs]

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

1 µenormal⁄

F⊥
15.554

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdpot) = 0;

 virtual void Compute_dmuinvdenorm
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdenorm) = 0;

 virtual void Compute_dmuinvdn
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdn) = 0;

 virtual void Compute_dmuinvdp
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdp) = 0;

 virtual void Compute_dmuinvdt
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdt) = 0;

 virtual void Compute_dmuinvdct
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdct) = 0;

virtual void Compute_dmuinvdNa
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdNa)

{ dmuinvdNa=0.0; }

virtual void Compute_dmuinvdNd
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdNd)

{ dmuinvdNd=0.0; }

};

Two virtual constructors are required for electron and hole mobilities:

typedef PMI_EnormalMobility* new_PMI_EnormalMobility_func
 (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);
extern "C" new_PMI_EnormalMobility_func new_PMI_Enormal_e_Mobility;
extern "C" new_PMI_EnormalMobility_func new_PMI_Enormal_h_Mobility;

33.11.3 Example: Lombardi model

This example illustrates the implementation of a slightly simplified Lombardi model (see Section 8.5 on
page 15.180) using the PMI. The contribution due to acoustic phonon-scattering has the form:

(15.663)

where and is the total concentration of ionized impurities.

µac
B

F⊥

CNi
λ

F⊥
1 3⁄ T T0⁄()

------------------------------+=

T0 300 K= Ni ND NA+=
 15.555

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
The contribution due to surface roughness scattering is given by:

(15.664)

The mobilities and are combined according to Mathiessen’s rule with an additional damping factor:

(15.665)

where is the distance to the nearest semiconductor–insulator interface point:

#include "PMIModels.h"

class Lombardi_EnormalMobility : public PMI_EnormalMobility {

protected:
 const double T0;
 double B, C, lambda, delta, eta, l_crit;

public:
 Lombardi_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

~Lombardi_EnormalMobility ();

 void Compute_muinv
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& muinv);

 void Compute_dmuinvdpot
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdpot);

 void Compute_dmuinvdenorm
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdenorm);

 void Compute_dmuinvdn
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdn);

 void Compute_dmuinvdp
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdp);

 void Compute_dmuinvdt
 (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdt);

 void Compute_dmuinvdct
 (const double dist, const double pot,

µsr
F⊥

2

δ

F⊥
3

η
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

1–

=

µac µsr

1
µenormal
------------------ e

l
lcrit
-------–

1
µac
------- 1

µsr
-------+⎝ ⎠

⎛ ⎞⋅=

l

15.556

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdct);
};

Lombardi_EnormalMobility::
Lombardi_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
 PMI_EnormalMobility (env, type, anisotype),
 T0 (300.0)
{
}

Lombardi_EnormalMobility::
~Lombardi_EnormalMobility ()
{
}

void Lombardi_EnormalMobility::
Compute_muinv (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& muinv)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
 const double denom_ac_inv =
 B + pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0 / t;
 const double mu_ac_inv = enorm / denom_ac_inv;
 const double mu_sr_inv = enorm * enorm / delta + pow (enorm, 3.0) / eta;
 const double damping = exp (-dist/l_crit);
 muinv = damping * (mu_ac_inv + mu_sr_inv);
}

void Lombardi_EnormalMobility::
Compute_dmuinvdpot (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdpot)
{ dmuinvdpot = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdenorm (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdenorm)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
 const double denom_ac_inv =
 B + pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0 / t;
 const double dmu_ac_inv_denorm =
 (2.0 * B + denom_ac_inv) / (3.0 * denom_ac_inv * denom_ac_inv);
 const double mu_sr_inv_denorm =
 2.0 * enorm / delta + 3.0 * enorm * enorm / eta;
 const double damping = exp (-dist/l_crit);
 dmuinvdenorm = damping * (dmu_ac_inv_denorm + mu_sr_inv_denorm);
}

void Lombardi_EnormalMobility::
Compute_dmuinvdn (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdn)
{ dmuinvdn = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdp (const double dist, const double pot,
 15.557

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdp)
{ dmuinvdp = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdt (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdt)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
 const double factor = pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0;
 const double denom_ac_inv = B + factor / t;
 const double dmu_ac_inv_dt =
 enorm * factor / (denom_ac_inv * denom_ac_inv * t * t);
 const double damping = exp (-dist/l_crit);
 dmuinvdt = damping * dmu_ac_inv_dt;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdct (const double dist, const double pot,
 const double enorm, const double n, const double p,
 const double t, const double ct, double& dmuinvdct)
{ dmuinvdct = 0.0;
}

class Lombardi_e_EnormalMobility : public Lombardi_EnormalMobility {
public:
 Lombardi_e_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

 ~Lombardi_e_EnormalMobility () {}
};

Lombardi_e_EnormalMobility::
Lombardi_e_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
 Lombardi_EnormalMobility (env, type, anisotype)
{ // default values
 B = InitParameter ("B_e", 4.750e7);
 C = InitParameter ("C_e", 580.0);
 lambda = InitParameter ("lambda_e", 0.125);
 delta = InitParameter ("delta_e", 5.82e14);
 eta = InitParameter ("eta_e", 5.82e30);
 l_crit = InitParameter ("l_crit_e", 1.0e-6);
}

class Lombardi_h_EnormalMobility : public Lombardi_EnormalMobility {
public:
 Lombardi_h_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

 ~Lombardi_h_EnormalMobility () {}
};

Lombardi_h_EnormalMobility::
Lombardi_h_EnormalMobility (const PMI_Environment& env,
 const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
 Lombardi_EnormalMobility (env, type, anisotype)
{ // default values
15.558

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 B = InitParameter ("B_h", 9.925e6);
 C = InitParameter ("C_h", 2947.0);
 lambda = InitParameter ("lambda_h", 0.0317);
 delta = InitParameter ("delta_h", 2.0546e14);
 eta = InitParameter ("eta_h", 2.0546e30);
 l_crit = InitParameter ("l_crit_h", 1.0e-6);
}

extern "C"
PMI_EnormalMobility* new_PMI_Enormal_e_Mobility
 (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype)
{ return new Lombardi_e_EnormalMobility (env, type, anisotype);
}

extern "C"
PMI_EnormalMobility* new_PMI_Enormal_h_Mobility
 (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype)
{ return new Lombardi_h_EnormalMobility (env, type, anisotype);
}

33.12 High-field saturation model
The high-field saturation model computes the final mobility as a function of the low-field mobility
and the driving force F (see Section 8.8 on page 15.193).

33.12.1 Dependencies

The mobility computed by a high-field mobility model may depend on the following variables:

NOTE The carrier temperature ct represents the electron temperature during the evaluation of the model
for electrons, and the hole temperature during the evaluation of the model for holes. The parameter
ct is only defined for hydrodynamic simulations. Otherwise, the value of is used.

The PMI model must compute the following results:

pot Electrostatic potential [V]

t Lattice temperature [K]

n Electron density []

p Hole density []

ct Carrier temperature [K]

mulow Low-field mobility [cm2V–1s–1]

F Driving force [Vcm–1]

mu Mobility [cm2V–1s–1]

dmudpot Derivative of with respect to pot [cm2V–2s–1]

µ µlow

µ

cm 3–

cm 3–

µlow

ct 0=

µ

µ

 15.559

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
In most cases, it is not necessary to compute the derivatives with respect to the dopant concentrations.
However, to model random dopant fluctuations (see Section 15.3.4 on page 15.294), the PMI model must
override the functions that compute the following values:

33.12.2 C++ interface

The enumeration type PMI_HighFieldDrivingForce describes the driving force as specified in the DESSIS
command file:

enum PMI_HighFieldDrivingForce {
PMI_HighFieldParallelElectricField,
PMI_HighFieldGradQuasiFermi

};

The following base class is declared in the file PMIModels.h:

class PMI_HighFieldMobility : public PMI_Dessis_Interface {

private:
 const PMI_HighFieldDrivingForce drivingForce;

const PMI_AnisotropyType anisoType;

public:
 PMI_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

 virtual ~PMI_HighFieldMobility ();

 PMI_HighFieldDrivingForce HighFieldDrivingForce () const { return drivingForce; }
PMI_AnisotropyType AnisotropyType () const { return anisoType; }

 virtual void Compute_mu
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& mu) = 0;

 virtual void Compute_dmudpot
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudpot) = 0;

 virtual void Compute_dmudn

dmudn Derivative of with respect to n [cm5V–1s–1]

dmudp Derivative of with respect to p [cm5V–1s–1]

dmudt Derivative of with respect to t [cm2V–1s–1K–1]

dmudct Derivative of with respect to ct [cm2V–1s–1K–1]

dmudmulow Derivative of with respect to mulow (1)

dmudF Derivative of with respect to F [cm3V–2s–1]

dmudNa Derivative of with respect to the acceptor concentration [cm5V–1s–1]

dmudNd Derivative of with respect to the donor concentration [cm5V–1s–1]

µ

µ

µ

µ

µ

µ

µ

µ

15.560

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudn) = 0;

 virtual void Compute_dmudp
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudp) = 0;

 virtual void Compute_dmudt
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudt) = 0;

 virtual void Compute_dmudct
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudct) = 0;

 virtual void Compute_dmudmulow
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudmulow) = 0;

 virtual void Compute_dmudF
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudF) = 0;

virtual void Compute_dmudNa
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudNa)

{ dmudNa=0.0; }

 virtual void Compute_dmudNd
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudNd)

{ dmudNd=0.0; }
};

Two virtual constructors are required for electron and hole mobilities:

typedef PMI_HighFieldMobility* new_PMI_HighFieldMobility_func
(const PMI_Environment& env, const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_HighFieldMobility_func new_PMI_HighField_e_Mobility;
extern "C" new_PMI_HighFieldMobility_func new_PMI_HighField_h_Mobility;

33.12.3 Example: Canali model

This example presents the PMI implementation of the Canali model:

(15.666)µ
µlow

1
µlowF

vsat
--------------⎝ ⎠

⎛ ⎞
β

+
1 β⁄

--=
 15.561

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
where:

(15.667)

and:

(15.668)

The built-in Canali model is discussed in Section 8.8.2 on page 15.193.

#include "PMIModels.h"

class Canali_HighFieldMobility : public PMI_HighFieldMobility {

private:
 double beta, vsat, Fabs, val, valb, valb1, valb11b;
 void Compute_internal (const double t, const double mulow,
 const double F);

protected:
 const double T0;
 double beta0, betaexp, vsat0, vsatexp;

public:
 Canali_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

 ~Canali_HighFieldMobility ();

 void Compute_mu
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F,
 double& mu);

 void Compute_dmudpot
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudpot);

 void Compute_dmudn
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudn);

 void Compute_dmudp
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudp);

 void Compute_dmudt
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudt);

 void Compute_dmudct
 (const double pot, const double n,
 const double p, const double t, const double ct,

β β0
T
T0
-----⎝ ⎠

⎛ ⎞
βexp

=

vsat vsat0
T
T0
-----⎝ ⎠

⎛ ⎞
vsat exp,

=

15.562

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 const double mulow, const double F, double& dmudct);

 void Compute_dmudmulow
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudmulow);

 void Compute_dmudF
 (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudF);
};

void Canali_HighFieldMobility::
Compute_internal (const double t, const double mulow, const double F)
{ beta = beta0 * pow (t/T0, betaexp);
 vsat = vsat0 * pow (t/T0, -vsatexp);
 Fabs = fabs (F);
 val = mulow * Fabs / vsat;
 valb = pow (val, beta);
 valb1 = 1.0 + valb;
 valb11b = pow (valb1, 1.0/beta);
}

Canali_HighFieldMobility::
Canali_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
 PMI_HighFieldMobility (env, force, anisotype),
 T0 (300.0)
{
}

Canali_HighFieldMobility::
~Canali_HighFieldMobility ()
{
}

void Canali_HighFieldMobility::
Compute_mu (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& mu)
{ Compute_internal (t, mulow, F);
 mu = mulow / valb11b;
}

void Canali_HighFieldMobility::
Compute_dmudpot (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudpot)
{ dmudpot = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudn (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudn)
{ dmudn = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudp (const double pot, const double n,
 15.563

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudp)
{ dmudp = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudt (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudt)
{ Compute_internal (t, mulow, F);
 const double mu = mulow / valb11b;
 const double dmudbeta = mu * (log (valb1) / (beta*beta) -
 valb * log (val) / (beta * valb1));
 const double dmudvsat = (mu * valb) / (valb1 * vsat);
 const double dbetadt = beta * betaexp / t;
 const double dvsatdt = -vsat * vsatexp / t;
 dmudt = dmudbeta * dbetadt + dmudvsat * dvsatdt;
}

void Canali_HighFieldMobility::
Compute_dmudct (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudct)
{ dmudct = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudmulow (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudmulow)
{ Compute_internal (t, mulow, F);
 dmudmulow = 1.0 / (valb1 * valb11b);
}

void Canali_HighFieldMobility::
Compute_dmudF (const double pot, const double n,
 const double p, const double t, const double ct,
 const double mulow, const double F, double& dmudF)
{ Compute_internal (t, mulow, F);
 const double mu = mulow / valb11b;
 const double signF = (F >= 0.0) ? 1.0 : -1.0;
 dmudF = -mu * pow (mulow/vsat, beta) * pow (Fabs, beta-1.0) *
 signF / valb1;
}

class Canali_e_HighFieldMobility : public Canali_HighFieldMobility {
public:
 Canali_e_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

 ~Canali_e_HighFieldMobility () {}
};

Canali_e_HighFieldMobility::
Canali_e_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
 Canali_HighFieldMobility (env, force, anisotype)
{ // default values
 beta0 = InitParameter ("beta0_e", 1.109);
 betaexp = InitParameter ("betaexp_e", 0.66);
 vsat0 = InitParameter ("vsat0_e", 1.07e7);
15.564

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 vsatexp = InitParameter ("vsatexp_e", 0.87);
}

class Canali_h_HighFieldMobility : public Canali_HighFieldMobility {
public:
 Canali_h_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

 ~Canali_h_HighFieldMobility () {}
};

Canali_h_HighFieldMobility::
Canali_h_HighFieldMobility (const PMI_Environment& env,
 const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
 Canali_HighFieldMobility (env, force, anisotype)
{ // default values
 beta0 = InitParameter ("beta0_h", 1.213);
 betaexp = InitParameter ("betaexp_h", 0.17);
 vsat0 = InitParameter ("vsat0_h", 8.37e6);
 vsatexp = InitParameter ("vsatexp_h", 0.52);
}

extern "C"
PMI_HighFieldMobility* new_PMI_HighField_e_Mobility
 (const PMI_Environment& env, const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype)
{ return new Canali_e_HighFieldMobility (env, force, anisotype);
}

extern "C"
PMI_HighFieldMobility* new_PMI_HighField_h_Mobility
 (const PMI_Environment& env, const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype)
{ return new Canali_h_HighFieldMobility (env, force, anisotype);
}

33.13 Band gap
DESSIS provides a PMI to compute the energy band gap in a semiconductor. It can be specified in the
Physics section of the command file, for example:

Physics {
EffectiveIntrinsicDensity (

BandGap (pmi_model_name)
)

}

The default DESSIS band gap model is selected explicitly by the keyword Default:

Physics {
EffectiveIntrinsicDensity (

BandGap (Default)
)

}

Eg
 15.565

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
33.13.1 Dependencies

The band gap may depend on:

The PMI model must compute the following results:

33.13.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_BandGap : public PMI_Dessis_Interface {

public:
 PMI_BandGap (const PMI_Environment& env);
 virtual ~PMI_BandGap ();

 virtual void Compute_bg
 (const double t, double& bg) = 0;

 virtual void Compute_dbgdt
 (const double t, double& dbgdt) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_BandGap* new_PMI_BandGap_func
(const PMI_Environment& env);

extern "C" new_PMI_BandGap_func new_PMI_BandGap;

33.13.3 Example: Default band gap model

DESSIS uses the following default band gap model:

(15.669)

 denotes the band gap at 0 K.

#include "PMIModels.h"

class Default_BandGap : public PMI_BandGap {

private:
 double Eg0, alpha, beta;

public:
 Default_BandGap (const PMI_Environment& env);

t Lattice temperature [K]

bg Band gap [eV]

dbgdt Derivative of bg with respect to t [eVK–1]

Eg

Eg

Eg t() Eg 0() αt2

t β+
-----------–=

Eg 0()
15.566

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 ~Default_BandGap ();

 void Compute_bg (const double t, double& bg);

 void Compute_dbgdt (const double t, double& dbgdt);
};

Default_BandGap::
Default_BandGap (const PMI_Environment& env) :
 PMI_BandGap (env)
{ Eg0 = InitParameter ("Eg0", 1.16964);
 alpha = InitParameter ("alpha", 4.73e-4);
 beta = InitParameter ("beta", 636);
}

Default_BandGap::
~Default_BandGap ()
{
}

void Default_BandGap::
Compute_bg (const double t, double& bg)
{ bg = Eg0 - alpha * t * t / (t + beta);
}

void Default_BandGap::
Compute_dbgdt (const double t, double& dbgdt)
{ dbgdt = - alpha * t * (t + 2.0 * beta) / ((t + beta) * (t + beta));
}
extern "C"
PMI_BandGap* new_PMI_BandGap
 (const PMI_Environment& env)
{ return new Default_BandGap (env);
}

33.14 Band-gap narrowing
DESSIS provides a PMI to compute band-gap narrowing (see Section 5.2 on page 15.151). A user model is
activated with the keyword EffectiveIntrinsicDensity in the Physics section of the command file:

Physics {
EffectiveIntrinsicDensity (pmi_model_name)

}

33.14.1 Dependencies

A PMI band-gap narrowing model has no explicit dependencies. However, it can depend on doping
concentrations through the run-time support.

The PMI model must compute:

bgn Band-gap narrowing [eV]∆Eg
 15.567

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
In most cases, it is not necessary to compute the derivatives with respect to the dopant concentrations.
However, to model random dopant fluctuations (see Section 15.3.4 on page 15.294), the PMI model must
override the functions that compute the following values:

33.14.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_BandGapNarrowing : public PMI_Dessis_Interface {
public:
 PMI_BandGapNarrowing (const PMI_Environment& env);

virtual ~PMI_BandGapNarrowing ();
virtual void Compute_bgn

 (double& bgn) = 0;
virtual void Compute_dbgndNa

 (double& dbgndNa){ dbgndNa=0.0; }
virtual void Compute_dbgndNd

 (double& dbgndNd){ dbgndNd=0.0; }
};

The following virtual constructor must be implemented:

typedef PMI_BandGapNarrowing* new_PMI_BandGapNarrowing_func
(const PMI_Environment& env);

extern "C" new_PMI_BandGapNarrowing_func new_PMI_BandGapNarrowing;

33.14.3 Example: Default model

The default band-gap narrowing model in DESSIS (Bennett Wilson) is given by:

(15.670)

 denotes the total doping concentration (see Section 5.2 on page 15.151).

This model can be implemented as a PMI model as follows:

#include "PMIModels.h"

class Bennett_BandGapNarrowing : public PMI_BandGapNarrowing {

private:
 double Ebgn, Nref;

public:
 Bennett_BandGapNarrowing (const PMI_Environment& env);

 ~Bennett_BandGapNarrowing ();

dbgndNa Derivative of with respect to the acceptor concentration [cm3eV]

dbgndNd Derivative of with respect to the donor concentration [cm3eV]

∆Eg

∆Eg

∆Eg
Ebgn

Ni
Nref
---------log

2
, Ni Nref,>

0, Ni Nref.≤⎩
⎪
⎨
⎪
⎧

=

Ni NA ND+=
15.568

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 void Compute_bgn (double& bgn);

};

Bennett_BandGapNarrowing::
Bennett_BandGapNarrowing (const PMI_Environment& env) :
 PMI_BandGapNarrowing (env)
{ Ebgn = InitParameter ("Ebgn", 6.84e-3);
 Nref = InitParameter ("Nref", 3.162e18);
}

Bennett_BandGapNarrowing::
~Bennett_BandGapNarrowing ()
{
}

void Bennett_BandGapNarrowing::
Compute_bgn (double& bgn)
{ const double Na = ReadDoping (PMI_Acceptor);
 const double Nd = ReadDoping (PMI_Donor);
 const double Ni = Na + Nd;
 if (Ni > Nref) {
 const double tmp = log (Ni / Nref);
 bgn = Ebgn * tmp * tmp;
 } else {
 bgn = 0.0;
 }
}

extern "C"
PMI_BandGapNarrowing* new_PMI_BandGapNarrowing
 (const PMI_Environment& env)
{ return new Bennett_BandGapNarrowing (env);
}

33.15 Apparent band-edge shift
The apparent band-edge shift is a quantity similar to band-gap narrowing. In contrast to band-gap
narrowing, the apparent band-edge shift can depend on the solution variables (electron and hole densities,
lattice temperature, and electric field). Conversely, the apparent band-edge shift does not take effect in all
situations where a real band-edge shift takes effect (this is why the band-edge shift is called ‘apparent’).

Implementationwise, the apparent band-edge shift is an extension of the density gradient model
(see Section 7.4 on page 15.172). For the PMI model, this implies:

DESSIS applies the apparent band-edge shift everywhere where it applies quantization corrections.

By default, the apparent band-edge shift that DESSIS computes is not equal to , but contains
contributions from quantization. To remove them, set (see Section 7.4).

Apart from a specification in the Physics section, it is necessary to specify additional equations in the Solve
section (see Section 7.4.2 on page 15.173).

At contacts, boundary conditions override the actual model. For example, at Ohmic contacts, the apparent
band-edge shift is always zero.

ΛPMI

ΛPMI

ΛPMI
γ 0=
 15.569

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
To avoid problems with the boundary conditions, formulate the apparent band-edge shift as a correction to the
usual (only doping-dependent) band-gap narrowing model and ensure that this correction vanishes at Ohmic
contacts (see Section 4.5.1.1 on page 15.138).

The same models for can be used for the shift of the conduction and valence bands. A positive value of
 means that the band shifts outwards, away from midgap (therefore, the band gap widens).

33.15.1 Dependencies

The apparent band-edge shift may depend on:

The PMI model must compute the following values:

33.15.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_ApparentBandEdgeShift : public PMI_Dessis_Interface {

public:
PMI_ApparentBandEdgeShift (const PMI_Environment& env);
virtual ~PMI_ApparentBandEdgeShift ();

virtual void Compute_shift
(const double n, const double p,
const double t, const double f,
double& shift) = 0;

virtual void Compute_dshiftdn
(const double n, const double p,
const double t, const double f,
double& dshiftdn) = 0;

virtual void Compute_dshiftdp
(const double n, const double p,
const double t, const double f,
double& dshiftdp) = 0;

n Electron density []

p Hole density []

t Lattice temperature []

F Absolute value of the electric field []

shift Apparent band-edge shift []

dshiftdn Derivative of with respect to n []

dshiftdp Derivative of with respect to p []

dshiftdt Derivative of with respect to t []

dshiftdf Derivative of with respect to f []

ΛPMI
ΛPMI

ΛPMI

cm 3–

cm 3–

K

Vcm 1–

ΛPMI eV

ΛPMI eVcm3

ΛPMI eVcm3

ΛPMI eVK 1–

ΛPMI eVcmV 1–
15.570

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
virtual void Compute_dshiftdt
(const double n, const double p,
const double t, const double f,
double& dshiftdt) = 0;

virtual void Compute_dshiftdf
(const double n, const double p,
const double t, const double f,
double& dshiftdf) = 0;

};

The following virtual constructor must be implemented:

typedef PMI_ApparentBandEdgeShift* new_PMI_ApparentBandEdgeShift_func
(const PMI_Environment& env);

extern "C" new_PMI_ApparentBandEdgeShift_func new_PMI_ApparentBandEdgeShift;

33.16 Electron affinity
The electron affinity , that is, the energy separation between the conduction band and vacuum level, can be
specified by using a PMI. The syntax in the DESSIS command file is:

Physics {
Affinity (pmi_model_name)

}

The default DESSIS affinity model can be selected explicitly by the keyword Default:

Physics {
Affinity (Default)

}

33.16.1 Dependencies

The electron affinity may depend on:

The PMI model must compute:

33.16.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_Affinity : public PMI_Dessis_Interface {

public:
 PMI_Affinity (const PMI_Environment& env);
 virtual ~PMI_Affinity ();

t Lattice temperature [K]

affinity Electron affinity [eV]

affinitydt Derivative of affinity with respect to t [eVK–1]

χ

χ

χ

 15.571

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 virtual void Compute_affinity
 (const double t, double& affinity) = 0;

 virtual void Compute_daffinitydt
 (const double t, double& daffinitydt) = 0;
};

The prototype for the virtual constructor is:

typedef PMI_Affinity* new_PMI_Affinity_func
(const PMI_Environment& env);

extern "C" new_PMI_Affinity_func new_PMI_Affinity;

33.16.3 Example: Default affinity model

By default, DESSIS uses this formula to compute :

(15.671)

 denotes the affinity at 0 K.

#include "PMIModels.h"

class Default_Affinity : public PMI_Affinity {

private:
 double Affinity0, alpha, beta;

public:
 Default_Affinity (const PMI_Environment& env);

 ~Default_Affinity ();

 void Compute_affinity (const double t, double& affinity);

 void Compute_daffinitydt (const double t, double& daffinitydt);

};

Default_Affinity::
Default_Affinity (const PMI_Environment& env) :
 PMI_Affinity (env)
{ Affinity0 = InitParameter ("Affinity0", 4.05);
 alpha = InitParameter ("alpha", 4.73e-4);
 beta = InitParameter ("beta", 636);
}

Default_Affinity::
~Default_Affinity ()
{
}

void Default_Affinity::
Compute_affinity (const double t, double& affinity)
{ affinity = Affinity0 + 0.5 * alpha * t * t / (t + beta);
}

void Default_Affinity::

χ

χ t() χ 0() 0.5 αt2

t β+
-----------+=

χ 0()
15.572

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
Compute_daffinitydt (const double t, double& daffinitydt)
{ daffinitydt = 0.5 * alpha * t * (t + 2.0 * beta) /
 ((t + beta) * (t + beta));
}
extern "C"
PMI_Affinity* new_PMI_Affinity
 (const PMI_Environment& env)
{ return new Default_Affinity (env);
}

33.17 Effective mass
DESSIS provides a PMI to compute the effective mass of electrons and holes. The effective mass is always
expressed as a multiple of the electron mass in vacuum. The name of the PMI model must appear in the Physics
section of the command file:

Physics {
EffectiveMass (pmi_model_name)

}

33.17.1 Dependencies

The relative effective mass may depend on the following variables:

The PMI model must compute the following results:

33.17.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_EffectiveMass : public PMI_Dessis_Interface {

public:
 PMI_EffectiveMass (const PMI_Environment& env);
 virtual ~PMI_EffectiveMass ();

 virtual void Compute_m
 (const double t, const double bg, double& m) = 0;

 virtual void Compute_dmdt
 (const double t, const double bg, double& dmdt) = 0;

t Lattice temperature [K]

bg Band gap [eV]

m Relative effective mass (1)

dmdt Derivative of m with respect to t [K–1]

dmdbg Derivative of m with respect to bg [eV–1]
 15.573

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
virtual void Compute_dmdbg
(const double t, const double bg, double& dmdbg) = 0;
};

Two virtual constructors are necessary to compute the effective mass of electrons and holes:

typedef PMI_EffectiveMass* new_PMI_EffectiveMass_func
(const PMI_Environment& env);

extern "C" new_PMI_EffectiveMass_func new_PMI_e_EffectiveMass;
extern "C" new_PMI_EffectiveMass_func new_PMI_h_EffectiveMass;

33.17.3 Example: Linear effective mass model

A simple, linear effective mass model is given by:

(15.672)

 denotes the mass at 300 K. It can be implemented as follows:

#include "PMIModels.h"

class Linear_EffectiveMass : public PMI_EffectiveMass {

protected:
 double mass_300, dmass_dt;

public:
 Linear_EffectiveMass (const PMI_Environment& env);

 ~Linear_EffectiveMass ();

 void Compute_m (const double t, const double bg, double& m);

 void Compute_dmdt (const double t, const double bg, double& dmdt);

 void Compute_dmdbg (const double t, const double bg, double& dmdbg);
};

Linear_EffectiveMass::
Linear_EffectiveMass (const PMI_Environment& env) :
 PMI_EffectiveMass (env)
{
}

Linear_EffectiveMass::
~Linear_EffectiveMass ()
{
}

void Linear_EffectiveMass::
Compute_m (const double t, const double bg, double& m)
{ m = mass_300 + dmass_dt * (t - 300.0);
}

void Linear_EffectiveMass::
Compute_dmdt (const double t, const double bg, double& dmdt)
{ dmdt = dmass_dt;
}

m m300
md
td

------- t 300–()+=

m300
15.574

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
void Linear_EffectiveMass::
Compute_dmdbg (const double t, const double bg, double& dmdbg)
{ dmdbg = 0.0;
}

class Linear_e_EffectiveMass : public Linear_EffectiveMass {

public:
 Linear_e_EffectiveMass (const PMI_Environment& env);

 ~Linear_e_EffectiveMass () {}

};

Linear_e_EffectiveMass::
Linear_e_EffectiveMass (const PMI_Environment& env) :
 Linear_EffectiveMass (env)
{ mass_300 = InitParameter ("mass_e_300", 1.09);
 dmass_dt = InitParameter ("dmass_e_dt", 1.6e-4);
}

class Linear_h_EffectiveMass : public Linear_EffectiveMass {

public:
 Linear_h_EffectiveMass (const PMI_Environment& env);

 ~Linear_h_EffectiveMass () {}

};

Linear_h_EffectiveMass::
Linear_h_EffectiveMass (const PMI_Environment& env) :
 Linear_EffectiveMass (env)
{ mass_300 = InitParameter ("mass_h_300", 1.15);
 dmass_dt = InitParameter ("dmass_h_dt", 9.2e-4);
}

extern "C"
PMI_EffectiveMass* new_PMI_e_EffectiveMass
 (const PMI_Environment& env)
{ return new Linear_e_EffectiveMass (env);
}

extern "C"
PMI_EffectiveMass* new_PMI_h_EffectiveMass
 (const PMI_Environment& env)
{ return new Linear_h_EffectiveMass (env);
}

33.18 Energy relaxation times
The model for the energy relaxation times in (Eq. 15.43) and (Eq. 15.44) can be specified in the Physics
section of the DESSIS command file. The four available possibilities are:

Physics {
EnergyRelaxationTimes (

formula
constant

τ

 15.575

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
irrational
pmi_model_name

)
}

These entries have the following meaning:

33.18.1 Dependencies

The energy relaxation time may depend on the variable:

NOTE The parameter ct represents the electron temperature during the calculation of and the hole
temperature during the calculation of .

The PMI model must compute the following results:

33.18.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_EnergyRelaxationTime : public PMI_Dessis_Interface {

public:
 PMI_EnergyRelaxationTime (const PMI_Environment& env);

 virtual ~PMI_EnergyRelaxationTime ();

 virtual void Compute_tau
 (const double ct, double& tau) = 0;

 virtual void Compute_dtaudct
 (const double ct, double& dtaudct) = 0;

};

The following two virtual constructors must be implemented for electron and hole energy relaxation times:

typedef PMI_EnergyRelaxationTime* new_PMI_EnergyRelaxationTime_func
(const PMI_Environment& env);

formula Use the value of formula in the DESSIS parameter file (default)

constant Use constant energy relaxation times (formula = 1)

irrational Use the ratio of two irrational polynomials (formula = 2)

pmi_model_name Call a PMI model to compute the energy relaxation times

ct Carrier temperature [K]

tau Energy relaxation time [s]

dtaudct Derivative of with respect to ct [sK–1]

τ

τn
τp

τ

τ

15.576

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
extern "C" new_PMI_EnergyRelaxationTime_func new_PMI_e_EnergyRelaxationTime;
extern "C" new_PMI_EnergyRelaxationTime_func new_PMI_h_EnergyRelaxationTime;

33.18.3 Example: Constant energy relaxation times

The following C++ code implements constant energy relaxation times:

#include "PMIModels.h"

class Const_EnergyRelaxationTime : public PMI_EnergyRelaxationTime {

protected:
 double tau_const;

public:
 Const_EnergyRelaxationTime (const PMI_Environment& env);

 ~Const_EnergyRelaxationTime ();

 void Compute_tau
 (const double ct, double& tau);

 void Compute_dtaudct
 (const double ct, double& dtaudct);

};

Const_EnergyRelaxationTime::
Const_EnergyRelaxationTime (const PMI_Environment& env) :
 PMI_EnergyRelaxationTime (env)
{
}

Const_EnergyRelaxationTime::
~Const_EnergyRelaxationTime ()
{
}

void Const_EnergyRelaxationTime::
Compute_tau (const double ct, double& tau)
{ tau = tau_const;
}

void Const_EnergyRelaxationTime::
Compute_dtaudct (const double ct, double& dtaudct)
{ dtaudct = 0.0;
}

class Const_e_EnergyRelaxationTime : public Const_EnergyRelaxationTime {

public:
 Const_e_EnergyRelaxationTime (const PMI_Environment& env);

 ~Const_e_EnergyRelaxationTime () {}

};

Const_e_EnergyRelaxationTime::
Const_e_EnergyRelaxationTime (const PMI_Environment& env) :
 Const_EnergyRelaxationTime (env)
{ tau_const = InitParameter ("tau_const_e", 0.3e-12);
 15.577

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
}

class Const_h_EnergyRelaxationTime : public Const_EnergyRelaxationTime {

public:
 Const_h_EnergyRelaxationTime (const PMI_Environment& env);

 ~Const_h_EnergyRelaxationTime () {}

};

Const_h_EnergyRelaxationTime::
Const_h_EnergyRelaxationTime (const PMI_Environment& env) :
 Const_EnergyRelaxationTime (env)

{ tau_const = InitParameter ("tau_const_h", 0.25e-12);
}

extern "C"
PMI_EnergyRelaxationTime* new_PMI_e_EnergyRelaxationTime
 (const PMI_Environment& env)
{ return new Const_e_EnergyRelaxationTime (env);
}

extern "C"
PMI_EnergyRelaxationTime* new_PMI_h_EnergyRelaxationTime
 (const PMI_Environment& env)
{ return new Const_h_EnergyRelaxationTime (env);
}

33.19 Lifetimes
This PMI provides access to the electron and hole lifetimes, and , in the SRH recombination (see
(Eq. 15.184)) and the coupled defect level (CDL) recombination (see (Eq. 15.212)). In the DESSIS command
file, the names of the lifetime models are given as arguments to the SRH or CDL keywords:

Physics {
Recombination (SRH (pmi_model_name))

}

or:

Physics {
Recombination (CDL (pmi_model_name))

}

NOTE A PMI model overrides all other keywords in an SRH or a CDL statement.

33.19.1 Dependencies

A PMI lifetime model may depend on the variable:

t Lattice temperature [K]

τn τp
15.578

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
It must compute the following results:

33.19.2 C++ interface

The enumeration type PMI_LifetimeModel describes where the PMI lifetime is used:

enum PMI_LifetimeModel {
PMI_SRH,
PMI_CDL1,
PMI_CDL2

};

The following base class is declared in the file PMIModels.h:

class PMI_Lifetime : public PMI_Dessis_Interface {

private:
 const PMI_LifetimeModel lifetimeModel;

public:
 PMI_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model);

 virtual ~PMI_Lifetime ();

 PMI_LifetimeModel LifetimeModel () const { return lifetimeModel; }

 virtual void Compute_tau
 (const double t, double& tau) = 0;

 virtual void Compute_dtaudt
 (const double t, double& dtaudt) = 0;
};

Two virtual constructors must be implemented for electron and hole lifetimes:

typedef PMI_Lifetime* new_PMI_Lifetime_func
(const PMI_Environment& env, const PMI_LifetimeModel model);

extern "C" new_PMI_Lifetime_func new_PMI_e_Lifetime;
extern "C" new_PMI_Lifetime_func new_PMI_h_Lifetime;

33.19.3 Example: Doping- and temperature-dependent lifetimes

The following example combines doping-dependent lifetimes (Scharfetter) and temperature dependence
(power law):

(15.673)

tau Lifetime [s]

dtaudt Derivative of with respect to lattice temperature [sK–1]

τ

τ

τ τmin
τmax τmin–

1
NA ND+

Nref
---------------------⎝ ⎠

⎛ ⎞
γ

+
--------------------------------------+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

T
T0
-----⎝ ⎠

⎛ ⎞ α
=

 15.579

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 and denote acceptor and donor concentrations, respectively, and :

#include "PMIModels.h"

class Scharfetter_Lifetime : public PMI_Lifetime {

protected:
 const double T0;
 double taumin, taumax, Nref, gamma, Talpha;

public:
 Scharfetter_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model);

 ~Scharfetter_Lifetime ();
 void Compute_tau
 (const double t, double& tau);

 void Compute_dtaudt
 (const double t, double& dtaudt);

};

Scharfetter_Lifetime::
Scharfetter_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model) :
 PMI_Lifetime (env, model),
 T0 (300.0)
{
}

Scharfetter_Lifetime::
~Scharfetter_Lifetime ()
{
}

void Scharfetter_Lifetime::
Compute_tau (const double t, double& tau)
{ const double Ni = ReadDoping (PMI_Acceptor) + ReadDoping (PMI_Donor);
 tau = taumin + (taumax - taumin) / (1.0 + pow (Ni/Nref, gamma));
 tau *= pow (t/T0, Talpha);
}

void Scharfetter_Lifetime::
Compute_dtaudt (const double t, double& dtaudt)
{ const double Ni = ReadDoping (PMI_Acceptor) + ReadDoping (PMI_Donor);
 dtaudt = taumin + (taumax - taumin) / (1.0 + pow (Ni/Nref, gamma));
 dtaudt *= (Talpha/T0) * pow (t/T0, Talpha-1.0);
}

class Scharfetter_e_Lifetime : public Scharfetter_Lifetime {

public:
 Scharfetter_e_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model);

 ~Scharfetter_e_Lifetime () {}

};
Scharfetter_e_Lifetime::
Scharfetter_e_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model) :
 Scharfetter_Lifetime (env, model)

NA ND T0 300 K=
15.580

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
{ taumin = InitParameter ("taumin_e", 0.0);
 taumax = InitParameter ("taumax_e", 1.0e-5);
 Nref = InitParameter ("Nref_e", 1.0e16);
 gamma = InitParameter ("gamma_e", 1.0);
 Talpha = InitParameter ("Talpha_e", -1.5);
}

class Scharfetter_h_Lifetime : public Scharfetter_Lifetime {

public:
 Scharfetter_h_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model);

 ~Scharfetter_h_Lifetime () {}

};

Scharfetter_h_Lifetime::
Scharfetter_h_Lifetime (const PMI_Environment& env,
 const PMI_LifetimeModel model) :
 Scharfetter_Lifetime (env, model)

{ taumin = InitParameter ("taumin_h", 0.0);
 taumax = InitParameter ("taumax_h", 3.0e-6);
 Nref = InitParameter ("Nref_h", 1.0e16);
 gamma = InitParameter ("gamma_h", 1.0);
 Talpha = InitParameter ("Talpha_h", -1.5);
}

extern "C"
PMI_Lifetime* new_PMI_e_Lifetime
 (const PMI_Environment& env, const PMI_LifetimeModel model)
{ return new Scharfetter_e_Lifetime (env, model);
}

extern "C"
PMI_Lifetime* new_PMI_h_Lifetime
 (const PMI_Environment& env, const PMI_LifetimeModel model)
{ return new Scharfetter_h_Lifetime (env, model);
}

33.20 Thermal conductivity
The PMI provides access to the lattice thermal conductivity in (Eq. 15.25). The model used for the
evaluation of can be specified within the Physics section of the DESSIS command file. The following
possibilities are available:

Physics {
ThermalConductivity (

formula
TemperatureDependent Conductivity
Constant Conductivity
TemperatureDependent Resistivity
Constant Resistivity
pmi_model_name

)
}

κ
κ

 15.581

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
These entries have the following meaning:

The PMI supports anisotropic thermal conductivity, and the model can be evaluated along different
crystallographic axes. The enumeration type PMI_AnisotropyType as defined in Section 33.9 on page 15.549
determines the axis. The default is isotropic thermal conductivity. If anisotropic thermal conductivity is
activated in the DESSIS command file, the PMI class PMI_ThermalConductivity is also instantiated in the
anisotropic direction.

33.20.1 Dependencies

The thermal conductivity may depend on the variable:

The PMI model must compute the following results:

33.20.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_ThermalConductivity : public PMI_Dessis_Interface {

public:
 PMI_ThermalConductivity (const PMI_Environment& env, const PMI_AnisotropyType anisotype);

 virtual ~PMI_ThermalConductivity ();

PMI_AnisotropyType AnisotropyType () const { return anisoType; }

virtual void Compute_kappa
 (const double t, double& kappa) = 0;

 virtual void Compute_dkappadt
 (const double t, double& dkappadt) = 0;

};

formula Use the built-in strategy (default)

TemperatureDependent Conductivity Use (Eq. 15.528) (formula = 1)

Constant Conductivity Use constant conductivity (formula = 1)

TemperatureDependent Resistivity Use temperature-dependent resistivity (formula = 0)

Constant Resistivity Use constant resistivity (formula = 0)

pmi_model_name Call a PMI model to compute the thermal conductivity

t Lattice temperature [K]

kappa Thermal conductivity [Wcm–1K–1]

dkappadt derivative of with respect to t [Wcm–1K–2]

κ

κ

κ

15.582

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
The following virtual constructor must be implemented:

typedef PMI_ThermalConductivity* new_PMI_ThermalConductivity_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_ThermalConductivity_func
new_PMI_ThermalConductivity;

33.20.3 Example: Temperature-dependent thermal conductivity

The following C++ code implements the temperature-dependent thermal conductivity:

(15.674)

as given in (Eq. 15.528):

#include "PMIModels.h"

class TempDep_ThermalConductivity : public PMI_ThermalConductivity {
private:
 double a, b, c;

public:
 TempDep_ThermalConductivity (const PMI_Environment& env, const PMI_AnisotropyType anisotype);
 ~TempDep_ThermalConductivity ();

 void Compute_kappa
 (const double t, double& kappa);

 void Compute_dkappadt
 (const double t, double& dkappadt);
};

TempDep_ThermalConductivity::
TempDep_ThermalConductivity (const PMI_Environment& env, const PMI_AnisotropyType anisotype) :
 PMI_ThermalConductivity (env, anisotype)
{ // default values
 a = InitParameter ("a", 0.03);
 b = InitParameter ("b", 1.56e-03);
 c = InitParameter ("c", 1.65e-06);
}

TempDep_ThermalConductivity::
~TempDep_ThermalConductivity ()
{
}

void TempDep_ThermalConductivity::
Compute_kappa (const double t, double& kappa)
{ kappa = 1.0 / (a + b*t + c*t*t);
}

void TempDep_ThermalConductivity::
Compute_dkappadt (const double t, double& dkappadt)
{ const double kappa = 1.0 / (a + b*t + c*t*t);
 dkappadt = -kappa * kappa * (b + 2.0*c*t);
}

extern "C"

κ T() 1
a bT cT2+ +
-------------------------------=
 15.583

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
PMI_ThermalConductivity* new_PMI_ThermalConductivity
 (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new TempDep_ThermalConductivity (env, anisotype);
}

33.21 Heat capacity
The model for lattice heat capacity in (Eq. 15.25) can be specified in the Physics section of the DESSIS
command file. The following two possibilities are available:

Physics {
HeatCapacity (

constant
pmi_model_name

)
}

These entries have the following meaning:

33.21.1 Dependencies

The heat capacity may depend on the variable:

The PMI model must compute the following results:

33.21.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_HeatCapacity : public PMI_Dessis_Interface {

public:
 PMI_HeatCapacity (const PMI_Environment& env);

 virtual ~PMI_HeatCapacity ();

 virtual void Compute_c
 (const double t, double& c) = 0;

constant Use constant heat capacity (default)

pmi_model_name Call a PMI model to compute the heat capacity

t Lattice temperature [K]

c Heat capacity [JK–1cm–3]

dcdt Derivative of with respect to t [JK–2cm–3]

c

c

c

15.584

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
virtual void Compute_dcdt
 (const double t, double& dcdt) = 0

};

The following virtual constructor must be implemented:

typedef PMI_HeatCapacity* new_PMI_HeatCapacity_func
(const PMI_Environment& env);

extern "C" new_PMI_HeatCapacity_func new_PMI_HeatCapacity;

33.21.3 Example: Constant heat capacity

The following C++ code implements constant heat capacity:

#include "PMIModels.h"

class Constant_HeatCapacity : public PMI_HeatCapacity {
private:
 double cv;

public:
 Constant_HeatCapacity (const PMI_Environment& env);
 ~Constant_HeatCapacity ();

 void Compute_c
 (const double t, double& c);

 void Compute_dcdt
 (const double t, double& dcdt);
};

Constant_HeatCapacity::
Constant_HeatCapacity (const PMI_Environment& env) :
 PMI_HeatCapacity (env)
{ // default values
 cv = InitParameter ("cv", 1.63);
}

Constant_HeatCapacity::
~Constant_HeatCapacity ()
{
}

void Constant_HeatCapacity::
Compute_c (const double t, double& c)
{ c = cv;
}

void Constant_HeatCapacity::
Compute_dcdt (const double t, double& dcdt)
{ dcdt = 0.0;
}

extern "C"
PMI_HeatCapacity* new_PMI_HeatCapacity
 (const PMI_Environment& env)
{ return new Constant_HeatCapacity (env);
}

 15.585

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
33.22 Optical absorption
The optical absorption coefficient in the photo generation can be accessed through a PMI. For each optical
beam, a model can be specified in the semabs section of the DESSIS command file:

Physics {
OptBeam (

(...
semabs (model = pmi_model_name)
...
)

)
}

33.22.1 Dependencies

The optical absorption coefficient may depend on the following variables:

The PMI model must compute the following result:

33.22.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_Absorption : public PMI_Dessis_Interface {

public:
 PMI_Absorption (const PMI_Environment& env);
 virtual ~PMI_Absorption ();

 virtual void Compute_alpha
 (const double energy, const double t, double& alpha) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Absorption* new_PMI_Absorption_func
(const PMI_Environment& env);

extern "C" new_PMI_Absorption_func new_PMI_Absorption;

energy Optical wave energy [eV]

temperature Temperature T [K]

alpha Optical absorption coefficient [cm–1]

α

α

Eph

α

15.586

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.22.3 Example: Temperature-dependent absorption model

The following code computes a temperature-dependent value for the absorption coefficient . This example
is for illustration purposes only and does not pertain to any physical model:

#include "PMIModels.h"

class TempDep_Absorption : public PMI_Absorption {

private:
 double Alpha;

public:
 TempDep_Absorption (const PMI_Environment& env);

 ~TempDep_Absorption ();

 void Compute_alpha (const double energy, const double t, double& alpha);

};

TempDep_Absorption::
TempDep_Absorption (const PMI_Environment& env) :
 PMI_Absorption (env)
{ Alpha = InitParameter ("Alpha", 1e5);
}

TempDep_Absorption::
~TempDep_Absorption ()
{
}

void TempDep_Absorption::
Compute_alpha (const double energy, const double t, double& alpha)
{ alpha = Alpha*(600 - t)/300;
}

extern "C"
PMI_Absorption* new_PMI_Absorption
 (const PMI_Environment& env)
{ return new TempDep_Absorption (env);
}

33.23 Refractive index
The refractive index, n, in the photo generation can be accessed through a PMI. For each optical beam, a
model can be specified in the RefractiveIndex section of the DESSIS command file:

Physics {
RayTrace(

(...
RefractiveIndex(model = pmi_model_name)
...

)
)

}

α

 15.587

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
33.23.1 Dependencies

The refractive index, n, may depend on the following variables:

The PMI model must compute the following result:

33.23.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_RefractiveIndex : public PMI_Dessis_Interface {

public:
 PMI_RefractiveIndex (const PMI_Environment& env);

virtual ~PMI_RefractiveIndex ();

virtual void Compute_Refract (const double energy, const double t, double& Refract) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_RefractiveIndex* new_PMI_RefractiveIndex_func
(const PMI_Environment& env);

extern "C" new_PMI_RefractiveIndex_func new_PMI_RefractiveIndex;

33.23.3 Example: Temperature-dependent refractive index

The following code computes a simple temperature-dependent model for the refractive index:

#include "PMIModels.h"

class TempDep_RefractiveIndex : public PMI_RefractiveIndex {

private:
 double RIndex;

public:
 TempDep_RefractiveIndex (const PMI_Environment& env);
 ~TempDep_RefractiveIndex ();

void Compute_Refract (const double energy, const double temp, double& out);
};

TempDep_RefractiveIndex::
TempDep_RefractiveIndex (const PMI_Environment& env) :
 PMI_RefractiveIndex (env)
{ RIndex = InitParameter ("RIndex", 42);
}

TempDep_RefractiveIndex::
~TempDep_RefractiveIndex ()

energy Optical wave energy [eV]

temperature Temperature T [K]

Refract Refractive index n (1)

Eph
15.588

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
{
}

void TempDep_RefractiveIndex::
Compute_Refract (const double energy, const double temp, double& Refract)
{ Refract = 4*(1 + (temp-300)/100);
}

extern "C"
PMI_RefractiveIndex* new_PMI_RefractiveIndex (const PMI_Environment& env)
{ return new TempDep_RefractiveIndex (env);
}

33.24 Stress
DESSIS supports a PMI for mechanical stress (see Chapter 22 on page 15.353). The name of the PMI model
must appear in the Piezo section of the command file:

Physics {
Piezo (

Stress = pmi_model_name
)

}

33.24.1 Dependencies

A PMI stress model has no explicit dependencies. However, it can depend on doping concentrations and mole
fractions through the run-time support.

The PMI model must compute the following results:

33.24.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_Stress : public PMI_Dessis_Interface {

public:
 PMI_Stress (const PMI_Environment& env);
 virtual ~PMI_Stress ();

 virtual void Compute_StressXX
 (double& stress_xx) = 0;

stress_xx XX component of stress tensor [Pa]

stress_yy YY component of stress tensor [Pa]

stress_zz ZZ component of stress tensor [Pa]

stress_yz YZ component of stress tensor [Pa]

stress_xz XZ component of stress tensor [Pa]

stress_xy XY component of stress tensor [Pa]
 15.589

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 virtual void Compute_StressYY
 (double& stress_yy) = 0;

 virtual void Compute_StressZZ
 (double& stress_zz) = 0;

 virtual void Compute_StressYZ
 (double& stress_yz) = 0;

 virtual void Compute_StressXZ
 (double& stress_xz) = 0;

 virtual void Compute_StressXY
 (double& stress_xy) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Stress* new_PMI_Stress_func
 (const PMI_Environment& env);

extern "C" new_PMI_Stress_func new_PMI_Stress;

33.24.3 Example: Constant stress model

The following code returns constant values for the stress tensor:

#include "PMIModels.h"

class Constant_Stress : public PMI_Stress {

private:
 double xx, yy, zz, yz, xz, xy;

public:
 Constant_Stress (const PMI_Environment& env);

 ~Constant_Stress ();

 void Compute_StressXX (double& stress_xx);
 void Compute_StressYY (double& stress_yy);
 void Compute_StressZZ (double& stress_zz);
 void Compute_StressYZ (double& stress_yz);
 void Compute_StressXZ (double& stress_xz);
 void Compute_StressXY (double& stress_xy);

};

Constant_Stress::
Constant_Stress (const PMI_Environment& env) :
 PMI_Stress (env)
{ xx = InitParameter ("xx", 100);
 yy = InitParameter ("yy", -4e9);
 zz = InitParameter ("zz", 300);
 yz = InitParameter ("yz", 400);
 xz = InitParameter ("xz", 500);
 xy = InitParameter ("xy", 600);
}

Constant_Stress::
~Constant_Stress ()
15.590

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
{
}

void Constant_Stress::
Compute_StressXX (double& stress_xx)
{ stress_xx = xx;
}

void Constant_Stress::
Compute_StressYY (double& stress_yy)
{ stress_yy = yy;
}

void Constant_Stress::
Compute_StressZZ (double& stress_zz)
{ stress_zz = zz;
}

void Constant_Stress::
Compute_StressYZ (double& stress_yz)
{ stress_yz = yz;
}

void Constant_Stress::
Compute_StressXZ (double& stress_xz)
{ stress_xz = xz;
}

void Constant_Stress::
Compute_StressXY (double& stress_xy)
{ stress_xy = xy;
}

extern "C"
PMI_Stress* new_PMI_Stress
 (const PMI_Environment& env)
{ return new Constant_Stress (env);
}

33.25 Trap space factor
The space distribution of traps can be computed by a PMI (see Chapter 10 on page 15.225). The name of the
PMI is specified in the Traps section as follows:

Physics {
Traps (sFactor=pmi_model_name ...)

}

NOTE The name of the PMI model must not coincide with the name of an internal DESSIS field.
Otherwise, DESSIS takes the value of the internal field as the space factor.
 15.591

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
33.25.1 Dependencies

A PMI space factor model has no explicit dependencies. The model must compute:

33.25.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_SpaceFactor : public PMI_Dessis_Interface {

public:
 PMI_SpaceFactor (const PMI_Environment& env);
 virtual ~PMI_SpaceFactor ();

 virtual void Compute_spacefactor
 (double& spacefactor) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_SpaceFactor* new_PMI_SpaceFactor_func
(const PMI_Environment& env);

extern "C" new_PMI_SpaceFactor_func new_PMI_SpaceFactor;

33.25.3 Example: PMI user field as space factor

The following code reads the space factor from a PMI user field:

#include "PMIModels.h"

class pmi_spacefactor : public PMI_SpaceFactor {

public:
 pmi_spacefactor (const PMI_Environment& env);
 ~pmi_spacefactor ();

 void Compute_spacefactor (double& spacefactor);
};

pmi_spacefactor::
pmi_spacefactor (const PMI_Environment& env) :
 PMI_SpaceFactor (env)
{
}

pmi_spacefactor::
~pmi_spacefactor ()
{
}

void pmi_spacefactor::
Compute_spacefactor (double& spacefactor)
{ spacefactor = ReadUserField (PMI_UserField1);
}

spacefactor Space factor (1)
15.592

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
extern "C"
PMI_SpaceFactor* new_PMI_SpaceFactor
 (const PMI_Environment& env)
{ return new pmi_spacefactor (env);
}

33.26 Piezoelectric polarization
The effects of piezoelectric polarization can be modeled by adding an additional charge term:

(15.675)

to the right-hand side of the Poisson equation (see (Eq. 15.19)). The quantity denotes the piezoelectric
polarization vector, which may defined by a PMI.

The name of the PMI is specified in the Physics section of the DESSIS command file as follows:

Physics {
 Piezoelectric_Polarization (pmi_polarization)

}

The piezoelectric polarization vector and the piezoelectric charge may be plotted by:

Plot {
PE_Polarization/vector
PE_Charge

}

DESSIS assumes that the piezoelectric polarization vector is zero outside of the device. This boundary
condition may lead to an unexpectedly large charge density if has a nonzero component orthogonal to
the boundary (discontinuity in).

33.26.1 Dependencies

The piezoelectric polarization model does not have explicit dependencies. However, it can use the run-time
support. In particular, it has access to the stress fields.

The model must compute:

The resulting vector pol has dimension 3. However, only the first dim components need to be defined, where
dim is equal to the dimension of the problem.

pol Piezoelectric polarization vector [Ccm–2]

qPE divPPE=

PPE

PPE
PPE

divPPE
 15.593

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
33.26.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_Polarization : public PMI_Dessis_Interface {

public:
 PMI_Polarization (const PMI_Environment& env);
 virtual ~PMI_Polarization ();

 virtual void Compute_pol
 (double pol [3]) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Polarization* new_PMI_Polarization_func
(const PMI_Environment& env);

extern "C" new_PMI_Polarization_func new_PMI_Polarization;

33.26.3 Example: Gaussian polarization model

In this example, the piezoelectric polarization vector has a simple Gaussian shape in the x-direction:

#include "PMIModels.h"

class Gauss_Polarization : public PMI_Polarization {

private:
 double x0, c, a;

public:
 Gauss_Polarization (const PMI_Environment& env);
 ~Gauss_Polarization ();

 void Compute_pol (double pol [3]);
};

Gauss_Polarization::
Gauss_Polarization (const PMI_Environment& env) :
 PMI_Polarization (env)
{ x0 = InitParameter ("x0", 0.0);
 c = InitParameter ("c", 1.0);
 a = InitParameter ("a", 1e-5);
}

Gauss_Polarization::
~Gauss_Polarization ()
{
}

void Gauss_Polarization::
Compute_pol (double pol [3])
{ double x, y, z;
 ReadCoordinate (x, y, z);
 pol [0] = a * exp (-c * (x-x0) * (x-x0));
 pol [1] = 0.0;
 pol [2] = 0.0;
}

PPE
15.594

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
extern "C"
PMI_Polarization* new_PMI_Polarization
 (const PMI_Environment& env)
{ return new Gauss_Polarization (env);
}

33.27 Incomplete ionization
The ionization factors and (see Section 6.3 on page 15.162) can be defined by a PMI.

The name of the PMI should be specified in the Physics section of the DESSIS command file as follows:

Physics {
IncompleteIonization(Model(PMI_model_name("Species_name1 Species_name2 ...")))

}

In addition, it is possible to have a PMI for each species separately:

Physics {
IncompleteIonization(

Model(
PMI_model_name1("Species_name1")
PMI_model_name2("Species_name2")

)
)

}

The species PMI parameters should be defined in the DESSIS parameter file (see Section 33.6 on
page 15.542).

33.27.1 Dependencies

The ionization factors and may depend on the variable:

The PMI model must compute the following results:

33.27.2 C++ interface

The following base class is declared in the file PMIModels.h:

enum PMI_SpeciesType {
 PMI_acceptor,
 PMI_donor
};

class PMI_DistributionFunction : public PMI_Dessis_Interface {

T Lattice temperature [K]

g Ionization factor

dgdt Derivative of with respect to T

GD T() GA T()

GD T() GA T()

G T()

G T()
 15.595

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
private:
 const PMI_SpeciesType speciesType;
 const char* speciesName;

public:
 PMI_DistributionFunction (const PMI_Environment& env,
 const PMI_SpeciesType type,
 const char* name);

 virtual ~PMI_DistributionFunction ();

 PMI_SpeciesType SpeciesType () const { return speciesType; }
 const char* SpeciesName () const { return speciesName; }

// read parameter from Dessis parameter file
// (override for PMI_Dessis_Interface::ReadParameter)
 const PMIBaseParam* ReadParameter (const char* name) const;

// initialize parameter from Dessis parameter file or from default value
// (override for PMI_Dessis_Interface::InitParameter)
 double InitParameter (const char* name, double defaultvalue) const;

virtual void Compute_g
 (const double T, // lattice temperature
 double& g) = 0; // g = G(T)

 virtual void Compute_dgdt
 (const double T, // lattice temperature
 double& dgdt) = 0; // dgdt = G’(T)

};

The prototype for the virtual constructor is given as:

typedef PMI_DistributionFunction* new_PMI_DistributionFunction_func
(const PMI_Environment& env);

extern "C" new_PMI_DistributionFunction_func new_PMI_DistributionFunction;

33.27.3 Example: Matsuura incomplete ionization model

The following C++ code implements the Matsuura model [179] for dopant Al in SiC material:

(15.676)

where is the ground-state degeneracy factor, is the -th excited state degeneracy factor, and
is the difference in energy between the -th excited state level and . is given by the hydrogenic
dopant model [180]:

(15.677)

where is the free-space electron mass, is the hole effective mass in SiC, and is the dielectric
constant of SiC. The acceptor level is described as [180]:

(15.678)

GA T() 4
∆EA Eex–

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp g1 gr
∆Er ∆EA–

kBT

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
r 2=
∑+

⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅ ⋅=

g1 gr r 1–() ∆Er
r 1–() EV ∆Er

∆Er 13.6 m∗
m0 εs

2⋅
---------------- 1

r2
----⋅ ⋅= [eV]

m0 m∗ εs

∆EA ∆E1 ECCC+=
15.596

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
where is the energy induced due to central cell corrections.

The ensemble average of the ground and excited state levels of the acceptor is given by [181]:

(15.679)

The Matsuura model can be implemented as follows:

class Matsuura_DistributionFunction : public PMI_DistributionFunction {

protected:
 const double kB_300; // Boltzmann constant * 300 [eV]
 int nb_item; // number of item in sum
 double *gr, *dEr;
 double Eex, dEA, Eccc;

public:
 Matsuura_DistributionFunction (const PMI_Environment& env,
 const char* name,
 const PMI_SpeciesType type = PMI_acceptor);

 ~Matsuura_DistributionFunction ();

 void Compute_g
 (const double T, // lattice temperature
 double& g); // g = G(T)

 void Compute_dgdt
 (const double T, // lattice temperature
 double& dgdt); // dgdt = G’(T)

 double Compute_Eex(double T); // compute Eex(T) [15.679]
 double Compute_dEexdT(double T);// compute dEex/dT

};

Matsuura_DistributionFunction::
Matsuura_DistributionFunction (const PMI_Environment& env,
 const char* name,
 const PMI_SpeciesType type) :
 PMI_DistributionFunction (env, name, type),
 kB_300(1.380662e-23*300./1.602192e-19), // kB*T0/e0 = 0.02585199527 [eV]
 Eex(0.)
{
 nb_item = InitParameter ("NumberOfItem", 1);
 Eccc = InitParameter ("Eccc", 0);

 if(nb_item < 1) {
 printf("ERROR; PMI model Matsuura_DistributionFunction: parameter NumberOfItem < 1 \n");

exit(1);
 }
 gr = new double[nb_item];
 dEr = new double[nb_item];

 char str_r[6], name_gr[6];

ECCC

Eex

Eex

∆EA ∆Er–()gr

∆EA ∆Er–
kBT

--------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
r 2=
∑

g1 gr
∆EA ∆Er–

kBT
--------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
r 2=
∑+

--=
 15.597

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 int r;
 for(r=0; r<nb_item; ++r) {
 name_gr[0] = 'g'; name_gr[1] = '\0';
 sprintf(str_r, "%d\0", r+1);
 strcat(name_gr, str_r);
 const PMIBaseParam* par = ReadParameter(name_gr);
 if(!par) {
 printf("ERROR; PMI model Matsuura_DistributionFunction: cannot read parameter %s \n", name_gr);

 gr[r] = 2;
} else
 gr[r] = *par;
 }

 const PMIBaseParam* par = ReadParameter("dE1");
 if(!par) {

// dE[r] = 13.6 * m_eff/m0/eps/eps/r/r
 Compute_dEr(nb_item, dEr);
 } else {
 char name_dEr[6];
 for(r=0; r<nb_item; ++r) {
 strcpy(name_dEr, "dE");
 sprintf(str_r, "%d\0", r+1);
 strcat(name_dEr, str_r);
 const PMIBaseParam* par = ReadParameter(name_dEr);
 if(!par) {
 printf("ERROR; PMI model Matsuura_DistributionFunction: cannot read parameter %s \n", name_dEr);
 exit(1);
 }
 dEr[r] = *par;
 }
 }
 dEA = dEr[0] + Eccc;
}

 Matsuura_DistributionFunction::
~Matsuura_DistributionFunction ()
{
 delete[] gr;
 delete[] dEr;
}

void Matsuura_DistributionFunction::Compute_g
 (const double T, // lattice temperature
 double& g) // g = G(T)
{
 const double kT = kB_300*T/300;

 Eex = Compute_Eex(T);
 g = gr[0];

 for(int r=1; r<nb_item; ++r) {
 double delta = dEA - dEr[r];
 g += gr[r]*exp(-delta/kT);
 }
 g *= 4.*exp((dEA-Eex)/kT);
}

void Matsuura_DistributionFunction::Compute_dgdt
 (const double T, // lattice temperature
 double& dgdt) // dgdt = G’(T)
{
 const double kT = kB_300*T/300;
15.598

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE

 Eex = Compute_Eex(T);
 double s1, s2 = gr[0], s3, s4 = 0., delta, tmp;

 for(int r=1; r<nb_item; ++r) {
 delta = dEA - dEr[r];
 tmp = gr[r]*exp(-delta/kT);
 s2 += tmp;
 s4 += tmp*delta/kT/T; // s4 = ds2/dT
 }

 delta = dEA - Eex;
 s1 = 4.*exp(delta/kT);
 double dEex_dT = Compute_dEexdT(T);
 s3 = s1*(-dEex_dT/kT - delta/kT/T); // s3 = ds1/dT

 dgdt = s3*s2 + s1*s4; // dgdt = d(s1*s2)/dT

 return;
}

// Eex is given by [15.679]
double Matsuura_DistributionFunction::Compute_Eex(double T)
{
 const double kT = kB_300*T/300;

 double s1 = 0., s2 = gr[0];

 for(int r=1; r<nb_item; ++r) {
 double delta = dEA - dEr[r];
 double tmp = gr[r]*exp(-delta/kT);
 s1 += delta*tmp;
 s2 += tmp;
 }

 return s1/s2;

}

double Matsuura_DistributionFunction::Compute_dEexdT(double T)
{
 const double kT = kB_300*T/300;

 double s1 = 0., s2 = gr[0], s3 = 0., s4 = 0.;

 for(int r=1; r<nb_item; ++r) {
 double delta = dEA - dEr[r];
 double tmp = gr[r]*exp(-delta/kT);
 s1 += delta*tmp;
 s2 += tmp;
 s3 += delta*tmp*delta/kT/T; // s3 = ds1/dT
 s4 += tmp*delta/kT/T; // s4 = ds2/dT
 }

 return (s3*s2 - s1*s4)/s2/s2;

}

extern "C"
PMI_DistributionFunction* new_PMI_DistributionFunction
 (const PMI_Environment& env,
 const char* name,
 15.599

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 const PMI_SpeciesType type)
{
 return new Matsuura_DistributionFunction (env, name, type);
}

void Compute_dEr(int nb_item, double* dEr)
{
 // dEr is given by [15.677]

 // data from file: 6H-SiC.par
 const double epsilon = 9.66; // dielectric constant
 const double mh = 1; // hole effective mass in SiC

 const double E0 = 13.6*mh/epsilon/epsilon;

 for(int r=1; r<=nb_item; ++r) {
 dEr[r-1] = E0/r/r;
 }
}

33.28 Current plot
The current plot PMI allows user-computed entries to be added to the DESSIS current plot file. It is specified
in the CurrentPlot section of the command file, for example:

CurrentPlot {
pmi_CurrentPlot

}

The interface has access to the device mesh and device data.

33.28.1 Structure of current plot file

A DESSIS current plot file consists of a header section and a data section. For each function, the structure can
be described as follows:

dataset name
function name
value0
value1
...

A dataset name denotes a dataset, for example:

time
Tmin

If a dataset corresponds to a region or contact, it is customary to add the region or contact name:

gate Charge
15.600

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
The function name describes the function, for example:

ElectrostaticPotential
Temperature

Afterwards, a function value is added to the current plot file for each plot time point.

33.28.2 C++ interface

The following base class is declared in the file PMIModels.h:

class PMI_CurrentPlot : public PMI_Dessis_Device_Interface {

public:
 PMI_CurrentPlot (const PMI_Device_Environment& env);
 virtual ~PMI_CurrentPlot ();

 virtual void Compute_Dataset_Names
 (des_string_vector& dataset) = 0;

 virtual void Compute_Function_Names
 (des_string_vector& function) = 0;

 virtual void Compute_Plot_Values
 (des_double_vector& value) = 0;
};

The methods Compute_Dataset_Names() and Compute_Function_Names() are used to generate the header in the
DESSIS current plot file (see Section 33.28.1 on page 15.600). Compute_Plot_Values() is called for each plot
time point to compute the plot values. Use the push_back() function to add values to the arrays dataset,
function, or value.

NOTE All three methods Compute_Dataset_Names(), Compute_Function_Names(), and Compute_Plot_Values()
must always compute the same number of values. Otherwise, an inconsistent current plot file will
be generated.

The prototype for the virtual constructor is given as:

typedef PMI_CurrentPlot* new_PMI_CurrentPlot_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_CurrentPlot_func new_PMI_CurrentPlot;

33.28.3 Run-time support

The class PMI_Dessis_Device_Interface provides run-time support:

class PMI_Dessis_Device_Interface {

public:
 PMI_Dessis_Device_Interface (const PMI_Device_Environment& env);
 virtual ~PMI_Dessis_Device_Interface ();

 const char* Name () const;

 const PMIBaseParam* ReadParameter (const char* name) const;
 15.601

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 double InitParameter (const char* name, double defaultvalue) const;

 double ReadTime () const;

 const des_mesh* Mesh () const;
 des_data* Data () const;
};

The method Name() returns the name of the PMI model as specified in the DESSIS command file. The methods
ReadParameter() and InitParameter() read the value of a parameter from the DESSIS parameter file (see
Section 33.6 on page 15.542).

NOTE Parameters for the current plot PMI must appear in the global parameter section. Regionwise or
materialwise parameters are not supported.

ReadTime() returns the simulation time during a transient simulation [s]. The methods Mesh() and Data() provide
access to the DESSIS mesh and data (see Section 33.28.4 and Section 33.28.5 on page 15.606).

33.28.4 Device mesh

A DESSIS device mesh consists of a number of regions. A region is either a contact region consisting of a list
of contact vertices or a bulk region consisting of a list of elements. An element is described by a list of
vertices.

33.28.4.1 Vertex

In the file PMIModels.h, the class des_vertex is declared as follows:

class des_vertex {

public:
 size_t index () const;

 const double* coord () const;

 bool equal_coord (des_vertex* v) const;

 size_t size_edge () const;
 des_edge* edge (size_t i) const;

 size_t size_element () const;
 des_element* element (size_t i) const;

 size_t size_region () const;
 des_region* region (size_t i) const;
};

The value of index() can be used as an index for vertex-based data (see Section 33.28.5).

The location of a vertex is given by its coordinates coord(). The function equal_coord() should be used to check
if two vertices have the same coordinates. For example, DESSIS duplicates vertices along heterointerfaces.
Consequently, two vertices with different indices can share the same coordinates.
15.602

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
size_edge() returns the number of edges connected to a vertex. The method edge() can be used to retrieve the
ith edge.

size_region() returns the number of regions containing a vertex. The method region() can be used to retrieve
the ith region.

33.28.4.2 Edge

In the file PMIModels.h, the class des_edge is declared as follows:

class des_edge {

public:
 size_t index () const;

 des_vertex* start () const;
 des_vertex* end () const;

 size_t size_element () const;
 des_element* element (size_t i) const;

 size_t size_region () const;
 des_region* region (size_t i) const;
};

The value of index() can be used as an index for edge-based data (see Section 33.28.5 on page 15.606).

start() and end() return the first and second vertex connected to the edge, respectively.

size_element() returns the number of elements connected to an edge. The method element() can be used to
retrieve the ith element.

size_region() returns the number of regions containing an edge. The method region() can be used to retrieve
the ith region.

33.28.4.3 Element

In the file PMIModels.h, the class des_element is declared as follows:

class des_element {

public:
 typedef enum { point, line, triangle, rectangle, tetrahedron,
 pyramid, prism, cuboid, tetrabrick } des_type;

 size_t index () const;

 des_type type () const;

 size_t size_vertex () const;
 des_vertex* vertex (size_t i) const;
 15.603

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 size_t size_edge () const;
 des_edge* edge (size_t i) const;

 des_bulk* bulk () const;
};

The value of index() can be used as an index for element-based data (see Section 33.28.5 on page 15.606).

type() returns the type of an element (point, line, triangle, rectangle, tetrahedron, pyramid, prism, cuboid, or
tetrabrick). An element is mainly described by its vertices. size_vertex() returns the number of vertices in an
element, and the method vertex() can be used to retrieve the ith vertex. size_edge() returns the number of edges
of an element. The method edge() can be used to retrieve the ith edge. The method bulk() returns the bulk
region containing the element.

Figure 15.122 shows the numbering of vertices and edges for all element types.

Figure 15.122 Vertex and edge numbering

Point Line

Triangle Rectangle
Tetrahedron

Pyramid
Prism

CuboidTetrabrick

2

0 1

2 3

0 1

2

3

0 1

2

3

4

0 1

2

4

0 1

2

3

4

6 7

1

0

2

3

4

5

0 1

0 0 1

5

5

6

3

e0

e1 e2

e0

e0

e1
e2

e3

e4

e5 e6

e10
e9

e11

e8e7

e2 e4

e6

e7 e8

e5

e1

e0
e3

e0

e2

e8
e11

e10

e9
e4

e6

e1 e5
e3

e7

e2

e0

e1

e4
e5

e3 e0

e2e1

e3

e0
e1 e6

e4

e5 e3e2
e7
15.604

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
33.28.4.4 Region

In the file PMIModels.h, the base class des_region is declared as follows:

class des_region {

public:
 typedef enum { bulk, contact } des_type;

 virtual des_type type () const = 0;

 std::string name () const;

 size_t size_vertex () const;
 des_vertex* vertex (size_t i) const;

 size_t size_edge () const;
 des_edge* edge (size_t i) const;
};

A DESSIS mesh consists of two types of regions, bulk regions and contacts. The virtual method type() returns
the type of a region. The name of a region is returned by name(). size_vertex() returns the number of vertices
in a region. The method vertex() can be used to retrieve the ith vertex. size_edge() returns the number of edges
in a region. The method edge() can be used to retrieve the ith edge.

The class des_bulk is derived from des_region:

class des_bulk : public des_region {

public:
 des_type type () const;

 std::string material () const;

 size_t size_element () const;
 des_element* element (size_t i) const;
};

material() returns the name of the material in a bulk region. size_element() returns the number of elements in
a region. The method element() can be used to retrieve the ith element.

Similarly, the class des_contact is also derived from des_region:

class des_contact : public des_region {

public:
 des_type type () const;
};

33.28.4.5 Mesh

In the file PMIModels.h, the class des_mesh is declared as follows:

class des_mesh {

public:
 int dim () const;
 15.605

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
 size_t size_vertex () const;
 des_vertex* vertex (size_t i) const;

 size_t size_edge () const;
 des_edge* edge (size_t i) const;

 size_t size_element () const;
 des_element* element (size_t i) const;

 size_t size_region () const;
 des_region* region (size_t i) const;
};

The dimension of the mesh is given by dim(). The possible values are 1, 2, and 3.

size_vertex() returns the number of vertices in the mesh. The method vertex() can be used to retrieve the ith

vertex. size_edge() returns the number of edges in the mesh. The method edge() can be used to retrieve the ith

edge. size_element() returns the number of elements in the mesh. The method element() can be used to retrieve
the ith element. size_region() returns the number of regions in the mesh. The method region() can be used to
retrieve the ith region.

33.28.5 Device data

In the file PMIModels.h, the class des_data is declared as follows:

class des_data {

public:
 typedef enum { vertex, edge, element } des_location;

 const double*const* ReadCoefficient ();
 const double*const* ReadMeasure ();

 const double* ReadScalar (des_location location, std::string name);
 const double*const* ReadVector (des_location location, std::string name);
};

The methods ReadCoefficient() and ReadMeasure() return the box-method coefficients and measure
used in DESSIS (see Section 32.1 on page 15.519).

ReadCoefficient() returns a two-dimensional array. The two indices are the element index and the local edge
number.

The following code fragment reads the coefficients for all element edges:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* coeff = data->ReadCoefficient();
for (size_t eli = 0; eli < mesh->size_element(); eli++) {
 des_element* el = mesh->element(eli);
 for (size_t ei = 0; ei < el->size_edge(); ei++) {
 des_edge* e = el->edge(ei);
 const double c = coeff[el->index()][ei];
 }
}

κi j µi j
15.606

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
NOTE The values returned by ReadCoefficient() are element-edge coefficients. The edge coefficients
 can be obtained by adding the contributions from all elements connected to an edge .

ReadMeasure() returns a two-dimensional array. The two indices are the element index and the local vertex
number. The following code fragment reads the measures for all element vertices:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* measure = data->ReadMeasure();
for (size_t eli = 0; eli < mesh->size_element(); eli++) {
 des_element* el = mesh->element(eli);
 for (size_t vi = 0; vi < el->size_vertex(); vi++) {
 des_vertex* v = el->vertex(vi);
 const double m = measure[el->index()][vi];
 }
}

NOTE The values returned by ReadMeasure() are element-vertex measures. The node measures can
be obtained by adding the contributions from all elements connected to a vertex .

The methods ReadScalar() and ReadVector() provide access to the DESSIS data. The values can be located on
vertices, elements, or edges. See Table 15.167 on page 15.619 and Table 15.168 on page 15.627 for an
overview of available scalar and vector data.

ReadScalar() returns a one-dimensional array. Use the index() method in the classes des_vertex, des_edge, or
des_element to access the array elements.

ReadVector() returns a two-dimensional array. The first index selects the dimension (0, 1, 2) and the second
index is used in the same way as for scalar data.

33.28.6 Example: Average electrostatic potential

The following example computes regionwise averages for the electrostatic potential. This is the same
functionality as provided by the built-in current plot command (see Section 2.7 on page 15.52):

class CurrentPlot : public PMI_CurrentPlot {
private:
 typedef std::vector<des_bulk*> des_bulk_vector;

 const des_mesh* mesh; // device mesh
 des_bulk_vector regions; // list of semiconductor bulk regions
 double scale; // scaling factor

public:
 CurrentPlot (const PMI_Device_Environment& env);
 ~CurrentPlot ();

 void Compute_Dataset_Names (des_string_vector& dataset);
 void Compute_Function_Names (des_string_vector& function);
 void Compute_Plot_Values (des_double_vector& value);
};

κi j
κi i

µi j µi
i

 15.607

PART 15 DESSISCHAPTER 33 PHYSICAL MODEL INTERFACE
CurrentPlot::
CurrentPlot (const PMI_Device_Environment& env) :
 PMI_CurrentPlot (env)
{ mesh = Mesh ();
 // determine regions to process
 for (size_t ri = 0; ri < mesh->size_region (); ri++) {
 des_region* r = mesh->region (ri);
 if (r->type () == des_region::bulk) {
 des_bulk* b = dynamic_cast <des_bulk*> (r);
 if (b->material () != "Oxide") {
 // we found a semiconductor bulk region
 regions.push_back (b);
 }
 }
 }

 // read parameters
 scale = InitParameter ("scale", 0.0);
}

CurrentPlot::
~CurrentPlot ()
{
}

void CurrentPlot::
Compute_Dataset_Names (des_string_vector& dataset)
{ for (size_t ri = 0; ri < regions.size (); ri++) {
 des_bulk* b = regions [ri];
 std::string name = "Average_";
 name += b->name ();
 name += "ElectrostaticPotential";
 dataset.push_back (name);
 }
}

void CurrentPlot::
Compute_Function_Names (des_string_vector& function)
{ for (size_t ri = 0; ri < regions.size (); ri++) {
 function.push_back ("ElectrostaticPotential");
 }
}

void CurrentPlot::
Compute_Plot_Values (des_double_vector& value)
{ des_data* data = Data ();
 const double*const* measure = data->ReadMeasure ();
 const double* pot = data->ReadScalar (des_data::vertex, "ElectrostaticPotential");
 for (size_t ri = 0; ri < regions.size (); ri++) {
 des_bulk* b = regions [ri];

 double sum_pot = 0.0;
 double sum_measure = 0.0;

 for (size_t ei = 0; ei < b->size_element (); ei++) {
 des_element* e = b->element (ei);
 for (size_t vi = 0; vi < e->size_vertex (); vi++) {
 des_vertex* v = e->vertex (vi);
 const double m = measure [e->index ()][vi];
 const double p = pot [v->index ()];
 sum_pot += m * p;
 sum_measure += m;
 }
15.608

PART 15 DESSIS CHAPTER 33 PHYSICAL MODEL INTERFACE
 }

 value.push_back (scale * (sum_pot / sum_measure));
 }
}

extern "C" {
PMI_CurrentPlot* new_PMI_CurrentPlot (const PMI_Device_Environment& env)
{ return new CurrentPlot (env);
}
}

 15.609

PART 15 DESSIS APPENDIX A SYNTAX
DESSIS

APPENDIX A Syntax

The syntax of the DESSIS input file, and the basic syntactical and lexical conventions are described here.
DESSIS has a hierarchical input syntax. At the lowest level, device, system, and solve information is specified
as well as the default and global parameters. Inside each Dessis section, the parameters specific to one device
type can be specified.

Inside the System section, the real devices are specified or ‘instantiated.’ Here, parameters can be given that
are specific to one instantiation of a device. The DESSIS input file is a collection of specifications used to
establish the simulation environment with actions describing which equations must be solved and how they
must be solved. The syntax of the DESSIS input file contains several entry types. All basic input file entries
adhere to the syntactical and lexical rules described in Table 15.164.

Table 15.164 Entry types in DESSIS

Entry type Description

Keyword These are the known names of the input file. They are case insensitive. Therefore, the following
keywords are all equivalent: Quasistationary, QuasiStationary, and quasistationary. Most
keywords can be abbreviated. The above example can also be written as QuasiStat.

Integer These are (possibly) signed decimal numbers. The following integers are valid: 123, -73492, 0.

Float Floating point numbers are compatible with the C language format for floating point numbers.
The following floating point numbers are valid: 123, 123.0, 1.23e2, -1.23E2.

Vector Vectors in real space are defined depending on the actual dimension. In 3D, a vector is specified
by three floating point numbers; in 2D, by two floating point numbers enclosed in parentheses.
The floats are separated by commas or spaces. In 1D, one floating point number without
parentheses is sufficient. Valid vectors are (1,0,2), (1e-4,-1e-3), and 1.

String Strings are delimited by quotation marks. They are compatible with the C language format for
strings. The following strings are valid: "Vdd", "output/diode".

Identifier These are used to name objects such as nodes, devices, or attributes. They are compatible with
the C language format for identifiers. The following identifiers are valid: Vdd, diode, bjt_345.

Assignment These are used to set values to keywords. Therefore, the following are valid assignments:
Digits=4, Save="output/diode".

Signal Signals are time dependent, piecewise, linear functions (not to be confused with UNIX signals)
that are defined as inputs on the contacts of a device. They are specified as follows: (value0 at
time0, value1 at time1, ... value_n at time_n). The following signal is valid: (0 at 0,
1 at 10.0e-9, 1 at 20.0e-9).

List Lists are collections of keywords, assignments, and complex entries. They are delimited by
"(…)" or "{…}". The following lists are valid:
{ Number=0 Voltage=0
Voltage=(0 at 0, 0 at 2e-8) }

{ Method=Super Digits=6 Numerically }
(MinStep=1e-15 InitialStep=1e-10 Digits=3)

Structured
entries

These are parameterized definitions or commands that can have the forms: <keyword>
{<keywords>}, <keyword> (<keywords>), or <keyword> (<list>) {<list>}.
 15.611

PART 15 DESSIS APPENDIX B FILE-NAMING CONVENTION
DESSIS

APPENDIX B File-naming convention

The data exchange format DF-ISE defines the file-naming convention for ISE tools. The relevant items for
DESSIS are described here.

All strings that represent file names containing a dot (.) within their base name are taken literally. Otherwise,
DESSIS extends the given strings with the appropriate extension.

DESSIS expands the extensions for output files by its tool extension _des, for example, the extension of a
saved file is _des.sav.

Compressed files are additionally extended by the extension .Z, for example, compressed plot files have the
extension _des.dat.Z. Table 15.165 summarizes the extensions used in DESSIS.

During transient simulations, quasistationaries, and continuations, the plot and save files are numbered by a
global index.

Table 15.165 DESSIS file-naming convention

File I/O Extension

Command I _des.cmd, .cmd

Log O _des.log

Parameter I .par

Geometry I .grd

Doping I .dat

Lifetime I .dat

Save O _des.sav

Load I .sav

Device Plot (grid-based) O _des.dat

Current Plot O _des.plt

AC Extraction O _ac_des.plt

Montecarlo I/O See SPARTA manual.
 15.613

PART 15 DESSISAPPENDIX B FILE-NAMING CONVENTION
B.1 Compatibility with old file-naming convention
To be compatible with the old file-naming conventions, DESSIS tries to find the files according to the current
convention and, if the corresponding files are not found, it tries to read the files according to the old
convention. Table 15.166 summarizes the old convention.

Table 15.166 Old file-naming convention

File I/O Extension

Command I .in

Output or Log O .out

Parameter I .par

Geometry I .geo

Doping I .dop

Lifetime I .life

Save O .sav

Load I .sav

Device Plot (grid-based) O .prt

Current Plot O .cur

AC Extraction O .ac
15.614

PART 15 DESSIS APPENDIX C COMMAND-LINE OPTIONS
DESSIS

APPENDIX C Command-line options

To start DESSIS, enter:

dessis [<options>] [<commandfile>]

DESSIS appends automatically the corresponding extension to the given command file if necessary. If no
command file is specified, DESSIS reads from standard input.

DESSIS interprets the following options:

-d Prints debug information into the debug file. The information printed includes the
numeric values of the Jacobian and RHS for each equation at each solution step.

-h Lists these options and exits.

-i Prints the initial solution in the save file, and print files specified in the File section
of the command file, and exits without performing further computations.

-n Does not include Newton information in the log file.

-P Writes the silicon model parameters into a file dessis.par and exits. This file can be
modified and reloaded into DESSIS to make customized changes to physical models
and parameters.

-P:<Material> Writes the model parameters for the given material into a file dessis.par and exits.

-P:All Writes the model parameters for all materials into a file dessis.par and exits.

-P:<Material>/<Material>

Writes the model parameters for the given material interface into a file dessis.par and
exits.

-P <commandfile> Writes the model parameters for the materials and interfaces used in <commandfile>
into a file dessis.par and exits.

-L Writes the silicon model parameters into the file Silicon.par and exits.

-L:<Material> Writes a model parameter file <Material>.par for the specified material and exits.

-L:All Writes a separate model parameter file for all materials and exits.

-L:<Material>/<Material>

Writes a model parameter file <Material>%<Material>.par for the specified material
interface and exits.

-L <commandfile> Writes model parameter files for all the materials, material interfaces, and electrodes
used in <commandfile> and exits.

-q Quiet mode for output.

-S Writes the SiC model parameters into a dessisSiC.par file and exits. This file can be
modified and reloaded into DESSIS to make customized changes to physical models
and parameters.
 15.615

PART 15 DESSISAPPENDIX C COMMAND-LINE OPTIONS
-v Prints header with version number of DESSIS.

-V Prints detailed version information about DESSIS.

--parameter-names Prints the names of the parameters from the DESSIS parameter file that can be
ramped. If a command file is also supplied, DESSIS prints the parameters from the
command file that can be ramped.

--exit-on-failure Terminates immediately after a failed solve command.

--compiler-version Prints the version of the C++ compiler that was used to compile DESSIS.

In addition, generic tool options can be found in the relevant section of the ISE TCAD Release Notes.
15.616

PART 15 DESSIS APPENDIX D RUN-TIME STATISTICS
DESSIS

APPENDIX D Run-time statistics

The command dessisstat displays some statistics of a previous run of DESSIS based on the information found
in its log file. For example, the command:

dessisstat test_des.log

generates the following statistics:

Total number of Newton iterations : 5
Total CPU-time : 3.3 s
Rhs-time : 19.39 % (0.64 s)
Jacobian-time : 45.15 % (1.49 s)
Solve-time : 32.42 % (1.07 s)
 15.617

PART 15 DESSIS APPENDIX E DATA AND PLOT NAMES
DESSIS

APPENDIX E Data and plot names

Table 15.167 and Table 15.168 on page 15.627 list the plot names that are recognized in a DESSIS Plot
section (see Section 2.6 on page 15.52) and the data names that are available in the current plot PMI (see
Section 33.28 on page 15.600). If the plot name is empty, the data name in quotation marks can be used, for
example:

Plot {
"eTemperatureRelaxationTime"

}

Vector data can be plotted by appending /Vector to the corresponding keyword, for example:

Plot {
ElectricField/Vector

}

Element-based scalar data can be plotted by appending /Element to the corresponding keyword, for example:

Plot {
eMobility/Element

}

Table 15.167 Scalar data

Data name Plot name Location Description Unit

AccepMinusConcentration vertex Section 2.14

AcceptorConcentration AcceptorConcentration vertex Section 2.14

AlphaChargeDensity AlphaCharge vertex Section 14.1

AlphaGeneration vertex , (Eq. 15.315)

AntimonyActiveConcentration vertex Section 2.14

AntimonyConcentration AntimonyConcentration vertex Sb, Section 2.14

AntimonyPlusConcentration sbPlus vertex Sb+, Chapter 6

ArsenicActiveConcentration vertex Section 2.14

ArsenicConcentration ArsenicConcentration vertex As, Section 2.14

ArsenicPlusConcentration AsPlus vertex As+, Chapter 6

AugerRecombination AugerRecombination vertex , (Eq. 15.231)

AvalancheGeneration AvalancheGeneration vertex , (Eq. 15.238)

Band2BandGeneration Band2Band vertex , Section 9.11

BandGap BandGap vertex , Section 5.2.2 eV

BandgapNarrowing BandGapNarrowing vertex , Section 5.2.2 eV

BeamGeneration OptBeam vertex , (Eq. 15.284)

BoronActiveConcentration vertex Section 2.14

cm 3–

cm 3–

cm 3–

GAlpha cm 3– s 1–

cm 3–

cm 3–

cm 3–

cm 3–

cm 3–

cm 3–

RA cm 3– s 1–

G|| cm 3– s 1–

Rbb cm 3– s 1–

Eg

∆Eg

Gopt cm 3– s 1–

cm 3–
 15.619

PART 15 DESSISAPPENDIX E DATA AND PLOT NAMES
BoronConcentration BoronConcentration vertex B, Section 2.14

BoronMinusConcentration bMinus vertex B-, Chapter 6

BuiltinPotential vertex , (Eq. 15.79), (Eq. 15.82),
(Eq. 15.83)

V

CDL1Recombination CDL1 vertex , Section 9.5

CDL2Recombination CDL2 vertex , Section 9.5

CDLcRecombination CDL3 vertex , Section 9.5

CDLRecombination CDL vertex , Section 9.5

ConductionBandEnergy ConductionBandEnergy vertex , (Eq. 15.62) eV

ConductionCurrentDensity ConductionCurrent vertex
, (Eq. 15.20) or

 in metals, (Eq. 15.54)

DeepLevels DeepLevels vertex Section 10.1

DielectricConstant element , (Eq. 15.19) 1

DielectricConstant vertex , (Eq. 15.19) 1

DielectricConstantAniso element , Section 20.3 1

DielectricConstantAniso vertex , Section 20.3 1

DisplacementCurrentDensity DisplacementCurrent vertex

DonorConcentration DonorConcentration vertex Section 2.14

DonorPlusConcentration vertex Section 2.14

DopingConcentration Doping vertex Section 2.14

eAlphaAvalanche vertex , (Eq. 15.238)

eAmorphousRecombination eGapStatesRecombination vertex Chapter 10

eAmorphousTrappedCharge eTrappedCharge vertex Chapter 10

eAugerRecombination vertex , (Eq. 15.231)

eAvalancheGeneration eAvalanche vertex , (Eq. 15.238)

eCDL1Lifetime eCDL1lifetime vertex , Section 9.5 s

eCDL2Lifetime eCDL2lifetime vertex , Section 9.5 s

eCurrentDensity eCurrent vertex , (Eq. 15.20)

eDensity eDensity vertex , (Eq. 15.19)

eDirectTunnelCurrent eDirectTunneling vertex Section 16.3.1

eDriftVelocity eDriftVelocity vertex , (Eq. 15.238)

eeDiffusionLNS vertex Table 15.119

eeDiffusionLNVSD vertex Table 15.119

Table 15.167 Scalar data

Data name Plot name Location Description Unit

cm 3–

cm 3–

ψ

R1 cm 3– s 1–

R2 cm 3– s 1–

R R– 1 R2– cm 3– s 1–

R cm 3– s 1–

EC

Jn Jp+

jM

Acm 2–

cm 3–

ε

ε

εaniso

εaniso

JD Acm 2–

cm 3–

cm 3–

cm 3–

αn cm 1–

cm 3– s 1–

cm 3–

Re
A cm 3– s 1–

Gn cm 3– s 1–

τn1

τn2

Jn Acm 2–

n cm 3–

Acm 2–

vn cm s 1–

C2s 1– cm 1–

V2scm 3–
15.620

PART 15 DESSIS APPENDIX E DATA AND PLOT NAMES
eEffectiveField eEffectiveField vertex , (Eq. 15.248)

eEffectiveStateDensity vertex , Section 5.3

eeFlickerGRLNS vertex Table 15.119

eeFlickerGRLNVSD vertex Table 15.119

eeLNVSD vertex Table 15.119

eeMonopolarGRLNS vertex Table 15.119

eeMonopolarGRLNVSD vertex Table 15.119

eEnormal eEnormal vertex , (Eq. 15.165) or
, (Eq. 15.166)

eEparallel eEparallel vertex , (Eq. 15.190)

eEquilibriumDensity eEquilibriumDensity vertex , (Eq. 15.19) at zero applied
voltages (zero currents)

EffectiveBandGap EffectiveBandGap vertex , Section 5.2.2 eV

EffectiveIntrinsicDensity EffectiveIntrinsicDensity vertex , (Eq. 15.103)

eGradQuasiFermi eGradQuasiFermi vertex , (Eq. 15.191)

eHeatFlux eHeatFlux vertex , (Eq. 15.31)

eInterfaceTrappedCharge vertex Chapter 10

eIonIntegral eIonIntegral vertex Section 9.10 1

eJouleHeat eJouleHeat vertex Table 15.53

ElectricField ElectricField vertex

ElectronAffinity ElectronAffinity vertex , Section 5.2.2 eV

ElectrostaticPotential Potential vertex , (Eq. 15.19) V

eLifetime eLifeTime vertex , (Eq. 15.200) s

EMLABGeneration vertex , Section 13.5

eMobility eMobility element , Chapter 8

eMobility eMobility vertex , Chapter 8

eMobilityAniso element , Section 20.1

eMobilityAniso vertex , Section 20.1

eMobilityAnisoFactor vertex , (Eq. 15.407) 1

eMobilityStressFactorXX eMobilityStressFactorXX vertex Section 22.4.1 1

eMobilityStressFactorXY eMobilityStressFactorXY vertex Section 22.4.1 1

eMobilityStressFactorXZ eMobilityStressFactorXZ vertex Section 22.4.1 1

eMobilityStressFactorYY eMobilityStressFactorYY vertex Section 22.4.1 1

eMobilityStressFactorYZ eMobilityStressFactorYZ vertex Section 22.4.1 1

Table 15.167 Scalar data

Data name Plot name Location Description Unit

En
eff Vcm 1–

NC cm 3–

C2s 1– cm 1–

V2scm 3–

V2scm 3–

C2s 1– cm 1–

V2scm 3–

F⊥
Fe ⊥,

Vcm 1–

Fe Vcm 1–

n cm 3–

Eg ∆Eg+

ni eff, cm 3–

ϕe∇ Vcm 1–

Sn Wcm 2–

cm 2–

Wcm 3–

E Vcm 1–

χ

ψ

τn

GEMLAB cm 3– s 1–

µn cm2V 1– s 1–

µn cm2V 1– s 1–

µn
aniso cm2V 1– s 1–

µn
aniso cm2V 1– s 1–

re
 15.621

PART 15 DESSISAPPENDIX E DATA AND PLOT NAMES
eMobilityStressFactorZZ eMobilityStressFactorZZ vertex Section 22.4.1 1

eNLLTunnelingGeneration eBarrierTunneling vertex Section 16.4

eQuantumPotential eQuantumPotential vertex , (Eq. 15.133) eV

eQuasiFermiPotential eQuasiFermi vertex , Section 4.3 V

EquilibriumPotential EquilibriumPotential vertex , (Eq. 15.19) at zero applied
voltages (zero currents)

V

eRelativeEffectiveMass vertex , Section 5.3 1

eSaturationVelocity vertex , Section 8.8.4

eSaturationVelocityAniso vertex , Section 20.1

eTemperature eTemperature vertex , Section 4.2.4 K

eTemperatureRelaxationTime vertex , (Eq. 15.43) s

eThermoElectricPower eThermelectricPower vertex , (Eq. 15.468)

eVelocity eVelocity vertex
, (Eq. 15.238)

FowlerNordheim FowlerNordheim vertex , (Eq. 15.339)

Grad2PoECACGreenFunction vertex Table 15.119

Grad2PoHCACGreenFunction vertex Table 15.119

hAlphaAvalanche vertex , (Eq. 15.238)

hAmorphousRecombination hGapStatesRecombination vertex Chapter 10

hAmorphousTrappedCharge hTrappedCharge vertex Chapter 10

hAugerRecombination vertex , (Eq. 15.231)

hAvalancheGeneration hAvalanche vertex , (Eq. 15.238)

hCDL1Lifetime hCDL1lifetime vertex , Section 9.5 s

hCDL2Lifetime hCDL2lifetime vertex , Section 9.5 s

hCurrentDensity hCurrent vertex , (Eq. 15.20)

hDensity hDensity vertex , (Eq. 15.19)

hDirectTunnelCurrent hDirectTunneling vertex Section 16.3.1

hDriftVelocity hDriftVelocity vertex , (Eq. 15.238)

HeavyIonChargeDensity HeavyIonChargeDensity vertex Section 14.2

HeavyIonGeneration vertex , (Eq. 15.320)

hEffectiveField hEffectiveField vertex , (Eq. 15.249)

hEffectiveStateDensity vertex , Section 5.3

Table 15.167 Scalar data

Data name Plot name Location Description Unit

cm 3– s 1–

Λn

Φn

Ψ

me

vsat,e cm s 1–

vsat,e
aniso cm s 1–

Tn

τen

Pn V K 1–

vn
Jn
nq
------=

cm s 1–

jFN Acm 2–

V2s2C 2– cm 2–

V2s2C 2– cm 2–

αp cm 1–

cm 3– s 1–

cm 3–

Rh
A cm 3– s 1–

Gp cm 3– s 1–

τp1

τp2

Jp Acm 2–

p cm 3–

Acm 2–

vp cm s 1–

cm 3–

GHeavyIon cm 3– s 1–

Ep
eff Vcm 1–

NV cm 3–
15.622

PART 15 DESSIS APPENDIX E DATA AND PLOT NAMES
heiTemperature HEItemperature vertex , hot-electron temperature,
computed as postprocessing
approach (CarrierTempPost),
Chapter 17

K

hEnormal hEnormal vertex , (Eq. 15.165) or
, (Eq. 15.166)

hEparallel hEparallel vertex , (Eq. 15.190)

hEquilibriumDensity hEquilibriumDensity vertex , (Eq. 15.19) at zero applied
voltages (zero currents)

hGradQuasiFermi hGradQuasiFermi vertex , (Eq. 15.191)

hhDiffusionLNS vertex Table 15.119

hhDiffusionLNVSD vertex Table 15.119

hHeatFlux hHeatFlux vertex , (Eq. 15.32)

hhFlickerGRLNS vertex Table 15.119

hhFlickerGRLNVSD vertex Table 15.119

hhLNVSD vertex Table 15.119

hhMonopolarGRLNS vertex Table 15.119

hhMonopolarGRLNVSD vertex Table 15.119

hInterfaceTrappedCharge vertex Chapter 10

hIonIntegral hIonIntegral vertex Section 9.10 1

hJouleHeat hJouleHeat vertex Table 15.53

hLifetime hLifeTime vertex , (Eq. 15.200) s

hMobility hMobility element , Chapter 8

hMobility hMobility vertex , Chapter 8

hMobilityAniso element , Section 20.1

hMobilityAniso vertex , Section 20.1

hMobilityAnisoFactor vertex , (Eq. 15.407) 1

hMobilityStressFactorXX hMobilityStressFactorXX vertex Section 22.4.1 1

hMobilityStressFactorXY hMobilityStressFactorXY vertex Section 22.4.1 1

hMobilityStressFactorXZ hMobilityStressFactorXZ vertex Section 22.4.1 1

hMobilityStressFactorYY hMobilityStressFactorYY vertex Section 22.4.1 1

hMobilityStressFactorYZ hMobilityStressFactorYZ vertex Section 22.4.1 1

hMobilityStressFactorZZ hMobilityStressFactorZZ vertex Section 22.4.1 1

hNLLTunnelingGeneration hBarrierTunneling vertex Section 16.4

Table 15.167 Scalar data

Data name Plot name Location Description Unit

Thei

F⊥
Fh ⊥,

Vcm 1–

Fh Vcm 1–

p cm 3–

ϕh∇ Vcm 1–

C2s 1– cm 1–

V2scm 3–

Sp Wcm 2–

C2s 1– cm 1–

V2scm 3–

V2scm 3–

C2s 1– cm 1–

V2scm 3–

cm 2–

Wcm 3–

τp

µp cm2V 1– s 1–

µp cm2V 1– s 1–

µp
aniso cm2V 1– s 1–

µp
aniso cm2V 1– s 1–

rh

cm 3– s 1–
 15.623

PART 15 DESSISAPPENDIX E DATA AND PLOT NAMES
HotElectronInj HotElectronInjection vertex Hot-electron current density
 at interface, (Eq. 15.373),

(Eq. 15.379)

HotHoleInj HotHoleInjection vertex Hot-hole current density at
interface, (Eq. 15.373),
(Eq. 15.379)

hQuantumPotential hQuantumPotential vertex , (Eq. 15.133) eV

hQuasiFermiPotential hQuasiFermi vertex , Section 4.3 V

hRelativeEffectiveMass vertex , Section 5.3 1

hSaturationVelocity vertex , Section 8.8.4

hSaturationVelocityAniso vertex , Section 20.1

hTemperature hTemperature vertex , Section 4.2.4 K

hTemperatureRelaxationTime vertex , (Eq. 15.44) s

hThermoElectricPower hThermelectricPower vertex , (Eq. 15.469)

hVelocity hVelocity vertex
, (Eq. 15.238)

ImeeDiffusionLNVXVSD vertex Table 15.120

ImeeFlickerGRLNVXVSD vertex Table 15.120

ImeeLNVXVSD vertex Table 15.120

ImeeMonopolarGRLNVXVSD vertex Table 15.120

ImhhDiffusionLNVXVSD vertex Table 15.120

ImhhFlickerGRLNVXVSD vertex Table 15.120

ImhhLNVXVSD vertex Table 15.120

ImhhMonopolarGRLNVXVSD vertex Table 15.120

ImLNVXVSD vertex Table 15.120

IndiumActiveConcentration vertex Section 2.14

IndiumConcentration IndiumConcentration vertex In, Section 2.14

IndiumMinusConcentration inMinus vertex In-, Chapter 6

IntrinsicDensity IntrinsicDensity vertex , (Eq. 15.102)

LatticeHeatCapacity vertex , Section 24.1

LatticeTemperature LatticeTemperature,
Temperature

vertex , Section 4.2.3 K

lHeatFlux lHeatFlux vertex , (Eq. 15.33)

LNVSD vertex Table 15.119

MeanIonIntegral MeanIonIntegral vertex Section 9.10 1

Table 15.167 Scalar data

Data name Plot name Location Description Unit

jhe

Acm 2–

jhh Acm 2–

Λp

Φp

mh

vsat,h cm s 1–

vsat,h
aniso cm s 1–

Tp

τep

Pp V K 1–

vp
Jp
pq
------=

cm s 1–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

cm 3–

cm 3–

cm 3–

ni cm 3–

c JK 1– cm 3–

T

SL Wcm 2–

V2scm 3–
15.624

PART 15 DESSIS APPENDIX E DATA AND PLOT NAMES
NDopantActiveConcentration vertex Section 2.14

NDopantConcentration NdopantConcentration vertex NDopant, Section 2.14

NDopantPlusConcentration NdopantPlus vertex NDopant+, Chapter 6

NitrogenActiveConcentration vertex Section 2.14

NitrogenConcentration NitrogenConcentration vertex N, Section 2.14

NitrogenPlusConcentration NitrogenPlus vertex N+, Chapter 6

OneOverDegradationTime vertex Chapter 11

OpticalGeneration OpticalGeneration vertex , (Eq. 15.304)

OpticalGenerationFile OpticalGenerationFile vertex Section 13.4

PDopantActiveConcentration vertex Section 2.14

PDopantConcentration pDopantConcentration vertex PDopant, Section 2.14

PDopantMinusConcentration pDopantMinus vertex PDopant–, Chapter 6

PE_Charge PE_Charge vertex , (Eq. 15.675)

PeltierHeat PeltierHeat vertex Table 15.53

PhosphorusActiveConcentration vertex Section 2.14

PhosphorusConcentration PhosphorusConcentration vertex P, Section 2.14

PhosphorusPlusConcentration phPlus vertex P+, Chapter 6

PiezoFactorN11 PiezoFactorn11 vertex , Section 22.4

PiezoFactorN12 PiezoFactorn12 vertex , Section 22.4

PiezoFactorN44 PiezoFactorn44 vertex , Section 22.4

PiezoFactorP11 PiezoFactorp11 vertex , Section 22.4

PiezoFactorP12 PiezoFactorp12 vertex , Section 22.4

PiezoFactorP44 PiezoFactorp44 vertex , Section 22.4

PMIRecombination PMIRecombination vertex , Section 33.7

PMIUserField0 PMIUserField0 vertex Section 33.4 1

PMIUserField1 PMIUserField1 vertex Section 33.4 1

PMIUserField2 PMIUserField2 vertex Section 33.4 1

PMIUserField3 PMIUserField3 vertex Section 33.4 1

PMIUserField4 PMIUserField4 vertex Section 33.4 1

PMIUserField5 PMIUserField5 vertex Section 33.4 1

PMIUserField6 PMIUserField6 vertex Section 33.4 1

PMIUserField7 PMIUserField7 vertex Section 33.4 1

PMIUserField8 PMIUserField8 vertex Section 33.4 1

Table 15.167 Scalar data

Data name Plot name Location Description Unit

cm 3–

cm 3–

cm 3–

cm 3–

cm 3–

cm 3–

s 1–

G0
opt cm 3– s 1–

cm 3– s 1–

cm 3–

cm 3–

cm 3–

qPE cm 3–

Wcm 3–

cm 3–

cm 3–

cm 3–

Π11
n cm2dyn 1–

Π12
n cm2dyn 1–

Π44
n cm2dyn 1–

Π11
p cm2dyn 1–

Π12
p cm2dyn 1–

Π44
p cm2dyn 1–

RPMI cm 3– s 1–
 15.625

PART 15 DESSISAPPENDIX E DATA AND PLOT NAMES
PMIUserField9 PMIUserField9 vertex Section 33.4 1

PoECImACGreenFunction vertex Table 15.119

PoECReACGreenFunction vertex Table 15.119

PoETImACGreenFunction vertex Table 15.119

PoETReACGreenFunction vertex Table 15.119

PoHCImACGreenFunction vertex Table 15.119

PoHCReACGreenFunction vertex Table 15.119

PoHTImACGreenFunction vertex Table 15.119

PoHTReACGreenFunction vertex Table 15.119

Polarization Polarization vertex , Chapter 21

QuasiFermiPotential vertex , (Eq. 15.92) V

RadiationGeneration vertex , (Eq. 15.280)

RadiativeRecombination RadiativeRecombination vertex , (Eq. 15.230)

RecombinationHeat RecombinationHeat vertex Table 15.53

ReeeDiffusionLNVXVSD vertex Table 15.120

ReeeFlickerGRLNVXVSD vertex Table 15.120

ReeeLNVXVSD vertex Table 15.120

ReeeMonopolarGRLNVXVSD vertex Table 15.120

RefractiveIndex element , Section 13.3.5 1

RefractiveIndex vertex , Section 13.3.5 1

RehhDiffusionLNVXVSD vertex Table 15.120

RehhFlickerGRLNVXVSD vertex Table 15.120

RehhLNVXVSD vertex Table 15.120

RehhMonopolarGRLNVXVSD vertex Table 15.120

ReLNVXVSD vertex Table 15.120

SpaceCharge SpaceCharge vertex (Eq. 15.19)

SRHRecombination SRHRecombination vertex , Section 9.1

StressXX Stressxx vertex Chapter 22 Pa

StressXY Stressxy vertex Chapter 22 Pa

StressXZ Stressxz vertex Chapter 22 Pa

StressYY Stressyy vertex Chapter 22 Pa

StressYZ Stressyz vertex Chapter 22 Pa

StressZZ Stresszz vertex Chapter 22 Pa

Table 15.167 Scalar data

Data name Plot name Location Description Unit

VsC 1–

VsC 1–

A 1–

A 1–

VsC 1–

VsC 1–

A 1–

A 1–

P Ccm 2–

Φ

Gr cm 3– s 1–

R cm 3– s 1–

Wcm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

n

n

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

V2scm 3–

cm 3–

RSRH cm 3– s 1–
15.626

PART 15 DESSIS APPENDIX E DATA AND PLOT NAMES
SurfaceMultRecombination SurfaceMultRecombination vertex Section 9.4

SurfaceRecombination SurfaceRecombination vertex Section 9.4

ThermalConductivity ThermalConductivity vertex , (Eq. 15.467)

ThermalConductivityAniso vertex , Section 20.4

ThomsonHeat ThomsonHeat vertex Table 15.53

TotalConcentration vertex Section 2.14

TotalCurrentDensity Current vertex

TotalHeat TotalHeat vertex Sum of all heat generation
terms, Section 4.2.3,
Section 4.2.4, Section 4.2.5

TotalInterfaceTrapConcentration vertex Chapter 10

TotalRecombination TotalRecombination vertex Sum of all generation–
recombination terms, Chapter 9

TotalTrapConcentration vertex Chapter 10

ValenceBandEnergy ValenceBandEnergy vertex , (Eq. 15.63) eV

xMoleFraction xMoleFraction vertex Section 18.4 1

yMoleFraction yMoleFraction vertex Section 18.4 1

Table 15.168 Vector data

Data name Plot name Location Description Unit

ConductionCurrentDensity ConductionCurrent vertex
, (Eq. 15.20) or

 in metals, (Eq. 15.54)

DisplacementCurrentDensity DisplacementCurrent vertex

eCurrentDensity eCurrent vertex , (Eq. 15.20)

eDriftVelocity eDriftVelocity vertex , (Eq. 15.238)

eGradQuasiFermi eGradQuasiFermi vertex , (Eq. 15.191)

eHeatFlux eHeatFlux vertex , (Eq. 15.31)

ElectricField ElectricField vertex

EquilibriumElectricField vertex , (Eq. 15.86)

eVelocity eVelocity vertex
, (Eq. 15.238)

GradPoECImACGreenFunction vertex Table 15.119

GradPoECReACGreenFunction vertex Table 15.119

Table 15.167 Scalar data

Data name Plot name Location Description Unit

cm 3– s 1–

cm 3– s 1–

κ Wcm 1– K 1–

κaniso Wcm 1– K 1–

Wcm 3–

cm 3–

Jn Jp JD+ + Acm 2–

Wcm 3–

cm 2–

cm 3– s 1–

cm 3–

EV

Jn Jp+
jM

Acm 2–

JD Acm 2–

Jn Acm 2–

vn cm s 1–

ϕe∇ Vcm 1–

Sn Wcm 2–

E Vcm 1–

Eeq Vcm 1–

vn
Jn
nq
------=

cm s 1–

VsC 1– cm 1–

VsC 1– cm 1–
 15.627

PART 15 DESSISAPPENDIX E DATA AND PLOT NAMES
GradPoETImACGreenFunction vertex Table 15.119

GradPoETReACGreenFunction vertex Table 15.119

GradPoHCImACGreenFunction vertex Table 15.119

GradPoHCReACGreenFunction vertex Table 15.119

GradPoHTImACGreenFunction vertex Table 15.119

GradPoHTReACGreenFunction vertex Table 15.119

hCurrentDensity hCurrent vertex , (Eq. 15.20)

hDriftVelocity hDriftVelocity vertex , (Eq. 15.238)

hGradQuasiFermi hGradQuasiFermi vertex , (Eq. 15.191)

hHeatFlux hHeatFlux vertex , (Eq. 15.32)

hVelocity hVelocity vertex
, (Eq. 15.238)

lHeatFlux lHeatFlux vertex , (Eq. 15.33)

NonLocalBackDirection NonLocal vertex Section 2.10.7.2

NonLocalDirection NonLocal vertex Section 2.10.7.2

PE_Polarization PE_Polarization vertex , (Eq. 15.675)

Polarization Polarization element , Chapter 21

Polarization Polarization vertex , Chapter 21

TotalCurrentDensity Current vertex

Table 15.168 Vector data

Data name Plot name Location Description Unit

A 1– cm 1–

A 1– cm 1–

VsC 1– cm 1–

VsC 1– cm 1–

A 1– cm 1–

A 1– cm 1–

Jp Acm 2–

vp cm s 1–

ϕh∇ Vcm 1–

Sp Wcm 2–

vp
Jp
pq
------=

cm s 1–

SL Wcm 2–

µm

µm

PPE Ccm 2–

P Ccm 2–

P Ccm 2–

Jn Jp JD+ + Acm 2–
15.628

PART 15 DESSIS BIBLIOGRAPHY
DESSIS

Bibliography

[1] R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical Methods for Semiconductor Device Simulation,”
IEEE Transactions on Electron Devices, vol. ED-30, pp. 1031–1041, 1983.

[2] G. Wachutka, “An extended thermodynamic model for the simultaneous simulation of the thermal and
electrical behavior of semiconductor devices,” in Proceedings of the Sixth International NASECODE
Conference (J. J. H. Miller, ed.), Boole Press Ltd., pp. 409–414, 1989.

[3] A. Benvenuti, G. Ghione, M. R. Pinto, J. W. M. Coughran, and N. L. Schryer, “Coupled thermal-fully
hydrodynamic simulation of InP-based HBTs,” in IEDM Technical Digest, pp. 737–740, 1992.

[4] A. Schenk and S. Müller, “Analytical Model of the Metal-Semiconductor Contact for Device
Simulation,” in Simulation of Semiconductor Devices and Processes, vol. 5, pp. 441–444, Sept. 7–9,
Vienna, Austria, 1993.

[5] A. Liegmann, “The application of supernodal techniques on the solution of structurally symmetric
systems,” Technical Report 92/5, Integrated Systems Laboratory, ETH Zurich, Switzerland, 1992.

[6] T.-W. Tang, “Extension of the Scharfetter-Gummel algorithm to the energy balance equation,” IEEE
Transactions on Electron Devices, vol. ED-31, no. 12, pp. 1912–1914, 1984.

[7] C. C. McAndrew, K. Singhal, and E. L. Heasell, “A consistent nonisothermal extension of the Scharfetter-
Gummel stable difference approximation,” IEEE Electron Device Letters, vol. EDL-6, no. 9,
pp. 446–447, 1985.

[8] B. Meinerzhagen, K. B. Bach, I. Bork, and W. Engl, “A new highly efficient nonlinear relaxation scheme
for hydrodynamic MOS simulations,” NUPAD IV Conf. Dig. Tech. Papers, pp. 91–96, 1992.

[9] Y. Apanovich, E. Lyumkis, B. Polsky, and P. Blakey, “An investigation of coupled and decoupled
iterative algorithms for energy balance calculations,” in Proc. SISDEP V, Zurich, Switzerland,
pp. 233–236, 1993.

[10] Y. Apanovich, P.Blakey, R.Cottle, E. Lyumkis, B. Polsky, A.Shur,and A.Tcherniaev, “Numerical
simulation of submicrometer devices including coupled nonlocal transport and nonisothermal effects,”
IEEE Transactions on Electron Devices, vol. ED-42, pp. 890–898, May, 1995.

[11] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. New York: John Wiley & Sons,
1985.

[12] R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev., vol. 126, no. 6,
pp. 2002–2014, 1962.

[13] K. Bløtekjær, “Transport equations for electrons in two-valley semiconductors,” IEEE Transactions on
Electron Devices, vol. ED-17, no. 1, pp. 38–47, 1970.

[14] A. Benvenuti, G. Ghione, and C. U. Naldi, “Non-stationary transport hbt modeling under non-isothermal
conditions,” in SISDEP-5, Vienna, pp. 453–456, Sept., 1993.

[15] J. W. Roberts and S. G. Chamberlain, “Energy-momentum transport model suitable for small geometry
silicon device simulation,” COMPEL, vol. 9, no. 1, pp. 1–22, 1990.

[16] A. Benvenuti, M. R. Pinto, J. W. M. Coughran, N. L. Schryer, C. U. Naldi, and G. Ghione, “Evaluation
of the influence of convective energy in hbts using a fully-hydrodynamic model,” in IEDM Technical
Digest, pp. 499–502, 1991.
 15.629

PART 15 DESSISBIBLIOGRAPHY
[17] A. Benvenuti, F. Bonani, G. Ghione, C. U. Naldi, M. Kärner, and K. Schaper, “Analysis of output ndr in
power AlGaAs/GaAs hbts by means of a thermal-fully hydrodynamic model,” in ISDRS 93 Proceedings,
pp. 499–502, 1993.

[18] S. Szeto and R. Reif, “A unified electrothermal hot-carrier transport model for silicon bipolar transistor
simulation,” Solid-State Electronics, vol. 32, no. 4, pp. 307–315, 1989.

[19] A. Pierantoni, A. Liuzzo, P. Ciampolini, and G. Baccarani, “Three-dimensional implementation of a
unified transport model,” in SISDEP, pp. 125–128, 1993.

[20] D. Chen, Z. Yu, K.-C. Wu, R. Goosens, and R. W. Dutton, “Dual energy transport model with coupled
lattice and carrier temperatures,” in SISDEP-5, Vienna, pp. 157–160, Sept., 1993.

[21] “Six-month technical report, period 1 (May 27 – November 26, 1992),” in ESPRIT-6075 (DESSIS) Project
Report, 1992.

[22] A. Bringer and G. Schön, “Extended moment equations for electron transport in semiconducting
submicron structures,” Journal of Applied Physics, vol. 64, no. 5, pp. 2447–55, 1988.

[23] M. A. Stettler, M. A. Alam, and M. S. Lundstrom, “A critical examination of the assumptions underlying
macroscopic transport equations for silicon devices,” IEEE Transactions on Electron Devices, vol. 40,
no. 4, pp. 733–740, 1983.

[24] B. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in silicon,”
Solid-State Electronics, vol. 28, no. 4, pp. 407–416, 1985.

[25] E. M. Azoff, “Semiclassical high-field transport equations for nonparabolic heterostructure degenerate
semiconductors,” Journal of Applied Physics, vol. 64, no. 5, pp. 2439–2446, 1988.

[26] M. Stecher, B. Meinerzhagen, I. Bork, and W. L. Engl, “On the influence of thermal diffusion and heat
flux on bipolar device and circuit performance,” in SISDEP-5, Vienna, pp. 49–52, Sept., 1993.

[27] M. C. Vecchi and L. G. Reyna, “Generalized energy transport models for semiconductor device
simulation,” Solid-State Electronics, vol. 37, no. 10, pp. 1705–1716, 1994.

[28] Y. Apanovich, E. Lyumkis, B. Polsky, A. Shur, and P. Blakey, “Steady-state and transient analysis of
submicron devices using energy balance and simplified hydrodynamic models,” IEEE Transactions on
CAD, vol. 13, pp. 702–710, June, 1994.

[29] D. Chen, E. Sangiori, M. R. Pinto, E. C. Kan, U. Ravaioli, and R. W. Dutton, “An improved energy
transport model including nonparabolicity and non-Maxwellian distribution effects,” IEEE Transactions
on Electron Devices, vol. ED-39, pp. 26–28, January, 1992.

[30] G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor
device modeling,” IEEE Trans., vol. CAD-9, pp. 1141–1149, 1990.

[31] J. A. Andrews, “Package thermal resistance model: Dependency on equipment design,” IEEE
Transactions on Components, Hybrids, and Manufacturing Technology, vol. 11, pp. 528–537, December,
1988.

[32] J. N. Sweet and W. T. Cooley, “Thermal resistance measurement and finite element calculations for
ceramic hermetic packages,” in Proc. Sixth IEEE SEMI-THERM Symposium, pp. 10–16, 1990.

[33] T. Hopkins, C. Cognetti, and R. Tiziani, “Designing with thermal impedance,” in Proc. Fourth IEEE
SEMI-THERM Symposium, pp. 55–61, 1988.

[34] R. L. Kozarek, “Effect of case temperature measurement errors on the junction-to-case thermal resistance
of a ceramic PGA,” in Proc. Sixth IEEE SEMI-THERM Symposium, pp. 44–51, 1991.

[35] Y. J. Min, A. L. Palisoc, and C. C. Lee, “Transient thermal study of semiconductor devices,” IEEE Trans.
Components, Hybrids, and Manufacturing Technology, vol. 13, no. 4, pp. 980–988, 1990.

[36] F. Curatelli and G. M. Bisio, “Characterization of the thermal behaviour in ICs,” Solid-State Electronics,
vol. 34, no. 7, pp. 751–760, 1991.
15.630

PART 15 DESSIS BIBLIOGRAPHY
[37] G. N. Ellison, “Tams: A thermal analyzer for multilayer structures,” Electrosoft, vol. 1, no. 2, pp. 85–97,
1990.

[38] R. A. Tatara, “Thermal modeling previews electronic device performance,” PCIM, pp. 9–21, October
1991.

[39] S. Song and M. M. Yovanovich, “Relative contact pressure: Dependence on surface roughness and
vickers microhardness,” AIAA Journal of Thermophysics and Heat Transfer, vol. 2, pp. 43–47, January,
1988.

[40] V. P. Deshwal, B. B. Dixit, K. M. K. Srivatsa, P. D. Vyas, and W. S. Khokle, “Optimum thickness
determination of the electrode for large silicon power devices and its improved bonding with silicon wafer
having n-doped substrate,” Indian Journal of Technology, vol. 29, pp. 395–398, August, 1991.

[41] W. S. Childres and G. P. Peterson, “Quantification of thermal contact conductance in electronic
packages,” in Proc. Fifth IEEE SEMI-THERM Symposium, pp. 30–36, 1989.

[42] D. J. Dean, Thermal Design of Electronic Circuit Boards and Packages, Ayr, Scotland: Electrochemical
Publications, Ltd., 1985.

[43] G. N. Ellison, “Theoretical calculation of the thermal resistance of a conducting and convecting surface,”
IEEE Trans. Parts, Hybrids, and Packaging, vol. PHP-12, pp. 265–266, September, 1976.

[44] S. N. Rea and S. E. West, “Thermal radiation from finned heat sinks,” IEEE Trans. Parts, Hybrids, and
Packaging, vol. PHP-12, pp. 115–117, September 1976.

[45] L. Buller and B. McNelis, “Effects of radiation on enhanced electronic cooling,” IEEE Trans.
Components, Hybrids, and Manufacturing Technology, vol. 11, pp. 538–544, December, 1988.

[46] C. Zardini, F. Rodes, G. Duchamp, and J.-L. Aucouturier, “3d thermal simulation of power hybrid
assemblies,” Hybrid Circuits, pp. 20–22, January, 1991.

[47] I. Hirsch, E. Berman, and N. Haik, “Thermal resistance evaluation in 3D thermal simulation of MOSFET
transistors,” Solid-State Electronics, pp. 106–108, January, 1991.

[48] M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in Silicon,” Journal
of Applied Physics, vol. 67, no. 6, pp. 2944–54, 1990.

[49] J. E. Lang, F. L. Madarasz, and P. M. Hemeger, “Temperature dependent density of states effective mass
in nonparabolic p-type Silicon,” Journal of Applied Physics, vol. 54, no. 6, p. 3612, 1983.

[50] W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap in Silicon,” Journal of
Applied Physics, vol. 45, no. 4, pp. 1846–1848, 1974.

[51] J. W. Slotboom and H. C. de Graaff, “Measurements of Bandgap Narrowing in Si Bipolar Transistors,”
Solid-State Electronics, vol. 19, pp. 857–862, 1976.

[52] J. W. Slotboom and H. C. de Graaff, “Bandgap Narrowing in Silicon Bipolar Transistors,” IEEE
Transactions on Electron Devices, vol. ED-24, no. 8, pp. 1123–1125, 1977.

[53] J. W. Slotboom, “The pn-Product in Silicon,” Solid-State Electronics, vol. 20, pp. 279–283, 1977.

[54] D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- and
p-type Silicon,” Solid-State Electronics, vol. 35, no. 2, pp. 125–129, 1992.

[55] J. del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous measuring of hole lifetime, hole mobility
and bandgap narrowing in heavily doped n-type Silicon,” in IEDM Technical Digest, pp. 290–293,
December 1985.

[56] J. del Alamo, S. Swirhun, and R. M. Swanson, “Measuring and modeling minority carrier transport in
heavily doped Silicon,” Solid-State Electronics, vol. 28, no. 1, pp. 47–54, 1985.
 15.631

PART 15 DESSISBIBLIOGRAPHY
[57] S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson, “Measurement of electron lifetime, electron mobility
and bandgap narrowing in heavily doped p-type Silicon,” in IEDM Technical Digest, pp. 24–27,
December 1986.

[58] S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, “Measurement of hole mobility in heavily doped n-
type Silicon,” IEEE Electron Device Letters, vol. EDL-7, no. 3, pp. 168–171, 1986.

[59] J. del Alamo and R. M. Swanson, “Measurement of steady-state minority carrier transport parameters in
heavily doped n-type Silicon,” IEEE Transactions on Electron Devices, vol. ED-34, no. 7,
pp. 1580–1589, 1987.

[60] H. S. Bennett and C. L. Wilson, “Statistical Comparisons of Data on Band-Gap Narrowing in Heavily
Doped Silicon: Electrical and Optical Measurements,” Journal of Applied Physics, vol. 55, no. 10,
pp. 3582–3587, 1984.

[61] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based Mobility Model for Numerical
Simulation of Nonplanar Devices,” IEEE Transactions on CAD, vol. 7, no. 11, pp. 1164–1171, 1988.

[62] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in
Arsenic-, Phosphorus- and Boron-doped Silicon,” IEEE Transactions on Electron Devices, vol. ED-30,
pp. 764–769, 1983.

[63] D. M. Caughey and R. E. Thomas, “Carrier mobilities in Silicon empirically related to doping and field,”
Proc. IEEE, pp. 2192–2193, Dec. 1967.

[64] S. C. Choo, “Theory of a Forward-Biased Diffused-Junction P-L-N Rectifier. Part I: Exact Numerical
Solutions,” IEEE Transactions on Electron Devices, vol. ED-19, no. 8, pp. 954–966, 1972.

[65] N. H. Fletcher, “The high current limit for semiconductor junction devices,” Proceedings of Institute of
Radio Engineers, vol. 45, pp. 862–872, 1957.

[66] D. B. M. Klaassen, “A unified mobility model for device simulation – I. Model equations and
concentration dependence,” Solid-State Electronics, vol. 35, no. 7, pp. 953–959, 1992.

[67] C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole drift velocity measurements in
Silicon and their empirical relation to electric field and temperature,” IEEE Transactions on Electron
Devices, vol. ED-22, pp. 1045–1047, 1975.

[68] B. Meinerzhagen and W. L. Engl, “The influence of the thermal equilibrium approximation on the
accuracy of classical two-dimensional numerical modeling of silicon submicrometer mos transistors,”
IEEE Transactions Electron Devices, vol. 35, no. 5, pp. 689–697, 1988.

[69] D. Kendall. presented at the Conf. Physics and Application of Lithium Diffused Silicon, NASA, Goddard
Space Flight Center, December, 1969.

[70] J. G. Fossum, “Computer-aided numerical analysis of Silicon solar cells,” Solid-State Electronics, vol. 19,
pp. 269–277, 1976.

[71] J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density
in nondegenerate Silicon,” Solid-State Electronics, vol. 25, no. 8, pp. 741–747, 1982.

[72] J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped
Silicon,” Solid-State Electronics, vol. 26, no. 6, pp. 569–576, 1983.

[73] A. Schenk, “A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in
Silicon,” Solid-State Electronics, vol. 35, no. 11, pp. 1585–1596, 1992.

[74] M. S. Tyagi and R. van Overstraeten, “Minority carrier recombination in heavily-doped Silicon,”
Solid-State Electronics, vol. 26, no. 6, pp. 577–597, 1983.

[75] H. Goebel and K. Hoffmann, “Full dynamic power diode model including temperature behavior for use
in circuit simulators,” in Proceedings of 1992 International Symposium on Power Semiconductor Devices
& ICs, (Tokyo), pp. 130–135, 1992.
15.632

PART 15 DESSIS BIBLIOGRAPHY
[76] U. Lindefelt. ABB Corporate Research, Västerås, Sweden. private communication.

[77] R. R. King, R. A. Sinton, and R. M. Swanson, “Studies of diffused phosphorus emitters: Saturation
current, surface recombination velocity, and quantum efficiency,” IEEE Transactions on Electron
Devices, vol. 37, pp. 365–371, 1990.

[78] R. R. King and R. M. Swanson, “Studies of diffused boron emitters: Saturation current, bandgap
narrowing, and surface recombination velocity,” IEEE Transactions on Electron Devices, vol. 38,
pp. 1399–1409, 1991.

[79] A. Cuevas, P. A. Basore, G. Giroult-Matlakowski, and C. DuBois, “Surface recombination velocity and
bandgap narrowing of highly doped n-type silicon,” in Proceedings of the 13th European Photovoltaic
Solar Energy Conference, (Nice, France), Oct. 1995. To be published.

[80] A. Schenk and U. Krumbein, “Coupled Defect-Level Recombination: Theory and Application to
Anomalous Diode Characteristics,” Journal of Applied Physics, vol. 77, no. 17, p. n.n., 1995.

[81] L. Huldt, N. G. Nilsson, and K. G. Svantesson, “The temperature dependence of band-to-band Auger
recombination in silicon,” Applied Physics Letters, vol. 35, no. 10, p. 776, 1979.

[82] W. Lochmann and A. Haug, “Phonon-assisted Auger recombination in Si with direct calculation of the
overlap integrals,” Solid-State Communications, vol. 35, pp. 553–556, 1980.

[83] R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” Journal of Applied
Physics, vol. 75, pp. 7570–7572, 1994.

[84] A. G. Chynoweth, “Ionization rates for electrons and holes in Silicon,” Phys. Rev., vol. 109, no. 5,
pp. 1537–1540, 1958.

[85] R. V. Overstraeten and H. D. Man, “Measurement of the ionization rates in diffused Silicon p-n
junctions,” Solid-State Electronics, vol. 13, pp. 583–608, 1970.

[86] Y. Okuto and C. R. Crowell, “Threshold energy effects on avalanche breakdown voltage in
semiconductor junctions,” Solid-State Electronics, vol. 18, pp. 161–168, 1975.

[87] T. Lackner, “Avalanche Multiplication in Semiconductors: A Modification of Chynoweth’s Law,”
Solid-State Electronics, vol. 34, pp. 33–42, 1991.

[88] A. Schenk, “Rigorous theory and simplified model of the band-to-band tunneling in Silicon,” Solid-State
Electronics, vol. 36, no. 1, pp. 19–34, 1993.

[89] A. Erlebach, “Parameter für die Ladungsträgergeneration bei Alphateilcheneinfall in Silizium,” private
communication.

[90] L. C. Northcliffe and R. F. Schilling, “Range and stopping-power tables for heavy ions,” Nuclear Data
Tables, vol. A7, pp. 233–463, 1970.

[91] C. Fiegna, F. Venturi, M. Melanotte, E. Sangiorgi, and B. Riccò, “Simple and efficient modeling of
EPROM writing,” IEEE Transactions on Electron Devices, vol. ED-38, no. 3, pp. 603–610, 1991.

[92] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 2nd ed., 1981.

[93] C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the
melting point,” Physical Review, vol. 134, pp. A1058–A1069, May, 1964.

[94] S. S. Furkay, “Thermal characterization of plastic and ceramic surface-mount components,” IEEE Trans.
Components, Hybrids, and Manufacturing Technology, vol. 11, pp. 521–527, December, 1988.

[95] R. A. Smith, Semiconductors, Cambridge: University Press, 2nd ed., 1978.

[96] C. Herring, “The role of low-frequency phonons in thermoelectricity and thermal conduction,” in Proc.
Internat. Colloq. “Semiconductors and Phosphors” at Garmisch Partenkirchen, 1956.

[97] T. H. Geballe and G. W. Hull, “Seebeck effect in silicon,” Physical Review, vol. 98, pp. 941–947, 1955.
 15.633

PART 15 DESSISBIBLIOGRAPHY
[98] W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. McElroy, “Thermal conductivity,
electrical resistivity, and seebeck coefficient of Silicon from 100 to 1300 K,” Phys. Rev., vol. 167, no. 3,
pp. 765–782, 1968.

[99] R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs: Prentice-Hall, 1962.

[100] E. M. Buturla, P. E. Cottrell, B. M. Grossman, and K. A. Salsburg, “Finite-element analysis of
semiconductor devices: The FIELDAY program,” IBM J. Res. Develop., vol. 25, pp. 218–239, 1981.

[101] R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith, “Transient
simulation of silicon devices and circuits,” IEEE Trans., vol. CAD-4, pp. 436–451, 1985.

[102] R. E. Bank and D. J. Rose, “Global Approximate Newton Methods,” Numer. Math., vol. 37, pp. 279–295,
1981.

[103] W. Allegretto, A. Nathan, and H. Baltes, “Numerical Analysis of Magnetic-Field-Sensitive Bipolar
Devices,” IEEE Transactions on CAD, vol. CAD-10, pp. 501–511, 1991.

[104] C. Riccobene, G. Wachutka, J. F. Bürgler, and H. Baltes, “Operating Principle of Dual Collector
Magnetotransistors Studied by Two-Dimensional Simulation,” IEEE Transactions on Electron Devices,
vol. ED-41, pp. 1136–1148, 1994.

[105] C. Riccobene, K. Gärtner, G. Wachutka, H. Baltes, and W. Fichtner, “First Three-Dimensional
Numerical Analysis of Magnetic Vector Probe,” in IEDM Technical Digest, San Francisco, California,
USA, pp. 727–730, 1994.

[106] M. Lades, J. Frank, J. Funk, and G. Wachutka, “Analysis of Piezoresistive Effects in Silicon Structures
Using Multidimensional Process and Device Simulation,” in SISDEP-6, (Erlangen), pp. 82–85,
September, 1995.

[107] Z. Z. Wang, Modélisation de la piézorésistivité du Silicium, Ph.D. thesis, University of Science and
Technology, Lille, France, 1994.

[108] J. F. Nye, Physical Properties of Crystals, Oxford: Clarendon Press, 1985.

[109] Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon,” IEEE
Transactions on Electron Devices, vol. 29, pp. 64–70, 1982.

[110] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Wien: Springer, 1984.

[111] S. Wolfram, Mathematica, Redwood City: Addison-Wesley, 1991.

[112] M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A Simple Model for Quantization Effects in Heavily-
Doped Silicon MOSFETs at Inversion Conditions,” Solid-State Electronics, vol. 37, no. 3, pp. 411–414,
1994.

[113] S. A. Hareland, S. Jallepalli, G. Chindalore, W.-K. Shih, A. F. Tasch, Jr., and C. M. Maziar, “A Simple
Model for Quantum Mechanical Effects in Hole Inversion Layers in Silicon PMOS Devices,” IEEE
Transactions on Electron Devices, vol. 44, no. 7, pp. 1172–1173, 1997.

[114] J. J. Liou, “Modeling the Tunneling Current in Reverse-Biased p/n Junctions”, Solid-State Electronics,
vol. 33, no. 7, pp. 971–972, 1990.

[115] K. Hasnat, C.-F. Yeap, W.-K. Shih, S. A. Hareland, V. M. Agostinelli, A. F. Tasch, and C. M. Mazair, “A
Pseudo-Lucky Electron Model for Simulation of Electron Gate Current in Submicron NMOSFET’s,”
IEEE Transactions on Electron Devices, vol. 43, no. 8, pp. 1264–1273, 1996.

[116] M. N. Darwish, J. L. Lentz, M. R. Pinto, P. M. Zeitzoff, T. J. Krutsick, and H. H. Vuong, “An Improved
Electron and Hole Mobility Model for General Purpose Device Simulation,” IEEE Transactions on
Electron Devices, vol. 44, no. 9, pp. 1529–1538, 1997.

[117] N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and Hole Mobilities in Silicon as a Function of
Concentration and Temperature,” IEEE Transactions on Electron Devices, vol. ED-29, pp. 292–295,
1982.
15.634

PART 15 DESSIS BIBLIOGRAPHY
[118] A. Schenk and G. Heiser, “Modeling and Simulation of Tunneling through Ultra-Thin Gate Dielectrics,”
Journal of Applied Physics, vol. 81, no. 12, p.7900.

[119] F. Bonani, G. Ghione, M.R. Pinto, and R.K. Smith, “An Efficient Approach to Noise Analysis through
Multidimensional Physics-based Models,” IEEE Transactions on Electron Devices, vol.45, pp. 261–269,
1998.

[120] J.-P. Nougier, “Fluctuations and Noise of Hot Carriers in Semiconductor Materials and Devices,” IEEE
Transactions on Electron Devices, vol.41, pp. 2034–2049, 1994.

[121] B. Jiang, P. Zurcher, R. E. Jones, S. J. Gillespie, and J. C. Lee, “Computationally Efficient Ferroelectric
Capacitor Model for Circuit Simulation,” in Symposium on VLSI Technology Digest of Technical Papers,
pp. 141–142, 1997.

[122] K. Dragosits, Modeling and Simulation of Ferroelectric Devices, Ph.D. thesis, Fakultät für Elektrotechnik
und Informationstechnik, Technische Universität Wien, 2000.

[123] J.-L. Leray, “Total Dose Effects: Modeling For Present And Future,” IEEE NSREC Short Course, 1999.

[124] D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Springer, 1994.

[125] K. Horio and H. Yanai, “Numerical Modeling of Heterojunctions Including the Thermionic Emission
Mechanism at Heterojunction Interface,” IEEE Transactions on Electron Devices, vol. ED-37,
pp. 1093–1098, 1990.

[126] G. A. M. Hurkx, D. B. M. Klassen, and M. P. G. Knuvers, “A New Recombination Model for Device
Simulation Including Tunneling,” IEEE Transactions on Electron Devices, vol. ED-39, pp. 331–338,
1992.

[127] S. Sugino, N. Takakura, D. Chen, and R. W. Dutton, “Analysis of Writing and Erasing Procedure of Flotox
EEPROM Using the New Charge Balance Condition (CBC) Model,” in Workshop on Numerical
Modeling of Processes and Devices for Integrated Circuits: NUPAD IV, Seattle, WA, pp. 65–69, 1992.

[128] M. K. Ieong, P. M. Solomon, S. E. Laux, H. S. P. Wong, and D. Chidambarrao, “Comparison of Raised
and Schottky Source/Drain MOSFETs Using a Novel Tunneling Contact Model,” IEDM, pp. 733–736,
1998.

[129] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady State Methods for Simulating Analog
and Microwave Circuits, Kluver Academic Publishers, 1990.

[130] Y. Takahashi, K. Kunihiro, and Y. Ohno, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 917–923,
1999.

[131] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series, 1995.

[132] S. L. Chuang, Physics Of Optoelectronic Devices, Wiley Series, 1995.

[133] M. Grupen and K. Hess, “Simulation of Carrier Transport and Nonlinearities in Quantum Well Laser
Diodes,” IEEE Journal of Quantum Electronics, vol. 34, no. 1, pp. 120–140, January, 1998.

[134] C. H. Henry, “Theory of Spontaneous Emission Noise in Open Resonators and its Application to Lasers
and Optical Amplifiers,” Journal of Lightwave Technology, vol. 4, no. 3, pp. 288–297, March, 1986.

[135] M. Koshiba, Optical Waveguides by the Finite Element Method, KTK Scientific Publishers, 1992.

[136] G. Sleijpen, A. Booten, D. Fokkema, and H. van der Vorst, “Jacobi–Davidson Type Methods for
Generalized Eigenproblems and Polynomial Eigenproblems,” Preprint 923, September, 1995.

[137] D. Fokkema, G. Sleijpen, and H. van der Vorst, “Jacobi–Davidson Type QR and QZ Algorithms for the
Reduction of Matrix Pencils,” SIAM J. Sci. Comput. vol. 20, pp. 94–125, August, 1998.

[138] Z. M. Li, M. Dion, S. P. McAlister, R. L. Williams, and G. C. Aers, “Incorporation of Strain Into a
Two–Dimensional Model of Quantum–Well Semiconductor Lasers,” IEEE Journal of Quantum
Electronics, vol. 29, no. 2, pp. 346–354, February, 1993.
 15.635

PART 15 DESSISBIBLIOGRAPHY
[139] C. A. Hougen, Journal of Applied Physics, vol. 66, p. 3763, 1989.

[140] J. Bardeen and W. Shockley, “Deformation potentials and mobilities in non-planar crystals,” Phys. Rev.,
vol. 80, p. 72, 1950.

[141] I. Goroff and L. Kleiman, “Deformation potentials in silicon. III. Effects of general strain on conduction
and valence levels,” Phys. Rev., vol. 132, p. 1080, 1963.

[142] J. J. Wortman, J. R. Hauser, and R. M. Burger, “Effect of mechanical stress on pn-junction device
characteristics,” Journal of Applied Physics, vol. 35, p. 2122, 1964.

[143] P. Smeys, Geometry and stress effects in scaled integrated circuit isolation technologies, Ph.D. thesis,
Department of Electrical Engineering, Stanford University, 1996.

[144] S. Reggiani, M. Valdinoci, L. Colalongo, and G. Baccarani, “A unified analytical model for bulk and
surface mobility in Si n- and p-channel MOSFETs,” ESSDERC, 1999.

[145] D.E.I.S.- University of Bologna: ESPRIT Project 23643 ESDEM - Project Deliverable 1.1.3.5, 1999.

[146] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si
MOSFETs: part I - Effects of substrate impurity concentration,” IEEE Transactions on Electron Devices,
vol. ED-41, no. 12, pp. 2357–2362, 1994.

[147] “A unified mobility model for numerical simulation,” PARASITICS Report, D.E.I.S.-University of
Bologna, 1999.

[148] M. Valdinoci, D. Ventura, M.C. Vecchi, M. Rudan, G. Baccarani, F. Illien, A. Stricker, and L. Zullino,
“Impact ionization in silicon at large operating temperature,” SISPAD Proc., pp. 27–30, 1999.

[149] M. C. Vecchi and M. Rudan, IEEE Transactions on Electron Devices, vol. ED-45, no. 1, pp. 230–238,
1998.

[150] M. G. Ancona and H. F. Tiersten, “Macroscopic physics of the silicon inversion layer,” Phys. Rev. B,
vol. 35, no. 15, pp. 7959–7965, May, 1987.

[151] M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of state of an electron gas in a
semiconductor,” Phys. Rev. B, vol. 39, no. 13, pp. 9536–9540, May, 1989.

[152] A. Wettstein, Quantum effects in MOS devices, Ph.D. thesis, ETH Zürich, 2000.

[153] L. Colalongo, M. Valdinoci, G. Baccarani, P. Migliorato, G. Tallarida, and C. Reita, “Numerical Analysis
of Poly-TFTs Under Off Conditions,” Solid-State Electronics, vol. 41, no. 4, pp. 627–633, 1997.

[154] E. Kapon, Semiconductor Lasers 2, Materials and Structures, AP Academic Press, 1999.

[155] K. Rajkanan, R. Singh, and J. Shewchun, “Absorption Coefficient Of Silicon For Solar Cell Calculations,”
Solid-State Electronics, vol. 22, pp. 793–795, 1979.

[156] K. Kells, General Electrothermal Semiconductor Device Simulation, Konstanz: Hartung-Gorre, 1994.

[157] C. K. Williams, T. H. Glisson, J. R. Hauser, and M. A. Littlejohn, “Energy bandgap and lattice constant
contours of III-V quaternary alloys of the form AxByCzD or ABxCyDz,” Journal of Electronic Materials,
vol. 7, no. 5, pp. 639–646, 1978.

[158] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors
and their alloys,” Journal of Applied Physics, vol. 89, no. 11, pp. 5815–5875, 2001.

[159] T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. K. Williams, “Energy bandgap and lattice constant
contours of III-V quaternary alloys,” Journal of Electronic Materials, vol. 7, no. 1, pp. 1–16, 1978.

[160] M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,”
Semicond. Sci. Technol., vol. 6 , pp. 27–31, 1991.
15.636

PART 15 DESSIS BIBLIOGRAPHY
[161] S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for
a variety of the 2–4-µm optoelectronic device applications,” Journal of Applied Physics, vol. 61,
pp. 4869–4876, 1987.

[162] R. L. Moon, G. A. Antypas, and L. W. James, “Bandgap and lattice constant of GaInAsP as a function of
alloy composition,” Journal of Electronic Materials, vol. 3, no. 3, pp. 635–644, 1974.

[163] B. Schmithüsen, Grid Adaptation for the Stationary Two-Dimensional Drift-Diffusion Model in
Semiconductor Device Simulation, Ph.D. thesis, ETH Zurich, 2002.

[164] B. Schmithüsen, K. Gärtner, and W. Fichtner, “A Grid Adaptation Procedure for the Stationary 2D Drift-
Diffusion Model Based on Local Dissipation Rate Error Estimation: I - Background, II- Examples,”
Technical Reports 2001/02 and 2001/03, Integrated Systems Laboratory, ETH Zurich, Switzerland, 2001.

[165] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,
Wiley-Teubner, 1996.

[166] A. Plonka, “Time-dependent Reactivity of Species in Condensed Media,” Lecture Notes in Chemistry,
New York: Springer-Verlag, 1986.

[167] C. Hu et al., “Hot-electron-induced MOSFET degradation-model, monitor, improvements,” IEEE ED,
vol. 32, no. 2, pp. 375–385, 1985.

[168] K. Hess et al., “Theory of channel hot-carrier degradation in MOSFETs,” Physical Review B, vol. 272,
pp. 527–531, 1999.

[169] B. Tuttle et al., “Structure, energetics, and vibration properties of Si-H bond dissociation in silicon,”
Physical Review B, vol. 59, no. 20, pp. 12884–12889, 1999.

[170] Z. Chen et al., “On the Mechanism for Interface Trap Generation in MOS Transistors Due to Channel Hot
Carrier Stressing,” IEEE EDL, vol. 21, no. 1, pp. 24–36, 2000.

[171] O. Penzin, A. Haggag, W. McMahon, E. Lyumkis, and K. Hess, “MOSFET Degradation Kinetics and
Simulation,” submitted to IEEE Transaction on ED.

[172] J. W. McPherson et al., “Complementary model for intrinsic time-dependent dielectric breakdown in
SiO2 dielectrics,” Journal of Applied Physics, vol. 88, no. 9, pp. 5351–5359, 2000.

[173] K. Varahramyan and E. J. Verret, “A model for specific contact resistance applicable for titanium silicide-
silicon contacts,” Solid-State Electronics, vol. 39, no. 11, pp. 1601–1607, 1996.

[174] F. M. Bufler and W. Fichtner, Applied Physics Letters, vol. 81, no. 1, pp. 82–84, 2002.

[175] M. T. Currie et al., Journal of Vacuum Science & Technology B, vol. 19, no. 6, pp. 2268–2279, 2001.

[176] C. W. Leitz et al., Journal of Applied Physics, vol. 92, no. 7, pp. 3745–375, 2002.

[177] L. F. Register, E. Rosenbaum, and K. Yang, “Analytic model for direct tunneling current in polycrystalline
silicon-gate metal–oxide–semiconductor devices,” Applied Physics Letters, vol. 74, no. 3, pp. 457–459,
1999.

[178] S. K. Banerjee et al., “Compact Modeling of MOSFETs with High-K Gate Dielectrics,” unpublished.

[179] H. Matsuura, International Conference on SiC and Related Materials - ICSCRM2001, Tsukuba, Japan
2001.

[180] Y. P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties,
Chapter 4, Berlin: Springer, 2nd ed., 1999.

[181] K. F. Brennan, The Physics of Semiconductors with Application to Optoelectronic Devices, Chapter 5,
Cambridge: Cambridge University Press, 1999.

[182] J. L. Egley and D. Chidambaro, “Strain Effect on Device Characteristics: Implementation in Drift-
Diffusion Simulators,” Solid-State Electronics, vol. 36, no. 12, pp. 1653–1664, 1993.
 15.637

PART 15 DESSISBIBLIOGRAPHY
[183] G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, New York: Wiley,
1974.

[184] R. Smith, M. Alam, G. Baraff, and M. Hybertsen, “Numerical methods for semiconductor laser
simulations,” Proc. IWCE, 1997.

[185] M. Streiff, A. Witzig, M. Pfeiffer, P. Royo, and W. Fichtner, “A comprehensive VCSEL device
simulator,” to be published in IEEE Journal of Selected Top. Quantum Electronics, 2003.

[186] G. A. Baraff and R. K. Smith, “Nonadiabatic semiconductor laser rate equations for the large-signal,
rapid-modulation regime,” Physical Review A, vol. 61, pp. 043808-1–043808-13, 2000.

[187] J. M. Jin, The Finite Element Method in Electromagnetics, Wiley-Interscience, 2nd ed., 2002.

[188] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput.
Phys., vol. 114, no. 2, pp. 185–200, 1994.

[189] W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations
with stretched coordinates,” Microwave Opt. Tech. Letters, vol. 7, pp. 599–604, 1994.

[190] F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical
and spherical coordinates,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 11, pp. 371–373, 1997.

[191] F. L. Teixeira and W. C. Chew, “A general approach to extend Berenger’s absorbing boundary condition
to anisotropic and dispersive media,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 9,
pp. 1386–1387, 1998.

[192] M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection
semiconductor lasers,” Journal of Applied Physics, vol. 84, no. 6, pp. 3004–3015, 1998.

[193] B. Witzigmann, A. Witzig, and W. Fichtner, “Nonlinear gain saturation for 2-dimensional laser
simulation,” Proceedings of LEOs Conference, pp. 659–660, 1999.

[194] R. Eppenga, M. F. H. Schuurmans, and S. Colak, “New k.p theory for GaAs/Ga(1-x)Al(x)As-type
quantum wells,” Phy. Rev. B, vol. 36, no. 3, pp. 1554–1564, 1987.

[195] A. Witzig, L. Schneider, M. Pfeiffer, M. Streiff, T. Lundstroem, P. Tikhomirov, W.-C. Ng, and
W. Fichtner, “Optimization of a leaky-waveguide laser using DESSIS,” Proceedings of the IEEE/LEOs
3rd International Conference on Numerical Sim. of Semicon. Optoelectron. Dev., NUSOD-03, Tokyo,
Japan, pp. 35–36, October 2003.

[196] S. E. Laux, “Application of Sinusoidal Steady-State Analysis to Numerical Device Simulation,” in New
Problems and New Solutions for Device and Process Modelling, Dublin: Boole Press, pp. 60–71, 1985.

[197] A. Schenk, Advanced Physics Models for Silicon Device Simulation, Wien: Springer-Verlag, 1998.

[198] S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite
semiconductors,” Semiconductor Science and Technology, vol. 12, no. 3, pp. 252–263, 1997.
15.638

	DESSIS™
	Return to Front Page
	Release Notes
	Preface
	About this manual
	Typographic conventions
	Comments about this manual
	ISE Technical Support

	Part I Overview
	Chapter 1 Getting started
	1.1 About DESSIS
	1.1.1 Creating and meshing device structures
	1.1.2 Design flow

	1.2 Starting DESSIS
	1.2.1 Using the command prompt
	1.2.2 From GENESISe

	1.3 Simulation examples
	1.4 Example: Simple MOSFET Id-Vg simulation
	1.4.1 Input command file
	1.4.2 File section
	1.4.3 Electrode section
	1.4.4 Physics section
	1.4.5 Plot section
	1.4.6 Math section
	1.4.7 Solve section
	1.4.8 Simulated Id-Vg characteristic
	1.4.9 Analysis of 2D output data

	1.5 Example: Advanced hydrodynamic Id-Vd simulation
	1.5.1 Input command file
	1.5.2 File section
	1.5.3 Parameter file
	1.5.4 Electrode section
	1.5.5 Physics section
	1.5.6 Interface physics
	1.5.7 Plot section
	1.5.8 CurrentPlot section
	1.5.9 Math section
	1.5.10 Solve section
	1.5.11 Two-dimensional output data

	1.6 Example: Mixed-mode CMOS inverter simulation
	1.6.1 Input command file
	1.6.2 Device section
	1.6.3 System section
	1.6.4 File section
	1.6.5 Plot section
	1.6.6 Math section
	1.6.7 Solve section
	1.6.8 Results of inverter transient simulation

	1.7 Example: Small-signal AC extraction
	1.7.1 Input command file
	1.7.2 Device section
	1.7.3 File section
	1.7.4 System section
	1.7.5 Solve section
	1.7.6 Results of AC simulation

	Chapter 2 Basic DESSIS
	2.1 Overview
	2.1.1 Specifying the device
	2.1.2 Defining the output
	2.1.3 Specifying the simulation

	2.2 File section
	2.3 Electrode section
	2.3.1 Command syntax
	2.3.2 Work function and material specifications for contacts

	2.4 Thermode section
	2.4.1 Command syntax

	2.5 Physics section
	2.5.1 Example: Possible input parameters
	2.5.2 Main and additional options
	2.5.3 Region-specific and material -specific physics
	2.5.4 Hierarchy of physical model specifications
	2.5.5 Physics at interfaces
	2.5.6 Physics at electrodes

	2.6 Plot section
	2.7 CurrentPlot section
	2.7.1 Example: Node numbers
	2.7.2 Example: Mixed mode
	2.7.3 Example: Advanced options
	2.7.4 Example: Physical parameter values

	2.8 NonLocalPlot section
	2.9 Solve section
	2.9.1 Coupled command
	2.9.2 Plugin command
	2.9.3 Quasistationary command
	2.9.4 Transient command
	2.9.5 Large signal cyclic analysis
	2.9.6 Plot, Save, and Load commands
	2.9.7 System command
	2.9.8 NewCurrentPrefix statement
	2.9.9 CurrentPlot section
	2.9.10 Set command

	2.10 Math section
	2.10.1 Device-specific Math keywords
	2.10.2 Math parameters for nonlinear iterations convergence control
	2.10.3 Math parameters for transient analysis
	2.10.4 Solver-oriented Math keywords
	2.10.5 Break criteria
	2.10.6 Parallelization
	2.10.7 Nonlocal line meshes
	2.10.8 Monitoring convergence behavior

	2.11 Thermodynamic simulations
	2.11.1 Nonisothermal simulation recommendations

	2.12 Hydrodynamic simulations
	2.13 Parameter and model specification
	2.13.1 Region and material parameter specification
	2.13.2 Generating a copy of parameter file
	2.13.3 Changing parameter values in parameter file
	2.13.4 Hierarchy of parameter specifications
	2.13.5 Library of materials
	2.13.6 Parameters of compound materials
	2.13.7 Undefined physical models

	2.14 Material and doping specification
	2.14.1 User-defined materials
	2.14.2 User-defined species

	Chapter 3 Mixed-mode DESSIS
	3.1 Overview
	3.1.1 Compact models
	3.1.2 Hierarchical description of compact models
	3.1.3 Example: Compact models

	3.2 SPICE circuit files
	3.3 Dessis section
	3.4 System section
	3.4.1 Physical devices
	3.4.2 Circuit devices
	3.4.3 Electrical and thermal netlist
	3.4.4 Set, Unset, Initialize, and Hint
	3.4.5 System Plot
	3.4.6 AC System Plot

	3.5 File section
	3.6 SPICE circuit models
	3.7 User-defined circuit models
	3.8 Solve section
	3.8.1 Coupled command
	3.8.2 Quasistationary command
	3.8.3 ACCoupled: Small-signal AC analysis
	3.8.4 Optical AC analysis
	3.8.5 Continuation: An alternative ramping method
	3.8.6 Set and Unset section

	3.9 Math section
	3.10 Using mixed-mode simulation
	3.10.1 From single device file to multidevice file
	3.10.2 File-naming convention: Mixed-mode extension

	Part II Physics in DESSIS
	Chapter 4 Introduction to physics in DESSIS
	4.1 Overview
	4.2 Transport equations
	4.2.1 Basic equations for semiconductor device simulation
	4.2.2 Drift-diffusion model
	4.2.3 Thermodynamic model
	4.2.4 Hydrodynamic model
	4.2.5 Conductivity of metals

	4.3 Quasi-Fermi potential
	4.4 Fermi-Dirac statistics
	4.4.1 Syntax and implementation

	4.5 Boundary conditions
	4.5.1 Electrical boundary conditions
	4.5.2 Thermal boundary conditions for thermodynamic model
	4.5.3 Thermal boundary conditions for hydrodynamic model
	4.5.4 Total thermal resistance
	4.5.5 Periodic boundary conditions

	4.6 Starting solution or ‘initial guess’
	4.6.1 Electrostatic potential and quasi-Fermi potentials: Wells
	4.6.2 Thermodynamic and hydrodynamic simulations
	4.6.3 Save file overrides the initial guess

	Chapter 5 Semiconductor band structure
	5.1 Overview
	5.2 Band gap and electron affinity
	5.2.1 Selecting a model
	5.2.2 Band gap and electron affinity models
	5.2.3 Model parameters

	5.3 Effective masses and effective density of states
	5.3.1 Electron effective mass and DOS
	5.3.2 Electron effective mass and conduction band DOS parameters
	5.3.3 Hole effective mass and DOS
	5.3.4 Hole effective mass and valence band DOS parameters

	Chapter 6 Incomplete ionization
	6.1 Overview
	6.2 Syntax and implementation
	6.3 Physical model description
	6.4 Physical model parameters
	6.5 Example: Incomplete ionization

	Chapter 7 Quantization models
	7.1 Overview
	7.2 van Dort quantum correction model
	7.2.1 Model description
	7.2.2 Syntax and implementation

	7.3 One-dimensional Schrödinger solver
	7.3.1 Defining a nonlocal line mesh
	7.3.2 Activating and controlling the 1D Schrödinger solver
	7.3.3 Physical parameters
	7.3.4 Visualizing the results
	7.3.5 Model description
	7.3.6 Application notes

	7.4 Density gradient model
	7.4.1 Model description
	7.4.2 Syntax and implementation
	7.4.3 Application notes

	Chapter 8 Mobility models
	8.1 Overview
	8.2 Syntax and implementation
	8.3 Mobility due to lattice scattering
	8.3.1 Syntax and implementation
	8.3.2 Constant mobility model
	8.3.3 Constant mobility model parameters

	8.4 Doping-dependent mobility degradation
	8.4.1 Syntax and implementation
	8.4.2 Masetti model
	8.4.3 Arora model
	8.4.4 University of Bologna bulk mobility model

	8.5 Mobility degradation at interfaces
	8.5.1 Syntax and implementation
	8.5.2 Enhanced Lombardi model
	8.5.3 University of Bologna inversion layer mobility model
	8.5.4 Transverse field computation

	8.6 Carrier -carrier scattering
	8.6.1 Syntax and implementation
	8.6.2 Conwell-Weisskopf model
	8.6.3 Brooks-Herring model
	8.6.4 Physical model parameters

	8.7 Philips unified mobility model
	8.7.1 Syntax and implementation
	8.7.2 Physical model description
	8.7.3 Screening parameter
	8.7.4 Physical model parameters

	8.8 High field saturation
	8.8.1 Syntax
	8.8.2 Canali model
	8.8.3 Transferred electron model
	8.8.4 Velocity saturation models
	8.8.5 Driving force models
	8.8.6 Syntax and implementation for drift-diffusion and thermodynamic simulations
	8.8.7 Hydrodynamic Canali model
	8.8.8 Hydrodynamic transferred electron model
	8.8.9 A basic model
	8.8.10 Meinerzhagen-Engl model
	8.8.11 Syntax and implementation for hydrodynamic simulations

	8.9 Monte Carlo-computed mobility for strained silicon
	8.10 Incomplete ionization-dependent mobility models

	Chapter 9 Generation-recombination
	9.1 Shockley-Read-Hall recombination
	9.1.1 Syntax and implementation
	9.1.2 Doping dependence
	9.1.3 Lifetime profiles from MDRAW
	9.1.4 Temperature dependence
	9.1.5 SRH model parameters

	9.2 Trap-assisted tunneling/SRH
	9.2.1 Syntax and implementation
	9.2.2 Model description
	9.2.3 Model parameters

	9.3 Hurkx trap-assisted tunneling model
	9.3.1 Syntax and implementation
	9.3.2 Model description
	9.3.3 Model parameters

	9.4 Surface SRH recombination
	9.5 Coupled defect level (CDL) recombination
	9.5.1 Syntax and implementation
	9.5.2 Model description

	9.6 Radiative recombination model
	9.6.1 Syntax and implementation
	9.6.2 Model description

	9.7 Auger recombination
	9.8 Trap-assisted Auger recombination
	9.9 Avalanche generation
	9.9.1 Syntax and implementation
	9.9.2 van Overstraeten - de Man model
	9.9.3 Okuto-Crowell model
	9.9.4 Lackner model
	9.9.5 University of Bologna impact ionization model
	9.9.6 Driving force
	9.9.7 Avalanche generation with hydrodynamic transport

	9.10 Approximate breakdown analysis: Poisson equation approach
	9.10.1 Syntax and implementation

	9.11 Band-to-band tunneling models
	9.11.1 Schenk model
	9.11.2 Commonly used models
	9.11.3 Hurkx model
	9.11.4 Tunneling near interfaces and equilibrium regions

	Chapter 10 Traps
	10.1 Trap energy and space distributions
	10.2 Trap occupation dynamics
	10.2.1 Balance equation
	10.2.2 Models for balance coefficients

	10.3 Steady state analysis
	10.4 Transient analysis
	10.5 Syntax for traps
	10.6 Syntax for amorphous statement
	10.7 Setting and unsetting an initial trap occupation
	10.8 Numeric parameters

	Chapter 11 Degradation model
	11.1 Overview
	11.2 Trap formation kinetics
	11.2.1 Power law and kinetic equation
	11.2.2 Si-H density-dependent activation energy

	11.3 Syntax and parameterized equations
	11.4 Device lifetime and simulation

	Chapter 12 Radiation models
	12.1 Overview
	12.2 Syntax and implementation
	12.3 Yield function
	12.4 J-model trap equations

	Chapter 13 Optical generation
	13.1 Photon beam generation
	13.2 Absorption models
	13.2.1 Default absorption model from DESSIS parameter file
	13.2.2 Table-based optical properties of materials in DESSIS parameter file
	13.2.3 Absorption coefficient model

	13.3 Optical generation by raytracing
	13.3.1 Overview
	13.3.2 Snell’s law, and refraction and reflection intensities
	13.3.3 Polarization
	13.3.4 Absorption models
	13.3.5 Refractive index model
	13.3.6 Intensity
	13.3.7 Window of ray
	13.3.8 Spatial distribution of intensity

	13.4 Optical generation by transfer matrix approach
	13.4.1 Physical model
	13.4.2 Syntax and implementation

	13.5 Optical generation from FDTD simulation (EMLAB)
	13.5.1 Files of EMLAB generation
	13.5.2 Syntax of EMLAB generation: EMLAB input file
	13.5.3 EMLAB generation: Tensor grid, syntax, and algorithm

	13.6 Optical AC analysis

	Chapter 14 Single event upset (SEU)
	14.1 Alpha particles
	14.1.1 Syntax and implementation

	14.2 Heavy ions
	14.2.1 Syntax and implementation
	14.2.2 Model description
	14.2.3 Examples: Heavy ions

	14.3 Improved alpha particle/heavy ion generation rate integration

	Chapter 15 Noise and fluctuation analysis
	15.1 Overview
	15.2 Performing noise and fluctuation analysis
	15.3 Noise sources
	15.3.1 Diffusion noise
	15.3.2 Equivalent monopolar generation-recombination noise
	15.3.3 Bulk flicker noise
	15.3.4 Random dopant fluctuations
	15.3.5 Noise from SPICE circuit elements

	15.4 Impedance field method
	15.5 Noise output data

	Chapter 16 Tunneling
	16.1 Overview
	16.2 Fowler-Nordheim tunneling
	16.2.1 Syntax and implementation
	16.2.2 Model description
	16.2.3 Model parameters

	16.3 Direct tunneling through gate oxides
	16.3.1 Syntax and implementation
	16.3.2 Model description
	16.3.3 Model parameters

	16.4 Nonlocal tunneling at interfaces and contacts
	16.4.1 Defining a nonlocal mesh
	16.4.2 Specifying the physical model
	16.4.3 Physical and numeric parameters
	16.4.4 Visualizing nonlocal tunneling
	16.4.5 Physics of nonlocal tunneling model

	Chapter 17 Hot carrier injection models
	17.1 Overview
	17.2 Classical Lucky electron injection
	17.3 Fiegna hot carrier injection

	Chapter 18 Heterostructure device simulation
	18.1 Overview
	18.2 Physics models and differential equations
	18.3 Mole fraction materials
	18.4 Mole fraction specification
	18.5 Composition-dependent models
	18.6 Ternary semiconductor composition
	18.7 Quaternary semiconductor composition
	18.8 Default model parameters for compound semiconductors
	18.9 Abrupt and graded heterojunctions
	18.10 Thermionic emission current
	18.10.1 Syntax and implementation
	18.10.2 Model description

	Chapter 19 Energy-dependent parameters
	19.1 Overview
	19.2 Energy-dependent energy relaxation time
	19.3 Energy-dependent mobility
	19.4 Energy-dependent Peltier coefficient

	Chapter 20 Anisotropic properties
	20.1 Anisotropic mobility
	20.1.1 Crystal reference system
	20.1.2 Anisotropy factor
	20.1.3 Current densities
	20.1.4 Driving forces
	20.1.5 Total anisotropic mobility
	20.1.6 Total direction-dependent anisotropic mobility
	20.1.7 Self-consistent anisotropic mobility
	20.1.8 Math section
	20.1.9 Plot section

	20.2 Anisotropic avalanche generation
	20.3 Anisotropic electrical permittivity
	20.4 Anisotropic thermal conductivity

	Chapter 21 Ferroelectric materials
	21.1 Overview
	21.2 Syntax and implementation
	21.3 Model description

	Chapter 22 Mechanical stress effect modeling
	22.1 Overview
	22.2 Syntax and implementation
	22.3 Deformation of band structure
	22.3.1 Syntax and implementation

	22.4 Tensor-mesh piezoresistive option
	22.4.1 Syntax and implementation

	22.5 Strain-induced mobility model
	22.5.1 Syntax and implementation

	Chapter 23 Galvanic transport model
	23.1 Syntax and implementation
	23.2 Model description

	Chapter 24 Thermal properties
	24.1 Heat capacity
	24.2 Temperature-dependent lattice heat capacity
	24.3 Thermal conductivity
	24.4 Temperature-dependent thermal conductivity
	24.5 Thermoelectric power (TEP)

	Part III Physics of Lasers and Light- Emitting Diodes
	Chapter 25 Introduction to lasers and LEDs
	25.1 Overview
	25.2 Command file syntax
	25.2.1 Single-grid edge-emitting laser simulation
	25.2.2 Dual-grid edge-emitting laser simulation
	25.2.3 Default output from laser or LED simulation
	25.2.4 Plot variables specific to laser or LED simulations

	Chapter 26 Theoretical foundations of laser or LED simulation
	26.1 Overview
	26.2 Coupling between optics and electronics
	26.2.1 Algorithm for coupling electrical and optical problems

	26.3 Photon rate equation
	26.4 Waveguide optical modes and Fabry-Perot cavity
	26.4.1 Lasing wavelength in Fabry-Perot cavity
	26.4.2 Specifying a fixed optical confinement factor
	26.4.3 Output power

	26.5 Cavity optical modes in VCSELs
	26.5.1 VCSEL output power
	26.5.2 Cylindrical symmetry
	26.5.3 Approximate methods for VCSEL cavity problem

	26.6 Modeling light-emitting diodes
	26.6.1 Coupling between electronics and optics in an LED simulation
	26.6.2 Discussion of LED physics

	Chapter 27 Optics
	27.1 Overview
	27.2 Finite element (FE) formulation
	27.3 Syntax of FE scalar and FE vectorial optical solvers
	27.3.1 FE scalar solver
	27.3.2 FE vectorial solver
	27.3.3 Specifying multiple entries for parameters in FEScalar and FEVectorial

	27.4 Boundary conditions and symmetry for optical solvers
	27.4.1 Symmetric FEScalar waveguide mode in Cartesian coordinates
	27.4.2 Symmetric FEVectorial waveguide modes in Cartesian coordinates
	27.4.3 Symmetric FEVectorial VCSEL cavity modes in Cartesian coordinates
	27.4.4 Symmetric FEVectorial VCSEL cavity modes in cylindrical coordinates

	27.5 Perfectly matched layers
	27.6 Transfer matrix method for VCSELs
	27.7 Effective index method for VCSELs
	27.7.1 Formulation of effective index method
	27.7.2 Transverse mode pattern of VCSELs
	27.7.3 Syntax for the effective index method

	27.8 LED raytracing
	27.8.1 Isotropic starting rays from spontaneous emission sources
	27.8.2 Anisotropic starting rays from spontaneous emission sources
	27.8.3 Randomization of starting rays
	27.8.4 Syntax for LED raytracing
	27.8.5 LED radiation pattern

	27.9 Far field
	27.9.1 Far-field observation angle
	27.9.2 Syntax of far field
	27.9.3 Far-field output files
	27.9.4 Far field from loaded optical field file

	27.10 VCSEL near field and far field
	27.11 Automatic optical mode searching
	27.11.1 Syntax for automatic mode searching

	Chapter 28 Quantum well modeling
	28.1 Overview
	28.2 Carrier capture in quantum wells
	28.2.1 Special meshing requirements for quantum wells
	28.2.2 Thermionic emission
	28.2.3 QW scattering model

	28.3 Radiative recombination and gain coefficients
	28.3.1 Stimulated and spontaneous emission coefficients
	28.3.2 Active bulk material gain
	28.3.3 Stimulated recombination rate
	28.3.4 Spontaneous recombination rate
	28.3.5 Spontaneous emission power for LEDs

	28.4 Gain-broadening models
	28.4.1 Lorentzian broadening
	28.4.2 Landsberg broadening
	28.4.3 Hyperbolic-cosine broadening
	28.4.4 Syntax to activate broadening

	28.5 Nonlinear gain saturation effects
	28.6 Simple quantum well subband model
	28.6.1 Syntax for simple quantum well model

	28.7 Strain effects
	28.7.1 Syntax for quantum well strain

	28.8 Polarization-dependent optical matrix element
	28.9 k.p method
	28.9.1 Luttinger-Kohn parameters and Hamiltonians for zinc- blende crystal structure
	28.9.2 Luttinger-Kohn parameters and Hamiltonian for wurtzite crystal structure
	28.9.3 Syntax for k.p method

	28.10 Importing external gain with PMI
	28.10.1 Implementation of the gain PMI

	Chapter 29 Additional features of laser or LED simulation
	29.1 Free carrier loss
	29.2 Saving and loading optical modes
	29.2.1 Saving optical modes on optical or electrical mesh
	29.2.2 Loading optical modes from arbitrary mesh
	29.2.3 Obsolete optical intensity save and load options

	29.3 Symmetry considerations
	29.3.1 Cylindrical symmetry

	29.4 Plotting gain
	29.4.1 Modal gain as a function of bias
	29.4.2 Material gain in the active region
	29.4.3 Modal gain as a function of energy/wavelength

	29.5 Refractive index, dispersion, and optical loss
	29.5.1 Temperature dependence of refractive index
	29.5.2 Carrier density dependence of refractive index
	29.5.3 Wavelength dependence and absorption of refractive index

	29.6 Transient simulation
	29.6.1 Syntax for laser transient simulation

	29.7 Performing a temperature simulation
	29.7.1 Lattice temperature simulation
	29.7.2 Carrier temperature simulation

	29.8 Optics stand-alone option
	29.9 Switching from voltage to current ramping
	29.10 Scripts

	Chapter 30 Simulation of different laser types and LEDs
	30.1 Overview
	30.2 Edge-emitting lasers
	30.2.1 Multiple transverse modes
	30.2.2 Multiple longitudinal modes
	30.2.3 Simple distributed feedback model
	30.2.4 Bulk active-region edge-emitting lasers
	30.2.5 Device physics and parameter tuning
	30.2.6 Leaky waveguide lasers

	30.3 Vertical-cavity surface-emitting lasers
	30.3.1 Different grid and structure for electrical and optical problems
	30.3.2 Aligning resonant wavelength within the gain spectrum
	30.3.3 Device physics and parameter tuning
	30.3.4 Example syntax for VCSEL simulation

	30.4 Light-emitting diodes
	30.4.1 Single-grid versus dual-grid LED simulation
	30.4.2 LED output power
	30.4.3 Device physics and tuning parameters
	30.4.4 Example syntax for LED simulation

	Part IV Mesh and Numeric Methods
	Chapter 31 Automatic grid generation and adaptation module AGM
	31.1 Overview
	31.1.1 Adaptation procedure
	31.1.2 Adaptation decision
	31.1.3 Adaptation strategy
	31.1.4 Adaptation criteria
	31.1.5 Solution recomputation

	31.2 Adaptive device instances
	31.2.1 AGM device parameters
	31.2.2 Grid specification

	31.3 Adaptation criteria
	31.3.1 General
	31.3.2 Dirichlet
	31.3.3 Residual
	31.3.4 Element

	31.4 Adaptive solve statements
	31.4.1 General adaptive solve statements
	31.4.2 Adaptive coupled solve statements
	31.4.3 Adaptive quasistationary solve statements

	31.5 Limitations and recommendations
	31.5.1 Limitations
	31.5.2 Recommendations

	Chapter 32 Numeric methods
	32.1 Discretization
	32.2 Box method coefficients
	32.2.1 Basic definitions
	32.2.2 Variation of box method algorithms
	32.2.3 Truncated and non-Delaunay elements
	32.2.4 Math parameters for box method coefficients
	32.2.5 Saving and restoring box method coefficients

	32.3 AC simulation
	32.3.1 AC response
	32.3.2 AC current density responses

	32.4 Transient simulation
	32.4.1 Backward Euler method
	32.4.2 TRBDF composite method
	32.4.3 Syntax and implementation

	32.5 Nonlinear solvers
	32.5.1 Full coupled solution
	32.5.2 ‘Plugin’ iterations

	Part V Physical Model Interface
	Chapter 33 Physical model interface
	33.1 Overview
	33.2 C++ interface
	33.3 Shared object code
	33.4 DESSIS command file
	33.5 Run-time support
	33.6 DESSIS parameter file
	33.7 Generation-recombination model
	33.7.1 Dependencies
	33.7.2 C++ interface
	33.7.3 Example: Auger recombination

	33.8 Avalanche generation model
	33.8.1 Dependencies
	33.8.2 C++ interface
	33.8.3 Example: Okuto model

	33.9 Mobility models
	33.10 Doping-dependent mobility
	33.10.1 Dependencies
	33.10.2 C++ interface
	33.10.3 Example: Masetti model

	33.11 Mobility degradation at interfaces
	33.11.1 Dependencies
	33.11.2 C++ interface
	33.11.3 Example: Lombardi model

	33.12 High-field saturation model
	33.12.1 Dependencies
	33.12.2 C++ interface
	33.12.3 Example: Canali model

	33.13 Band gap
	33.13.1 Dependencies
	33.13.2 C++ interface
	33.13.3 Example: Default band gap model

	33.14 Band-gap narrowing
	33.14.1 Dependencies
	33.14.2 C++ interface
	33.14.3 Example: Default model

	33.15 Apparent band-edge shift
	33.15.1 Dependencies
	33.15.2 C++ interface

	33.16 Electron affinity
	33.16.1 Dependencies
	33.16.2 C++ interface
	33.16.3 Example: Default affinity model

	33.17 Effective mass
	33.17.1 Dependencies
	33.17.2 C++ interface
	33.17.3 Example: Linear effective mass model

	33.18 Energy relaxation times
	33.18.1 Dependencies
	33.18.2 C++ interface
	33.18.3 Example: Constant energy relaxation times

	33.19 Lifetimes
	33.19.1 Dependencies
	33.19.2 C++ interface
	33.19.3 Example: Doping- and temperature-dependent lifetimes

	33.20 Thermal conductivity
	33.20.1 Dependencies
	33.20.2 C++ interface
	33.20.3 Example: Temperature-dependent thermal conductivity

	33.21 Heat capacity
	33.21.1 Dependencies
	33.21.2 C++ interface
	33.21.3 Example: Constant heat capacity

	33.22 Optical absorption
	33.22.1 Dependencies
	33.22.2 C++ interface
	33.22.3 Example: Temperature-dependent absorption model

	33.23 Refractive index
	33.23.1 Dependencies
	33.23.2 C++ interface
	33.23.3 Example: Temperature-dependent refractive index

	33.24 Stress
	33.24.1 Dependencies
	33.24.2 C++ interface
	33.24.3 Example: Constant stress model

	33.25 Trap space factor
	33.25.1 Dependencies
	33.25.2 C++ interface
	33.25.3 Example: PMI user field as space factor

	33.26 Piezoelectric polarization
	33.26.1 Dependencies
	33.26.2 C++ interface
	33.26.3 Example: Gaussian polarization model

	33.27 Incomplete ionization
	33.27.1 Dependencies
	33.27.2 C++ interface
	33.27.3 Example: Matsuura incomplete ionization model

	33.28 Current plot
	33.28.1 Structure of current plot file
	33.28.2 C++ interface
	33.28.3 Run-time support
	33.28.4 Device mesh
	33.28.5 Device data
	33.28.6 Example: Average electrostatic potential

	Appendix A Syntax
	Appendix B File-naming convention
	B.1 Compatibility with old file-naming convention

	Appendix C Command-line options
	Appendix D Run-time statistics
	Appendix E Data and plot names
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

